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From SL and UL to RL: A Motivation

 Task 1: classify pictures into categories cats and dogs
« Use SL and a big labeled dataset to train a NN

 Task 2: generate pictures of handwritten numbers
* Use UL and an unlabeled dataset to train a NN

 Task 3: play Tic-Tac-Toe against an imperfect player
« Sl and UL are not very good for this!

- Let’s formalize the reinforcement learning problem
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Markov Decision Process
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Figure 1: The agent-environment interaction [1]
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Markov Decision

« b-tupleof (5,4, T,R,y) with

S the state space

A the action space

T the transition function
R the reward function

y the discount factor

Process
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Figure 1: The agent-environment interaction [1]

- Theoretical Framework of Reinforcement Learning

- The agent wants to maximize his rewards
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Reward, Policy and Value

 Reward function R maps from (state,action) to R

« Has upper bound: |R(s,a )| < R4y
 Needs to be predefined

» The total discounted reward is R => +'R..1 ,y € [0,1]

t=l()
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Reward, Policy and Value

 Reward function R maps from (state,action) to R
* Policy function =(s,a):SxA— [0,1]

* @Gives transitional probability to choose action a in state s
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Reward, Policy and Value

 Reward function R maps from (state, action) to R

* Policy function =(s,a):SxA— [0,1]

* The optimal value function maps to each state-action pair the largest
expected reward achievable by any policy

* Value-based approach: Policy should be E-greedy
* Any policy that is greedy w.r.t. the optimal values is optimal
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Convergence Motivation

The optimal value function can be written as

V*i(s,a) = m(?JXE[?"tH + YV *(s111,a)|s¢ = s,a¢ = al (1)

Starting out from a random value function V we can iteratively update the
function following

Vit1(s,a) = Ex[rier + vV (st41,0)|5: = 5] (2)

and get the optimal value function V*.
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Q-learning (Value-based RL)

Algorithm parameters: learning rate «, small € > 0
Initialize V' (s,a), for all s € S,a € A arbitrarily except that V(Goal,.) =0
Loop for each episode:
Initialize s
Loop for each step of episode:
Choose a in s using e-greedy policy
Take action a, observe r, s’
V(s,a) + (1 —a)V(s,a)+ alr +ymax, V (s, a)]
s« s
Until s is goal

Figure 2: Pseudo-code for Q-learning [2,modified]
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Example: Gridworld — |

 Episodic, undiscounted task, discrete
state space

 Each step gives reward of -1 except if:
 Agent moves into target state, R = 0
 Agent falls off cliff, R = —100

R =-100

 Values of state-action pairs should
reflect shortest path Figure 3: Gridworld with start (S), goal (G) and a cliff region [2]
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Example: Gridworld — —

 Episodic, undiscounted task, discrete

state space . * |
S The Cliff G
 Each step gives reward of -1 except if: W
 Agent moves into target state, R = 0
 Agent falls off cliff, R = —100 R =-100

 Values of state-action pairs should
reflect shortest path Figure 4: Gridworld with start (S), goal (G), a cliff region and

: optimal path [2]
 Use E-greedy policy
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Up Down Left Right
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Example: Gridworld

.09 1.044 0.538 -0.134
.683 -0.935 -0.939 0.586
.075 -0.344 -1.067 -1.066
.164 ©.544 0.943 ©.599
.888 -0.097 0.932 -0.344
.492 -9©.933 -0.372 0.828]]

 Episodic, undiscounted task, discrete
state space

| s I s BN e B s B s N s B s B e I s B s B s B e |

sce B B v I i e B v B o [ v R v B o I v I v

 Each step gives reward of -1 except if:
 Agent moves into target state, R = 0 Figure 5: Initial Values along the way

