Reinforcement learning in different phases of quantum control Marin Bukov et al. 2018¹

Robert Klassert

Universität Heidelberg Quantum and Neural Networks, summer term 2019 under supervision of Martin Gärttner

source of figures if not stated otherwise

- 1 The quantum control problem
- Quantum speed limit
- Q-learning quantum control
- 4 Learning from reinforcement learning
- 5 Phase transitions in protocol space
- 6 Conclusion & Outlook

Motivation for quantum control

Quantum control

Go from initial to target state by tuning available controls

Example: Rydberg cat

Control of detuning Δ and coupling Ω in Rydberg chain: transition from groundstate to GHZ-state

Enables state preparation in

- experiments
- quantum devices
- \rightarrow fast + high fidelity desired

Problem:

initial state $|\psi_i\rangle \rightarrow$ final state $|\psi_f\rangle$ under H(c)How to choose c(t) so as to optimize a figure of merit F in time T? control parameter c, usually: $F = |\langle \psi(T) | \psi_f \rangle|^2$ fidelity

Example: spin flip

 $|\psi_i\rangle = |\uparrow\rangle, |\psi_f\rangle = |\downarrow\rangle, H = c \cdot S^{\times}$ Simple protocol: constant *H* with $c \cdot T = \pi \rightarrow F = 1$

faster transition \rightarrow but $|c| < c_{max}$ is bounded by experiment \rightarrow for $T < \pi/c_{max}$ final state $|\psi_f\rangle$ is unreachable

Quantum speed limit (QSL)

Motivation: there is no observable of time! $\rightarrow \Delta t \geq \frac{\hbar}{\Delta E}$?

Mandelstam-Tamm bound

$$egin{aligned} \Delta H \Delta A &\geq rac{\hbar}{2} |\langle \partial_t A
angle | \ ext{with} \ A &= |\psi_i
angle \langle \psi_i | \ &
ightarrow au &\geq rac{\hbar rccos(|\langle \psi_i | \psi(au)
angle |)}{\Delta H} = au_{QSL} [2] \end{aligned}$$

Interpretation: minimum evolution time between states related to induced energy fluctuations

Example: spin flipMinimum time $\tau_{QSL} = \frac{\hbar \arccos(|\langle \uparrow | \downarrow \rangle|)}{\hbar c} = \frac{\pi}{c}$ for constant c

- Above the QSL the system is controllable
- Quantum control: time-dependent $H \rightarrow$ time-averaged ΔH

Robert Klassert

Reminder: reinforcement learning (RL)

- Framework of Markov decision processes (MDP):
 - \bullet state space ${\mathcal S}$
 - action space $\mathcal{A}(s)$
 - transition function p(s', r|s, a)

RL task:

Find $\pi: \mathcal{S} \to \mathcal{A}$ under which

$$R_t = \sum_{k=t+1}^{T,\infty} \gamma^{k-t-1} r_k$$

is maximal from all s_t , γ : discount factor

RL setup in the paper

Environment

• Ising model $H = -\sum_{j=1}^{L} [S_{j+1}^{z} S_{j}^{z} + S_{j}^{z} + h_{x} S_{j}^{x}]$ with field $h_{x} \in [-4, 4]$ • $\partial_{t} |\psi(t)\rangle = H(t) |\psi(t)\rangle$ with $|\psi_{i}\rangle$, $|\psi_{f}\rangle$ groundstates at $h_{x} = \pm 2$

Markov decision process

• episodic (
$$T = finite$$
), undiscounted ($\gamma = 1$) task

•
$$S = \{s = [t, h_x(t)]\}, A = \{a = \delta h_x\}, p \text{ is deterministic:}$$

 $s'(s, a) = [t + 1, h_x(t) + \delta h_x] \text{ and } r(s) = \begin{cases} 0 \text{ for } t < T \\ F \text{ for } t = T \end{cases}$

• initial state $s_0 = [t = 0, h_x = -4] \rightarrow \text{protocol depends on history}!$

Simplification: bang-bang (BB) protocols

$$\mathcal{S} = \{[t, h_x(t) \in \{-4, 4\}]\}, \ \mathcal{A} = \{\delta h_x \in \{stay, flip\}\}$$

- 米田 と 米 臣 と 米 臣 と 一 臣

Reminder: What is Q-learning?

