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= Goal: Better understanding of the high T, superconduction
in cuprates

= Physically: Radial wave function in 3d transition metals has
small extent
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= Fermi-Hubbard model: Hopping between neighboring sites
and on-site interaction

Hyupp, = —t C:'r,aC:f:U i UZ nj | nj+
i i

(i),o

Coulomb—repulsion

Hopping

On-site interaction: U Tunneling: ¢

Fermi-Hubbard scheme, Source: Utrecht University
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The Hubbard model - Introduction & Motivation

= Experimental realization: ultracold atoms in an optical
lattice (— second talk)

= Recreate phases of cuprate superconductors with the
Hubbard Hamiltonian
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The Hubbard model - Theory

= Hubbard-Hamiltonian:
Hhupp. = —t Z Ci oo+ UZ nj | Nit
(ij),o

= |limit U > t: no double occupancies

t

7 x N
IR I T A
Exchange processes, Source: Augsburg University

= obtain the t-J Hamiltonian for U> t (J = 4t2)

:_tZCIUqU+JZ nnj)
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= Only solved exactly in one and infinitely many dimensions =
intense research into numerical methods

= numerically costly calculations:

: 212 (2L2)!
dimH = < L2> = (212 = 1.26eldfor L =5

= Thermodynamic limit?

= Additionally: low temperatures, large 5 = high value for m
(Error control with A7, see Daniel Kirchhoff slides)
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The Hubbard model - Difficulties

= Only solved exactly in one and infinitely many dimensions =
intense research into numerical methods

= numerically costly calculations:

: 212 (2L2)!
dimH = < L2> = (212 = 1.26eldfor L =5

= Thermodynamic limit?

= Additionally: low temperatures, large 5 = high value for m
(Error control with A7, see Daniel Kirchhoff slides)

Z=Tre " =Tr(e 2™M)™ = Z, + O(AT?)

= Numerical sign problem
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The Hubbard model - Phases

= Bipartite lattices, e.g. square lattice

= Bipartite lattices naturally make ideal antiferromagnets

= Antiferromagnetism in non-bipartite lattices is called
frustrated antiferromagnetism.
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The honeycomb lattice is a bipartite lattice



The Hubbard model - Phases

The triangular lattice is NOT a bipartite lattice



The Hubbard model - Phases
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Phase diagram of the Fermi-Hubbard model, Source
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) = [th1/2) AFM ground state
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AE=44]J
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Microscopic approaches - Geometric string theory

= Starting point: undoped Heisenberg spin model at half filling

HHeisenberg = JZ §i ’ §f
(i)

with |S] = 1.
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Microscopic approaches - Geometric string theory

= Starting point: undoped Heisenberg spin model at half filling

HHeisenberg = J Z S;- §J
(ij)

with |S] = 1.
= Describe the motion of holes with string states:

trivial string state (hole): |j, o, /= 0) = G, [Y1/2)

|11/2): half-filling AFM ground state (checkerboard)
= string state (finite length):

[, 0,1=Z|) = Gz [j,0,/=10)

Gy : hole-movement operator
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Microscopic approaches - Geometric string theory

= Starting point: undoped Heisenberg spin model at half filling

HHeisenberg = JZ §i ’ §J
)
with |S] = 1.
= Describe the motion of holes with string states:
trivial string state (hole): |j, o, /= 0) = G, [Y1/2)
|11/2): half-filling AFM ground state (checkerboard)

= string state (finite length):
Jyo,1= %)) = Gz lj,0,1=0)
Gy : hole-movement operator

= Lets look at the energy change that comes with such strings!
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Microscopic approaches - Geometric string theory

= Generally: longer strings drive the system further away from
its ground state!
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Microscopic approaches - Geometric string theory

= Generally: longer strings drive the system further away from

its ground state!