- Agent falls off cliff, R = —100 [-12. =~ -12.829 -12.004 -63.781]
[ 11.886 -12.671 -11.895 -11. ]
. . 19.0801 -77.813 -11.6822 -16.
 Values of state-action pairs should E 9 664 _64.253 -10.479 9. }
reflect shortest path E ?222 g;;gg giﬁ § }
. [ -7.165 -63.306 -6.431 6 ]
* Use &-greedy policy [ -6.111 -39.577 -6.447 -5. ]
[ -5.566 -64.305 -4.429 -4. ]
[ -3.857 -86.316 -3.926 3 ]
[ -3.621 -63.78 -2.632 p ]
[ -2.152 -78.166 -2.26 1. ]
[ 1.426 -0, -1.195 -1. 193]

Figure 6: Final Values along the way
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Example: Gridworld

* Optimal path is quickly found (<1s)

€ -greedy strategy introduces random \

deterioration of cumulative reward
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—— cumulative reward
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Figure 7: Cumulative reward during training
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APPROACHES TO RL
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Approaches - Function Approximation

* Problems are high-dimensional but have low complexity

 Every continuous function can be approximated to an arbitrary degree with NNs [3]
 http://neuralnetworksanddeeplearning.com/chap4.html

- So why not use NNs to approximate Value and Policy Function?

* Approximation needs to be well-suited for the task for convergence to an optimal
solution
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http://neuralnetworksanddeeplearning.com/chap4.html

Approaches

 Value-based

e State-action value pairs are build up through
experience

« Simplest method is lookup table

* Policy-based
 No value function required
e continuous action spaces are accessible

- Methods are combined in Actor-Critic approach

Value- and Policy-based methods are Model-free
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Model-based
RL

Value-based Policy-based

RL RL

Figure 8: Venn diagram of different
methods in RL [1]
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Approaches

Model-based

RL

* Model-based

 Model of environment is given

 Actions can be planned beforehand on model

e Most common method are lookahead

searches
_ _ _ Value-based Policy-based
 Good judgement of trajectories RL RL

e Stopping criteria are hard to define

Figure 8: Venn diagram of different
methods in RL [1]
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The Game Of Go

Rules

2 Players place stones on a grid
taking turns

« Stones with no freedom are dead
or belong to a group

Goal

 Surround biggest territory possible

« Possible sequences ~108%

— Curse of Dimensionality
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Figure 10: AlphaGo (white) vs. Fan Hui (AlphaGo won) [D]
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Example: AlphaGo [9]

SL policy
function

Based on 30
million played
positions

SGD

13 convolutional
layers

Input: 19x19x48
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RL policy
function

Policy gradient RL
Play games with
previous iteration
of network

Input: 19x19x48

Nicholas Kiefer

RL value
function

Value NN with
similar
architecture as
policy NN
Outputs single
prediction
Trained on 30
million generated
positions

MCTS for
best move

Lookahead
search

Reward is zero
until terminal
state
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PROBLEMS IN RL
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Problems

e Sparse rewards
* Many steps in a very particular order are necessary to receive one reward.
* asolution are self-defined or intermediate rewards

 Sampling efficiency
* slow learning compared to humans
* Lots of data is needed to train an agent
« MNIST dataset: 70,000 pictures
* AlphaGo first stage: 30 million positions
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Problems

 Exploitation vs. Exploration

* exploration is gathering more observation/knowledge about the environment
* exploitation is maximizing the reward given the current knowledge

* Neither can be pursued exclusively

 Easiest approach is e-greedy policy

* Credit assignment problem
* intrinsic in policy gradient methods
 what exact action justifies the reward?
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Problems

* Benchmarking
e some standard problems [2]:

Bl Video 1: Cartpole
demonstration [6]

« Games are a preferred choice Video 2: Acrobot demonstration [7]

 |In general it is hard to quantize the quality of an algorithm
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Summary

 Keywords: Reward, Value, Policy, Function approximation, Q-learning, Model-based

* Not explained: Overfitting, Reward shaping, Auxiliary tasks, Imitation learning,
Bellman equations, Integration of model-based and model-free methods, Double Q-
learning, Double DQN, Inverse reinforcement learning, zero-shot learning

> RL s a big field!

- Recommend literature: (Sutton, Barto), (Francois-Lavet et. al), (Csaba Szepesvari)
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