THIS 15 YOUR MACHINE LEARNING SYSTEM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Source: https://xkcd.com/1838/
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Short Introduction to Machine Learning
Basic concepts
Example: Image Classification

Deep Neural Networks
General Network Architecture
How to train a NN
Example: MNIST

Convolutional Neural Networks
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What is Machine Learning?

® Goal: Make predictions based on given data
® Formalization:
® [ndependent quantities x, f. e. spring constant k, mass m

® Dependent quantity y, f. e. period of pendulum T
® Dataset X = (x1,...) and Y = ()4, ...) f. e. experimental data
[ ]

Model f(x;w), f : x = y with parameters w, f. e. k"1m"2
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What is Machine Learning?

® Goal: Make predictions based on given data
® Formalization:

® [ndependent quantities x, f. e. spring constant k, mass m
Dependent quantity y, f. e. period of pendulum T
Dataset X = (xy,...) and Y = (y1,...) f. e. experimental data
Model f(x;w), f : x = y with parameters w, f. e. k"1m"2
Cost function C(Y, f(X;w)), f.e. L norm >, [yi — f(xi; w)]?

— Best parameters w = argmin,, C(Y, f(X;w))

— "Training the model”
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parameters w
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Comparison to Fitting

Fitting: Learning:
® Goal: Best estimation of
parameters w
® Use all data to fit

® Minimize Cost function by
all means

Summary
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parameters w unknown x
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® Minimize Cost function by and test sets

all means
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Comparison to Fitting

Fitting:
® Goal: Best estimation of
parameters w
® Use all data to fit

® Minimize Cost function by
all means

Learning:

® Goal: Best prediction for
unknown x

® Split data set in training
and test sets

— Cross validation
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® Use all data to fit ® Split data set in training
® Minimize Cost function by and test sets
all means — Cross validation

® Test set accuracy is
important!
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Comparison to Fitting

Fitting: Learning:
® Goal: Best estimation of ® Goal: Best prediction for
parameters w unknown x
® Use all data to fit ® Split data set in training
® Minimize Cost function by and test sets
all means — Cross validation

® Test set accuracy is
important!

— Regularization

— Subtle differences, very different algorithms!
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® Independent quantities: Pixel data x (flattened to a vector)
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Explicit Example: Image Classification

Independent quantities: Pixel data x (flattened to a vector)

Dependent quantity: Category y € 0,1

Linear model: f(x;w, b) = o(x"w + b)
1
TFe

Sigmoid function o(x) =
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Explicit Example: Image Classification

Independent quantities: Pixel data x (flattened to a vector)

Dependent quantity: Category y € 0,1
Linear model: f(x;w, b) = o(x"w + b)

Sigmoid function o(x) = H%

— Model maps input to probability
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Explicit Example: Image Classification

Independent quantities: Pixel data x (flattened to a vector)

Dependent quantity: Category y € 0,1
Linear model: f(x;w, b) = o(x"w + b)

Sigmoid function o(x) = H%

— Model maps input to probability
— f(x;w, b) = P(y = 1|x;w, b)
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Cost function for classification

® |dea: Maximize probability of correct classification
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Cost function for classification

® |dea: Maximize probability of correct classification
® Remember: P(y = 1|x) = o(x"w + b) = 1 — P(y = 0|x)
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Cost function for classification

® |dea: Maximize probability of correct classification
® Remember: P(y = 1|x) = o(x"w + b) = 1 — P(y = 0|x)
® Probability Pcorrect that classification is correct:
P(y = 1|x =1
Pcorrect(xvy) = (y | ) Y
1-Ply=1x) y=0
= P(y = 1|x)[1 - P(y = 1[x)]"”

Summary
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Cost function for classification
® |dea: Maximize probability of correct classification
® Remember: P(y = 1|x) = o(x"w + b) = 1 — P(y = 0|x)
® Probability Pcorrect that classification is correct:

P(y = 1|x) y=1
P X,y) =
correct( }/) {1 B P(y _ 1‘X) y = 0
= P(y =1]x)’[1 = P(y = 1)

[ ]

For multiple predictions: Pcorrect(X,Y) = [ [; Pecorrect(Xi, ¥i)
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Cost function for classification

Idea: Maximize probability of correct classification
Remember: P(y = 1|x) = o(x"w + b) =1 — P(y = 0|x)

Probability Pcorrect that classification is correct:

Prorece(, y) = Py =1x) y=1
correct\ Ny 1—P(y:1|x) y:0

= P(y = 1x)'[L — P(y = 1x)]*

For multiple predictions: Pcorrect(X,Y) = [ [; Pecorrect(Xi, ¥i)

® Cross entropy:

- Zy;log [a(x;’—w + b)} + (1 — yi)log [1 — o(x/w + b)
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® Dataset of 70.000 handwritten digits
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Practical Example: MNIST

® Dataset of 70.000 handwritten digits

® Commonly used for machine learning experiments
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Practical Example: MNIST

® Dataset of 70.000 handwritten digits
® Commonly used for machine learning experiments
® Lowest error rate 0,21% (CNN)

Summary
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Deep Neural Networks

Convolutional Neural Networks

® Dataset of 70.000 handwritten digits
® Commonly used for machine learning experiments
® Lowest error rate 0,21% (CNN)

Practical Example: MNIST
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Summary
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® Cross entropy: only 2 output states
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MNIST classifier

® Cross entropy: only 2 output states

— Take 1 classifier for every class
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MNIST classifier

® Cross entropy: only 2 output states
— Take 1 classifier for every class
® Probabilities don't add to 1

Summary
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® Cross entropy: only 2 output states
— Take 1 classifier for every class
® Probabilities don't add to 1
— Take SoftMax (= Boltzmann distribution) function
eXi
Xj — W
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MNIST classifier

