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Motivation for quantum control

Quantum control
Go from initial to target state
by tuning available controls

Example: Rydberg cat

Control of detuning ∆ and
coupling Ω in Rydberg chain:
transition from groundstate
to GHZ-state

Enables state preparation in

experiments

quantum devices

→ fast + high fidelity desired

Omran et al. 2019 [3]
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The quantum control problem

Problem:
initial state |ψi 〉 → final state |ψf 〉 under H(c)
How to choose c(t) so as to optimize a figure of merit F in time T ?
control parameter c , usually: F = | 〈ψ(T )|ψf 〉 |2 fidelity

Example: spin flip

|ψi 〉 = |↑〉, |ψf 〉 = |↓〉, H = c · Sx

Simple protocol: constant H with c · T = π → F = 1

faster transition → but |c| < cmax is bounded by experiment
→ for T < π/cmax final state |ψf 〉 is unreachable
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Quantum speed limit (QSL)

Motivation: there is no observable of time! → ∆t ≥ ~
∆E ?

Mandelstam-Tamm bound

∆H∆A ≥ ~
2
|〈∂tA〉| with A = |ψi 〉 〈ψi |

→ τ ≥ ~ arccos(|〈ψi |ψ(τ)〉|)
∆H

= τQSL[2]

Interpretation: minimum evolution time between states related to
induced energy fluctuations

Example: spin flip

Minimum time τQSL = ~ arccos(|〈↑|↓〉|)
~c = π

c for constant c

Above the QSL the system is controllable

Quantum control: time-dependent H → time-averaged ∆H
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Reminder: reinforcement learning (RL)

Framework of Markov decision
processes (MDP):

state space S
action space A(s)

transition function
p(s ′, r |s, a)

RL task:
Find π : S → A under which

Rt =

T ,∞∑
k=t+1

γk−t−1rk

is maximal from all st ,
γ: discount factor

graph representation:

towardsdatascience.com, accessed: July 3, 2019

sequential representation:
s0, a0, r1, s1, a1, r2, ...
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RL setup in the paper

Environment

Ising model H = −
∑L

j=1[Sz
j+1Sz

j + Sz
j + hxSx

j ] with field hx ∈ [−4, 4]

∂t |ψ(t)〉 = H(t) |ψ(t)〉 with |ψi 〉 , |ψf 〉 groundstates at hx = ∓2

Markov decision process

episodic (T = finite), undiscounted (γ = 1) task

S = {s = [t, hx(t)]}, A = {a = δhx}, p is deterministic:

s ′(s, a) = [t + 1, hx(t) + δhx ] and r(s) =

{
0 for t < T

F for t = T

initial state s0 = [t = 0, hx = −4] → protocol depends on history!

Simplification: bang-bang (BB) protocols

S = {[t, hx(t) ∈ {−4, 4}]}, A = {δhx ∈ {stay , flip}}
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Reminder: What is Q-learning?

Q-learning is

a model free (environment is a black box),

off-policy (learn optimal policy indirectly),

1-step time-difference (TD) method

learning state-action values Qπ(st , at) = E[Rt |π] (control problem)

Trick: learn Q independent of any policy! 1-step approximation:

Q(st , at) ≈ rt+1 + γmax
a′

Q(st+1, a
′)

Iterative update (initial Q’s are inaccurate/wrong) with learning rate α:

Q(s, a)← Q(s, a) + α

TD error︷ ︸︸ ︷
[r + γmax

a′
Q(s ′, a′)︸ ︷︷ ︸

target

− Q(s, a)︸ ︷︷ ︸
prediction

]

Optimal Q’s via behaviour policy → exploration/exploitation trade-off
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Example: grid world

agent (red) has to reach orange square (reward 0) without falling off
the blue cliff (reward -100)

all other state-actions yield reward -1

Final Q-value distribution with fixed ε-greedy:

https://medium.com/@lgvaz/understanding-q-learning-the-cliff-walking-problem-80198921abbc, accessed: July 3, 2019
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Q-value propagation

https://github.com/lgvaz/blog/blob/master/rl_intro.ipynb, modified, accessed: July 3, 2019
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https://github.com/lgvaz/blog/blob/master/rl_intro.ipynb


1-qubit control using a Q-table with ε-greedy

1-qubit: L = 1 → H = −Sz − hxSx

Q-table with α = ε = 0.9, ε decay,
duration T = 1 < TQSL with
δt = 0.05
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Q-value evolution over training
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linear Q-function with tile coding

linear Q-function approximation:

Q(s, a) =
d∑

i=1

wixi (s, a) with wi weights, xi features

allows generalization to unknown protocols

gradient descent in weights: wi ← wi + α(r + max Q − Q)∇wi Q

tile coding the features:

Q(s, a) =
n∑

i=1

wibi (s, a)

discretize state-action space in n ways (tilings)

binary function bi ∈ {0, 1} selects tiles of current state-action (s,a)
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RL tricks: generality and efficiency

tile coding: enables interpolation

eligibility traces: value updates in the ”backward view”

Sutton & Barto [4]
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RL tricks: exploration and experience

2 alternating training phases:
Exploratory

actions sampled
P(a) ∝
exp(−βRLQ(s, a))

ramp up of βRL: uniform
→ greedy

Replay
Repeat best encountered
protocols → bias agent for
next exploration phase

ε-greedy is used if not
overridden by the above

training for 10-qubits with T = 3
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Comparision with optimal control algorithms

Stochastic descent (SD), RL and GRAPE2 find the optimal protocols

performance drop-off of RL for large T → exponential state space
scaling

L = 1 L = 6

2Gradient Ascent Pulse Engineering
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Learning from RL

RL protocol for 1 qubit at T = 1
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An agent inspired protocol

agent flips the magnetic field → wants hx to be zero (but not
possible in the BB setup)

idea: positive pulse to reach equator, free evolution, negative pulse to
reach target state

pulse length τ/2 is symmetric due to initial and final state
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Learning from RL

RL inspired protocol for 1 qubit at T = 1
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Phase transitions in protocol space

Control phase diagram = fidelity F of best protocol (SD) vs time T

phase transition at critical time
Tc and TQSL

1-qubit phase diagram

phase transition at Tc

”glassy” phase up to high T

6-qubit phase diagram
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Infidelity landscape

Infidelity Ih = 1− Fh

i Overconstrained
phase: One global
minimum

ii Glassy phase:
non-degenerate
local minima →
hard to find best
protocol

iii Controllable phase:
degenerate minima
with unit fidelity

→ best BB protocol
⇔ ground state of an
Ising model
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Conclusion & Outlook

Reinforcement learning ..

.. is a feasible approach to quantum control

.. offers comparable performance to model-based algorithms

.. can inspire simple but powerful protocols

.. may extend our ability to control to noisy and complex systems

Improvements:

Reduce computational cost by use of matrix product states

deep RL → deal with state space scaling

adjust Q-learning to needs of quantum control

pre-training/combination with model-based methods
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Thank you for your attention!
Questions? Ideas? Comments?
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