= Simulations on an 8x8 lattice (periodic boundary conditions)

show this correlation (simulation with AFM Ising-Spins):
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Microscopic approaches - Geometric string theory

= string states |j, o, X) form an orthonormal basis
= t-J Hamiltonian H;_, as an approximation for U >t
v Hy= T35 Veor(ls), Veor(ls) = % s + g0 0 + i
= linear string tension: %5 = 2J(Cy(v/2) — Cs(1))
attractive potential: go = —J(Cs(2) — C5(1))
overall offset: pp = J(1+ C5(2) —5C4(1))
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Microscopic approaches - Geometric string theory

= string states |, 0, ) form an orthonormal basis
= t-J Hamiltonian H;_, as an approximation for U >t
v Hy= T35 Veor(ls), Veor(ls) = % s + g0 0 + i
= linear string tension: %5 = 2J(Cy(v/2) — Cs(1))
attractive potential: go = —J(Cs(2) — C5(1))
overall offset: pp = J(1+ C5(2) —5C4(1))
= C4(d): spin-spin correlator at distance d
)= (SS9
2

o) = (- i
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Microscopic approaches - 7-flux
theory
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Microscopic approaches - 7-flux theory

= Resonating valence bond (RVB) theory: Theory to describe
superconduction in cuprates by valence bonds

Nearest neighbor valence bonds, Source: Wikipedia
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Microscopic approaches - 7-flux theory

= Resonating valence bond (RVB) theory: Theory to describe
superconduction in cuprates by valence bonds

Nearest neighbor valence bonds, Source: Wikipedia

= Doping allows electrons to act as mobile cooper pairs
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Microscopic approaches - 7-flux theory

™

= m-flux states: particular class of RVB-wavefunctions, 0 = 7
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Microscopic approaches - 7-flux theory

= m-flux states: particular class of RVB-wavefunctions, 0 = 7

= Mean-field Hamiltonian (A and B are sublattices):

HMF——fJ*Ze’Qa c7+xo,+e T ,Giryo T hc
icAo
—fJ*Ze’ch ¢ el T + h.c
io i+X,0 & /—i—yo :
ieBo
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Microscopic approaches - 7-flux theory

= m-flux states: particular class of RVB-wavefunctions, 0 = 7

= Mean-field Hamiltonian (A and B are sublattices):

1 . )
=+ —i0 T ioF
Hye = 2J* g ec iy, tea ¢+ h.c.

) )

76/470
— EJ* E el ¢ +e i ¢ + h.c
2 io X0 io Yo e
TEB,U

(a) staggered magnetic field, (b) hopping amplitudes,
Source: arXiv 1610.04818 30



Microscopic approaches - 7-flux theory

= MC sampling of Fock states:

p=Pewe "M Peyy
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Microscopic approaches - 7-flux theory

= MC sampling of Fock states:
p=Pewe "M Peyy

= probability distribution of Fock-states |a;) (momentum
space):

with

k occ. in ag
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Microscopic approaches - 7-flux theory

= artificially add doublon-holon pairs on neighboring sites with
opposite spins (Probability p = 4%) and measure the
anti-moment correlator:

Chlldl) = (@ = e, )L = g ) = (L= mp YL =1z, )
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Microscopic approaches - 7-flux theory

= artificially add doublon-holon pairs on neighboring sites with
opposite spins (Probability p = 4%) and measure the
anti-moment correlator:

Chlldl) = (@ = e, )L = g ) = (L= mp YL =1z, )

= Fitting parameter: J* = 3J
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Thanks for your attention!

= Questions?

= Sources & further reading:

= Hubbard model:
= Magnetic Properties of the One-Band Hubbard Model
= The Two-Dimensional Hubbard Model
= Antiferromagnetism in the Hubbard model (Talk)

= Geometric string theory:
= String patterns in the doped Hubbard model
= Fabian Grusdt - Geometric string theory (Talk)
= Meson formation in mixed-dimensional t-J models

= 7-flux theory:
= The Resonating Valence Bond State in LaoCuQO4 and

Superconductivity

= Observation of spatial charge and spin correlations in the 2D
Fermi-Hubbard model

= Large-n limit of the Hubbard-Heisenberg model 2


https://www.physik.uni-augsburg.de/theo3/vollhardt/dissertationen/downloads/zitzler_diss.pdf
https://www.cond-mat.de/events/correl15/manuscripts/eder.pdf
https://www.youtube.com/watch?v=3a404-dttvk
https://arxiv.org/abs/1810.03584
https://www.youtube.com/watch?v=nkyfua-V5Co
https://arxiv.org/abs/1806.04426
https://science.sciencemag.org/content/235/4793/1196
https://science.sciencemag.org/content/235/4793/1196
https://science.sciencemag.org/content/353/6305/1260
https://science.sciencemag.org/content/353/6305/1260
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.39.11538

	The Hubbard model - Introduction & Motivation
	The Hubbard model - Theory
	The Hubbard model - Difficulties
	The Hubbard model - Phases
	Microscopic approaches - Geometric string theory
	Microscopic approaches - -flux theory

