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Overview

Supervized learning

given: data x and labels y
common task:

predict labels for unknown data
⇒ estimate p(y|x)

Unsupervized learning

given: unlabeled, often high-dimensional data x
possible tasks:

• Dimension reduction
• Clustering
• Sample generation ⇒ estimate p(x)

• (Restricted/ Deep) Boltzmann machines
• Variational autoencoders
• Generative adversarial networks
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Energy-based models

• task: generate new samples similar to training data
⇒ estimate p(x) explicitly and draw samples from it

e.g. learn⇒

• parameterize probability distribution p(x;θ) with parameters θ
⇒ learn parameters θ

• parameterization of energy-based models:

p(x;θ) = 1
Z(θ)e

−E(x;θ) Z(θ) =
∫
dx e−E(x;θ)
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Energy-based models: The principle of maximum entropy

• quantification of uncertainty of an event:
− log p
• Shannon entropy: Sp = −Tr p(x) log p(x)

• example coin toss:
Sp = −p log p− (1− p) log(1− p)

• Principle of maximum entropy: Best choice of
probability distribution is the one, that
maximizes the entropy given the current
knowledge
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Energy-based models: The principle of maximum entropy

• keep averages of functions fi(x) fixed (e.g. averages 〈xi〉, correlations 〈xixj〉)):

〈fi〉model =
∫
dx fi(x)p(x) = 〈fi〉data

• impose constraints on the entropy using Langrange multipliers:

L[p] = −Sp +
∑
i

λi

(
〈fi〉 −

∫
dxfi(x)p(x)

)
+ γ

(
1−

∫
dx p(x)

)

0 = δL
δp

= (log p(x) + 1)−
∑
i

fi(x)− γ ⇔ p(x) = eΣiλifi(x)+(γ−1)
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Energy-based models
• the definition of the energy E(x;λ) and partition function Z(λ)

E(x;λ) = −
∑
i

λifi(x) Z(λ) =
∫
dx e−E(x;λ)

leads to
p(x;λ) = eγ−1eΣiλifi(x) = 1

Z(λ)e
−E(x;λ)

• comparison to statistical physics:
• canonical ensemble:

p(x) = 1
Z
e−βEstat(x), β = 1

kBT

• grand canonical ensemble:

p(x) = 1
Z
e−β(Estat(x)−µNstat(x))
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Energy-based models: loss function

• maximum likelihood loss

L(θ) = 〈log(pθ(x))〉data = −〈E(x;θ)〉data − logZ(θ)

• overfitting: learning training set specific details, that are not present in the true
distribution (e.g. noise)
• usually a regularization term is added to prevent overfitting

Ereg(θ) = Λ
∑
i

|θi|α, α = 1, 2
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Energy-based models: training procedure

−L(θ) = −〈log(pθ(x))〉data = 〈E(x;θ)〉data + logZ(θ)

Z(θ) =
∫
dx e−E(x;θ)

• use a gradient descent-based method, e.g. stochastic gradient descent (SGD)
⇒ have to compute gradient:

−∂L(θ)
∂θi

=
〈
∂E(x;θ)
∂θi

〉
data

+ ∂ logZ(θ)
∂θi

=
〈
∂E(x;θ)
∂θi

〉
data

+ 1
Z(θ)

∫
dx ∂

∂θi
e−E(x;θ)

=
〈
∂E(x;θ)
∂θi

〉
data
−
〈
∂E(x;θ)
∂θi

〉
model 6
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Energy-based models: sample generation

• drawing samples from model (fantasy particles) is necessary to compute gradients

p(x;θ) = 1
Z(θ)e

−E(x;θ)

• computation of partition function is often intractable
• only have a function proportional to the probability: p(x;θ) ∝ e−E(x;θ)

⇒ use Markov chain Monte Carlo algorithms, e.g. Metropolis-Hastings algorithm
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Energy-based models: sample generation

• Markov Chain of random variables: X = {X(k) | k ∈ N0}, transition probability:

p
(k)
ij = Pr(X(k+1) = j | X(k) = i)

• one can construct an update operator, such that for k →∞ the chain contains
samples from the desired distribution
• cannot run the chain for an infinite amount of time ⇒ approximation
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Boltzmann machines

• Energy function:

E(x) = −
∑
i

aixi −
∑
i,j

Jijxixj

⇒ fixes first and second order moment
• Type of variables: discrete or continuous?

