Experimental Realization of a
Quantum Autoencoder

Alex Pepper, Nora Tischler, Geoff J. Pryde
Phys. Rev. Lett. 122, 060501 — Published 11 February 2019



Recap: Autoencoders

* Unsupervised machine learning method

* Encode input data through a latent space

 Learn structures in data without previous knowledge



Efficient information storage: Encoding




Efficient information storage: Encoding

* Depends on data
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Efficient information storage: Encoding

* Depends on data
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Efficient information storage: Encoding

* Depends on data
 Compressible to one bit: 1 or O
* Don't save each pixel! Find structure
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Efficient information storage: Encoding

* Depends on data
 Compressible to one bit: 1 or O
* Don't save each pixel! Find structure

* Problem: Need extensive knowledge about data
* How to do this without prior knowledge?



Autoencoders

* Encoder
* Input X in inefficient format
* Decreasing layer size
* Squeeze through "bottleneck"”

* Decoder
* Increasing layer size

e Reconstruct input as closely as
possible

input

encoder

code

decoder

output

[4]

https://en.wikipedia.org/wiki/Autoencoder



Demonstration

* Goal: Encoding of portraits of highschool-students
* Image dimensions: 144 x 192 x 3 =82.944
* Latent space: 80 Dimensions

— Cut off encoder and feed manual input to decoder



Why do we care?

* Application in Quantum Physics
* Most prominently: Quantum Computers

* Resources are even more valuable than in classical computers

* Reduce complicated Hilbert-space without assumptions

* Classic approach: handcrafted for single use case



Proposal: Quantum-Autoencoder

* Compress qudits to qunits (d > n)
e Here:d=3,n=2

* Encode qutrits in single photons



Proposal: Quantum-Autoencoder
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Minimize occupation probability of junk mode
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Experimental realization
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Single Photon Source

 Create photon pairs (SPDC)
* Detect one photon
* Couple other photon to fiber & pass through FPC

(a) Single Photon Source (b) State Preparation |
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IR 410 nm diode laser @@@ FPC ] Motorized HWP || Half-wave plate @45° [ | Beam displacer

I BBO crystal P- Coupler I Motorized QWP |:| Scrambling stage Avalanche photodiode
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(c) Autoencoder
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State Preparation

* Encode qubit in polarization state via two (adjustable) waveplates
* Pass through polarizing beam displacer
* Scramble lower spatial mode (fixed)

(a) Single Photon Source (b) State Preparation (c) Autoencoder
=Junk APD
] =

IR 410 nm diode laser @@@ FPC l] Motorized HWP ||| Half-wave plate @45° Beam displacer

I BBO crystal P- Coupler I Motorized QWP |:| Scrambling stage Avalanche photodiode
[1]
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Autoencoder

* 3 x 3 unitary transformation - 4 free parameters
e 2 x 2 unitaries (wave plates)
 Mode permutation (beam displacers)

(a) Single Photon Source | (b) State Preparation (c) Autoencoder
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I BBO crystal P- Coupler I Motorized QWP |:| Scrambling stage Avalanche photodiode
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Quantify compression performance

* Use occupation probability of junk mode: P;
* Success probability of encoding process is 1 — P;
* Fidelity between input state and output is also 1 — P;
= Minimize P; during training

* Define cost function as average junk mode occupation prob.
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Training process

* Initiate settings randomly X =(xq, X9, X3, X4)
* At each iteration estimate gradient VC|xcm_
tate by s,
* Probe n-th plate:  x.,, bt Xpn

oc
dxn

— [C(x‘pn) - C(xcu‘r)]/sa

Xcur
Return to previous position and repeat for next plate

Rotate all plates simultaneously

* Xeur 7 Xcur — Sa Vclxcur

11.06.2019 by Stephen Schaumann

19



Training process

e Start with coarse adjustment value (12°), switch to smaller value (5°)
when cost function smaller than 0.1



Training process

e Start with coarse adjustment value (12°), switch to smaller value (5°)
when cost function smaller than 0.1

* If cost function not below 0.1 after 50 steps, rotate each plate 25°
* Empirical method to avoid local minima



Results: Training process
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* Training starting from 20 different
initializations of the unitary
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* Two fixed, randomly selected
training states

N

* Average occupation prob. 0.03 £ 0.03
after 160 cost function evaluations
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Results: # training samples

e Optimization routine run with one,
two, and three training states

* Twenty random states from same
subspace sent through device

e Occupation prob.:
*1state: 0.4+£0.3
* 2 states: 0.03 + 0.02
* 3 states: 0.02 £ 0.02

11.06.2019
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Results: Robustness

* Test robustness of device by rotating
scrambling plate by 4° every 5 steps

* Needed training time increased

* Encoding still quite good (p < 0.05)
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Conclusion

e Autoencoders provide flexible compression of information

* Experimental realization successful
* Device is able to exploit underlying structure of dataset

* Robust to drift in subspace
* Can be extended beyond qutrits to encode arbitrarily large qudits

* Possible improvement
* Faster implementation of unitaries
* More sophisticated optimization algorithm (e.g. genetic algorithms)



Personal remarks

e Skeptical about number of training samples
* Heavy dependence on chosen training states

* Still used additional knowledge to avoid local minima
* Not task specific

* Gradient estimation is very crude
e Could fail on more complicated problems

* Not as powerful as Neural Networks
* No non-linearities

* General result
* Impressing implementation
* Very promising for future applications



Sources

e [1] Experimental Realization of a Quantum Autoencoder: The
Compression of Qutrits via Machine Learning
https://arxiv.org/abs/1810.01637

* [2] Autoencoder demo: https://github.com/HackerPoet/FaceEditor

* [3] Quantum optics of the beamsplitter
http://www.quantum.physik.uni-
potsdam.de/teaching/ss2013/q02/script bsplit.pdf

* [4] https://en.wikipedia.org/wiki/Autoencoder
* [5] https://en.wikipedia.org/wiki/White noise
e [6] Drawn by myself in MS Paint
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