Q-learning is

- a model free (environment is a black box),
- off-policy (learn optimal policy indirectly),
- 1-step time-difference (TD) method
- learning state-action values $Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t | \pi]$ (control problem)

Trick: learn Q independent of any policy! 1-step approximation:

$$Q(s_t, a_t) \approx r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a')$$

Iterative update (initial Q's are inaccurate/wrong) with learning rate α :

$$Q(s, a) \leftarrow Q(s, a) + \alpha \underbrace{\left[\underbrace{r + \gamma \max_{a'} Q(s', a')}_{\text{target}} - \underbrace{Q(s, a)}_{\text{prediction}} \right]}_{\text{prediction}}$$

Optimal Q's via behaviour policy \rightarrow exploration/exploitation trade-off $\rightarrow \infty$

 agent (red) has to reach orange square (reward 0) without falling off the blue cliff (reward -100)

ID

• all other state-actions yield reward -1

Final Q-value distribution with fixed ϵ -greedy:

· · ·												
0 -	U: -6.76	U: -6.70	U: -6.42	U: -6.14	U: -5.82	U: -5.51	U: -5.12	U: -4.58	U: -4.01	U: -3.57	U: -2.65	U: -2.26
	D: -6.73	D: -6.74	D: -6.53	D: -6.09	D: -5.77	D: -5.37	D: -4.97	D: -4.49	D: -4.02	D: -3.37	D: -2.69	D: -1.90
	R: -6.75	R: -6.60	R: -6.34	R: -6.06	R: -5.74	R: -5.36	R: -4.94	R: -4.49	R: -3.94	R: -3.36	R: -2.65	R: -2.07
	L: -6.71	L: -6.62	L: -6.34	L: -6.12	L: -5.78	L: -5.53	L: -5.32	L: -4.69	L: -4.28	L: -3.70	L: -3.01	L: -2.15
1.	U: -6.81	U: -6.80	U: -6.51	U: -6.17	U: -5.76	U: -5.55	U: -4.73	U: -4.37	U: -3.92	U: -3.80	U: -2.84	U: -1.72
	D: -6.96	D: -6.71	D: -6.43	D: -6.08	D: -5.68	D: -5.21	D: -4.68	D: -4.09	D: -3.44	D: -2.71	D: -1.90	D: -1.00
	R: -6.89	R: -6.70	R: -6.45	R: -6.09	R: -5.68	R: -5.21	R: -4.68	R: -4.09	R: -3.44	R: -2.71	R: -1.90	R: -1.43
	L: -6.89	L: -6.75	L: -6.67	L: -6.39	L: -5.98	L: -5.63	L: -4.92	L: -4.23	L: -3.98	L: -2.93	L: -3.24	L: -2.27
2 -	U: -7.06	U: -6.96	U: -6.71	U: -6.37	U: -6.09	U: -5.60	U: -5.07	U: -4.60	U: -4.07	U: -3.34	U: -2.64	U: -1.72
	D: -7.40	D: -99.95	D: -93.75	D: -96.88	D: -99.61	D: -99.22	D: -99.22	D: -99.22	D: -96.88	D: -98.44	D: -98.44	D: 0.00
	R: -6.86	R: -6.51	R: -6.13	R: -5.70	R: -5.22	R: -4.69	R: -4.10	R: -3.44	R: -2.71	R: -1.90	R: -1.00	R: -1.00
	L: -7.14	L: -7.15	L: -6.86	L: -6.16	L: -6.12	L: -5.68	L: -5.18	L: -4.07	L: -3.98	L: -3.35	L: -2.63	L: -1.81
3 -	U: -7.18	U: 0.00	U: 0.00									
	D: -7.46	D: 0.00	D: 0.00									
	R: -99.22	R: 0.00	R: 0.00									
	L: -7.45	L: 0.00	L: 0.00									
	ò	i	2	3	4	5	6	7	8	9	10	11

https://medium.com/@lgvaz/understanding-q-learning-the-cliff-walking-problem-80198921abbc, accessed: July 3, 2019

(日) (同) (三) (三)

Q-value propagation

https://github.com/lgvaz/blog/blob/master/rl_intro.ipynb, modified, accessed: July 3, 2019

(日) (四) (三) (三) (三)

Robert Klassert

1-qubit control using a Q-table with ϵ -greedy

1-qubit:
$$L = 1 \rightarrow H = -S^z - h_x S^x$$

Q-table with $\alpha = \epsilon = 0.9$, ϵ decay, duration $T = 1 < T_{QSL}$ with $\delta t = 0.05$