• discrete states:
• often two state units (e.g. {0, 1}, Bernoulli units)
⇒ Boltzmann machine

• continuous states:
• probability distribution is multi-dimensional Gaussian
⇒ can solve partition function analytically

Jij

i

j

ai

aj
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Boltzmann machines: hidden units

• energy function for Bernoulli units:

E(v,h) = −
∑
i

aivi −
∑
µ

bµhµ −
∑
i,j

Jijvivj −
∑
µ,ν

Kµνhµhν −
∑
i,µ

Wiµvihµ

• marginalized distribution:

p(v) =
∫
dh p(v,h) =

∫
dh e−E(v,h)

Z

⇒ higher order interactions between visible units in the marginalized distribution
• problem: Boltzmann machines scale poorly with dimension of system
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Restricted Boltzmann machines
• for Bernoulli units :

E(v,h) = −
∑
i

aivi −
∑
µ

bµhµ −
∑
iµ

Wiµvihµ

a i(vi)

bμ(hμ)

W μ vi hμi

Hidden layer

Interactions

Visible Layer

• general form:

E(v,h) = −
∑
i

ai(vi)−
∑
µ

bµ(hµ)−
∑
iµ

Wiµvihµ
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Restricted Boltzmann machines

• can capture high order interactions between visible units
• variable number of hidden units
• sufficiently large RBM can take on any probability distribution
• bipartite structure leads to efficient training algorithm
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Restricted Boltzmann machines: sample generation and training

• interactions: visible ↔ hidden

p(v |h) =
∏
i

p(vi|h)

p(h |v) =
∏
i

p(hi|v)

• probability for a single unit:

p(vi = 1|h) = σ(ai +
∑
µ

Wiµhµ)

p(hµ = 1|v) = σ(bµ +
∑
i

Wiµvi)

t = 0 t = 1 t = 2 t = οο

Alternating Gibbs Sampling

data

t = 0 t = 1 t = 2 t = n

Constrastive Divergence (CD-n)

data

t = 0 t = 1 t = 2 t = n

fantasy particles
from last SGD step

Persistent Constrastive Divergence (PCD-n)
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Restricted Boltzmann machines: MNIST with the Paysage package

• MNIST dataset: 70000 handwritten digits (28px × 28px, black and white)
• Paysage package: built to train unsupervized generative models
• SGD with ADAM optimizer and minibatches of size 100
• L2 regularization with Λ = 10−3

• Persistent Constrastive Divergence with 1 Gibbs step per SGD step
• sample generation after training with 100000 Gibbs steps
⇒ vary number of hidden units and epochs

14



Overview Outline Energy-based models Boltzmann machines Restricted BMs Deep BMs Generative adversarial networks Summary

Restricted Boltzmann machines: MNIST with 10 hidden units
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Restricted Boltzmann machines: MNIST with 100 hidden units
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Restricted Boltzmann machines: MNIST with 100 hidden units
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Restricted Boltzmann machines: MNIST with 1000 hidden units
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Deep Boltzmann machines

• capture complex interaction
between hidden units

• not to be confused with deep
belief networks

Deep Boltzmann
Machine (DBM)

Layerwise
Pretraining

Fine-tuning with
PCD on full DBM
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Deep Boltzmann machines: attempt on MNIST with two layers
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Deep Boltzmann machines: MNIST

500 units

1000 units

500 units

500 units

1000 units

28 x 28
pixel
image

28 x 28
pixel
image

2-layer BM 3-layer BM Training Samples

Salakhutdinov, Hinton: Deep Boltzmann Machines 21

http://www.cs.toronto.edu/~hinton/absps/dbm.pdf
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Generative adversarial networks

Normalize

Fully-connected

PixelNorm

PixelNorm

Conv 3×3

Conv 3×3

Conv 3×3

PixelNorm

PixelNorm

Upsample

4×4

8×8

Latent

Generator

image sources: GAN, Generator: [arXiv:1812.04948] 22

https://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html
https://arxiv.org/abs/1812.04948
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Generative adversarial networks: Style-based GANs

thispersondoesnotexist.com
[arXiv:1812.04948] A Style-based Generator Architecture for Generative Adversarial Networks 23

https://www.thispersondoesnotexist.com
https://arxiv.org/abs/1812.04948
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Summary

• Energy-based models
• Boltzmann machines
• Restricted Boltzmann machines
• Deep Boltzmann machines
• Generative adversarial networks

Maximum Likelihood

Explicit density Implicit density

Tractable density
-Fully visible belief nets 
-NADE 
-MADE 
-PixelRNN 
-Change of variables 
models (nonlinear ICA)

Approximate density

Variational

Variational autoencoder

Markov Chain

Boltzmann machine

Markov Chain

Direct

GSN

GAN

[arXiv:1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks 24

https://arxiv.org/abs/1701.00160
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