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• Goal: Better understanding of the high Tc superconduction
in cuprates

• Physically: Radial wave function in 3d transition metals has
small extent
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• Describe the motion of electrons with the Hubbard model:
s-like orbitals on a lattice

Hubbard model at T = 0 and doping δ = 0
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• Fermi-Hubbard model: Hopping between neighboring sites
and on-site interaction

HHubb. = −t
∑
⟨ij⟩,σ

c†i,σcj,σ︸ ︷︷ ︸
Hopping

+ U
∑

i
ni,↓ni,↑︸ ︷︷ ︸

Coulomb−repulsion

Fermi-Hubbard scheme, Source: Utrecht University
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• Experimental realization: ultracold atoms in an optical
lattice (→ second talk)

• Recreate phases of cuprate superconductors with the
Hubbard Hamiltonian

Phase diagram of the Fermi-Hubbard model, Source:
Physics Today
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• Hubbard-Hamiltonian:

HHubb. = −t
∑
⟨ij⟩,σ

c†i,σcj,σ + U
∑

i
ni,↓ni,↑

• limit U ≫ t: no double occupancies

Exchange processes, Source: Augsburg University

• obtain the t-J Hamiltonian for U ≫ t (J = 4t2
U ):

Ht−J = −t
∑
⟨ij⟩,σ

c†i,σcj,σ + J
∑
⟨ij⟩

(S⃗i · S⃗j −
1
4ninj)
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• Only solved exactly in one and infinitely many dimensions ⇒
intense research into numerical methods

• numerically costly calculations:

dimH =

(
2L2

L2

)
=

(2L2)!

(L2!)2 = 1.26e14 for L = 5

⇒ Thermodynamic limit?
• Additionally: low temperatures, large β ⇒ high value for m

(Error control with ∆τ , see Daniel Kirchhoff slides)

Z = Tre−βH = Tr(e−∆τH)m = Z0 +O(∆τ2)

• Numerical sign problem
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• Bipartite lattices, e.g. square lattice

• Bipartite lattices naturally make ideal antiferromagnets
• Antiferromagnetism in non-bipartite lattices is called

frustrated antiferromagnetism.
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The triangular lattice is NOT a bipartite lattice
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The Hubbard model - Phases

Phase diagram of the Fermi-Hubbard model, Source: Physics
Today
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|ψ⟩ = c⃗j,σ |ψ1/2⟩ = |⃗j =
(

2 2
)T

, σ = blue, l = 0⟩
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• Starting point: undoped Heisenberg spin model at half filling

HHeisenberg = J
∑
⟨ij⟩

S⃗i · S⃗j

with |⃗S| = 1.

• Describe the motion of holes with string states:
trivial string state (hole): |⃗j, σ, l = 0⟩ = c⃗j,σ |ψ1/2⟩
|ψ1/2⟩: half-filling AFM ground state (checkerboard)

• string state (finite length):
|⃗j, σ, l = |Σ|⟩ = GΣ |⃗j, σ, l = 0⟩
GΣ: hole-movement operator

• Lets look at the energy change that comes with such strings!
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• Generally: longer strings drive the system further away from
its ground state!

• Simulations on an 8x8 lattice (periodic boundary conditions)
show this correlation (simulation with AFM Ising-Spins):
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• string states |j, σ,Σ⟩ form an orthonormal basis

• t-J Hamiltonian Ht−J as an approximation for U ≫ t
• HJ = ΣΣVPot(lΣ), VPot(lΣ) = dE

dl lΣ + g0δlΣ,0 + µh

• linear string tension: dE
dl = 2J(Cs(

√
2)− Cs(1))

attractive potential: g0 = −J(Cs(2)− Cs(1))
overall offset: µh = J(1 + Cs(2)− 5Cs(1))

• Cs(d): spin-spin correlator at distance d

Cs(d) = (−1)|⃗d|
⟨Sz

i⃗ S
z
i⃗+d⃗⟩ − ⟨Sz

i⃗ ⟩⟨S
z
i⃗+d⃗⟩

S2
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• Resonating valence bond (RVB) theory: Theory to describe
superconduction in cuprates by valence bonds

Nearest neighbor valence bonds, Source: Wikipedia

• Doping allows electrons to act as mobile cooper pairs
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• π-flux states: particular class of RVB-wavefunctions, θ = π
4

• Mean-field Hamiltonian (A and B are sublattices):

HMF =− 1
2J∗

∑
i⃗∈A,σ

e−iθc†i⃗,σ c⃗i+x⃗,σ + eiθc†i⃗,σ c⃗i+y⃗,σ + h.c.

− 1
2J∗

∑
i⃗∈B,σ

eiθc†i⃗,σ c⃗i+x⃗,σ + e−iθc†i⃗,σ c⃗i+y⃗,σ + h.c.

(a) staggered magnetic field, (b) hopping amplitudes,
Source: arXiv 1610.04818
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• MC sampling of Fock states:

ρ = PGWe−HMFβPGW

• probability distribution of Fock-states |αk⃗⟩ (momentum
space):

pβ(α⃗r, αk⃗) = e−βE(α⃗k)
∣∣⟨α⃗r|αk⃗⟩

∣∣2
with

E(αk⃗) =
∑

k⃗ occ. in α⃗k

ϵk⃗
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• artificially add doublon-holon pairs on neighboring sites with
opposite spins (Probability p = 4 t2

U2 ) and measure the
anti-moment correlator:

Ch(|⃗d|) = ⟨(1 − n⃗i,σ)(1 − n⃗i+d⃗,σ)⟩ − ⟨1 − n⃗i,σ⟩⟨1 − n⃗i+d⃗,σ⟩

• Fitting parameter: J∗ = 3J
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Thanks for your attention!

33

• Questions?
• Sources & further reading:

• Hubbard model:
• Magnetic Properties of the One-Band Hubbard Model
• The Two-Dimensional Hubbard Model
• Antiferromagnetism in the Hubbard model (Talk)

• Geometric string theory:
• String patterns in the doped Hubbard model
• Fabian Grusdt - Geometric string theory (Talk)
• Meson formation in mixed-dimensional t-J models

• π-flux theory:
• The Resonating Valence Bond State in La2CuO4 and

Superconductivity
• Observation of spatial charge and spin correlations in the 2D

Fermi-Hubbard model
• Large-n limit of the Hubbard-Heisenberg model

https://www.physik.uni-augsburg.de/theo3/vollhardt/dissertationen/downloads/zitzler_diss.pdf
https://www.cond-mat.de/events/correl15/manuscripts/eder.pdf
https://www.youtube.com/watch?v=3a404-dttvk
https://arxiv.org/abs/1810.03584
https://www.youtube.com/watch?v=nkyfua-V5Co
https://arxiv.org/abs/1806.04426
https://science.sciencemag.org/content/235/4793/1196
https://science.sciencemag.org/content/235/4793/1196
https://science.sciencemag.org/content/353/6305/1260
https://science.sciencemag.org/content/353/6305/1260
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.39.11538
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