Robert Klassert

July 3, 2019 11 / 25

Robert Klassert

KL phases of quantum control

July 3, 2019 12 / 25

< A

linear Q-function with tile coding

linear Q-function approximation:

$$Q(s, a) = \sum_{i=1}^{d} w_i x_i(s, a)$$
 with w_i weights, x_i features

• allows generalization to unknown protocols

• gradient descent in weights: $w_i \leftarrow w_i + \alpha(r + \max Q - Q)\nabla_{w_i}Q$ tile coding the features:

$$Q(s,a) = \sum_{i=1}^{n} w_i b_i(s,a)$$

- discretize state-action space in *n* ways (tilings)
- binary function $b_i \in \{0,1\}$ selects tiles of current state-action (s,a)

RL tricks: generality and efficiency

tile coding: enables interpolation

eligibility traces: value updates in the "backward view"

♦ ➔ ┥

4 - -

• • • • • • • • • • • •

G

-

RL tricks: exploration and experience

2 alternating training phases: **Exploratory**

- actions sampled $P(a) \propto$ $\exp(-\beta_{RL}Q(s, a))$
- ramp up of β_{RL} : uniform \rightarrow greedy

Replay

Repeat best encountered protocols \rightarrow bias agent for next exploration phase

 $\epsilon\text{-}\mathbf{greedy}$ is used if not overridden by the above

training for 10-qubits with T = 3

Comparision with optimal control algorithms

- Stochastic descent (SD), RL and GRAPE² find the optimal protocols
- performance drop-off of RL for large $\mathcal{T} \to \mathsf{exponential}$ state space scaling

²Gradient Ascent Pulse Engineering

Robert	ΚI	lass	ert
--------	----	------	-----

Learning from RL

RL protocol for 1 qubit at T = 1

Robert Klassert

RL phases of quantum control

Image: A math black

July 3, 2019 17 / 25

- agent flips the magnetic field \rightarrow wants h_x to be zero (but not possible in the BB setup)
- idea: positive pulse to reach equator, free evolution, negative pulse to reach target state
- $\bullet\,$ pulse length $\tau/2$ is symmetric due to initial and final state

Learning from RL

RL inspired protocol for 1 qubit at T = 1

Robert Klassert

RL phases of quantum control

< □ > < ---->

July 3, 2019 19 / 25

Phase transitions in protocol space

Control phase diagram = fidelity F of best protocol (SD) vs time T

- phase transition at critical time T_c and T_{QSL}
- phase transition at T_c
- "glassy" phase up to high T

Infidelity landscape

Infidelity $I_h = 1 - F_h$

- i Overconstrained phase: One global minimum
- ii Glassy phase: non-degenerate local minima → hard to find best protocol
- iii Controllable phase: degenerate minima with unit fidelity

 $\begin{array}{l} \rightarrow \text{ best BB protocol} \\ \Leftrightarrow \text{ ground state of an} \\ \text{Ising model} \end{array}$

L phases of quantum control

Reinforcement learning ..

- .. is a feasible approach to quantum control
- .. offers comparable performance to model-based algorithms
- .. can inspire simple but powerful protocols
- .. may extend our ability to control to noisy and complex systems

Improvements:

- Reduce computational cost by use of matrix product states
- $\bullet~$ deep RL $\rightarrow~$ deal with state space scaling
- adjust Q-learning to needs of quantum control
- pre-training/combination with model-based methods

M. Bukov, A. Day, D. Sels, P. Weinberg, A. Polkovnikov, and P. Mehta. Reinforcement learning in different phases of quantum control. *Physical Review X*, 8, 09 2018.

S. Deffner and S. Campbell.

Quantum speed limits: from heisenberg's uncertainty principle to optimal quantum control.

Journal of Physics A: Mathematical and Theoretical, 50(45):453001, oct 2017.

A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang,
S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui,
M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres,
M. Greiner, V. Vuletić, and M. D. Lukin.
Generation and manipulation of Schrödinger cat states in Rydberg atom arrays.

R. S. Sutton, A. Barto, and A. G. Barto.

Reinforcement Learning.

Adaptive computation and machine learning. MIT Press, Cambridge, Mass. [u.a.], 3. printing edition, 2000.

Thank you for your attention! Questions? Ideas? Comments?