® Cross entropy: only 2 output states
— Take 1 classifier for every class
® Probabilities don't add to 1
— Take SoftMax (= Boltzmann distribution) function
eXi
Xj — W

Probability

°

o

Summary
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MNIST classifier

Logistic regression performance

paz { — Train set
Test set

T T T T T T T

0 5 10 15 20 5 a0

Epoch

— Caps out at around 91%

Summary
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Neural Networks

hidden
layers

—

output
layer

-

input (::) ,
layer

Figure: General architecture

Summary
[e]e)



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

(e]e} [e] 00000 (e]e]
000000 ®00000
(e]e]

How to train a NN

® Want to minimize C(X;w) w. r. t. w



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks

(e]e} [e] 00000
000000 ®00000
(e]e]

How to train a NN

® Want to minimize C(X;w) w. r. t. w
® Gradient Descent:

Summary
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How to train a NN

® Want to minimize C(X;w) w. r. t. w
® Gradient Descent:
1. Choose some initial wg

Summary
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How to train a NN

® Want to minimize C(X;w) w. r. t. w
® Gradient Descent:

1. Choose some initial wg
2. Compute gradient v; = VC(X; w;)

Summary
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How to train a NN

® Want to minimize C(X;w) w. r. t. w
® Gradient Descent:

1. Choose some initial wg
2. Compute gradient v; = VC(X; w;)
3. Update weights wj 1 = w; — nv; where 7 is the learning rate
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How to train a NN

® Want to minimize C(X;w) w. r. t. w
® Gradient Descent:
1. Choose some initial wg
2. Compute gradient v; = VC(X; w;)
3. Update weights wj 1 = w; — nv; where 7 is the learning rate
4. Repeat until converged to minimum
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How to train a NN

® Want to minimize C(X;w) w. r. t. w
® Gradient Descent:

1. Choose some initial wg

2. Compute gradient v; = VC(X; w;)

3. Update weights wj 1 = w; — nv; where 7 is the learning rate
4. Repeat until converged to minimum

— Problems at every step!
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— Zero-mean, normal-distributed values work well enough in
most cases



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

(e]e} [e] 00000 (e]e]
000000 O@0000
(e]e]

Simple algorithm - many problems

® How to choose wqy?

— Zero-mean, normal-distributed values work well enough in
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¢ How to compute —VC(X;w)?
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Simple algorithm - many problems

® How to choose wqy?

— Zero-mean, normal-distributed values work well enough in
most cases

¢ How to compute —VC(X;w)?
— Backpropagation
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Simple algorithm - many problems

® How to choose wqy?

— Zero-mean, normal-distributed values work well enough in
most cases

¢ How to compute —VC(X;w)?
— Backpropagation

® How to choose learning rate 7?
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Simple algorithm - many problems

How to choose wq?

Zero-mean, normal-distributed values work well enough in
most cases

How to compute —VC(X;w)?
Backpropagation
How to choose learning rate n?

Need to tune
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How to choose wq?

Zero-mean, normal-distributed values work well enough in
most cases

How to compute —VC(X;w)?
Backpropagation

How to choose learning rate n?
Need to tune

How do we know we have the correct minimum?

Summary
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Simple algorithm - many problems

How to choose wq?

Zero-mean, normal-distributed values work well enough in
most cases

How to compute —VC(X;w)?

Backpropagation

How to choose learning rate n?

Need to tune

How do we know we have the correct minimum?
We don't

Summary
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Simple algorithm - many problems

How to choose wq?

Zero-mean, normal-distributed values work well enough in
most cases

How to compute —VC(X;w)?

Backpropagation

How to choose learning rate n?

Need to tune

How do we know we have the correct minimum?
We don't

Do we even converge?

Summary
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Backpropagation Algorithm

® Weigths lek between j-th neuron in layer / — 1 and k-th
neuron in layer /
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Backpropagation Algorithm

® Weigths lek between j-th neuron in layer / — 1 and k-th
neuron in layer /

® Bijases b}

Summary
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Backpropagation Algorithm

® Weigths lek between j-th neuron in layer / — 1 and k-th
neuron in layer /

® Bijases b}

® Weighted inputs to neuron z| = WJka '+ bl

Summary
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Backpropagation Algorithm

® Weigths lek between j-th neuron in layer / — 1 and k-th
neuron in layer /

® Biases b}

® Weighted inputs to neuron z| = ija '+ bl

°

Activation levels a}:
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Backpropagation Algorithm
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neuron in layer /

® Biases b}

® Weighted inputs to neuron z| = ija '+ bl

°

Activation levels a}:
® al are the inputs
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Backpropagation Algorithm

® Weigths lek between j-th neuron in layer / — 1 and k-th
neuron in layer /

® Biases b}

® Weighted inputs to neuron z| = ija '+ bl

°

Activation levels a}:
® al are the inputs

°al =0(z))=0 (ZJ lekajl-_l + bf()
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Backpropagation Algorithm

® Weigths lek between j-th neuron in layer / — 1 and k-th
neuron in layer /

® Biases b}

® Weighted inputs to neuron z| = ija '+ bl

® Activation levels a}:

® al are the inputs
I () — N
*aq=0(z)=0 (Zj wpa; ©+ bk)

e Error Al = 2
0z,
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Backpropagation Algorithm

® Weigths lek between j-th neuron in layer / — 1 and k-th
neuron in layer /

® Biases b}
® Weighted inputs to neuron z| = ija '+ bl
® Activation levels a}:

® al are the inputs

°al =0(z))=0 (ZJ lekajl-_l + bf()

/

® Error A’ = 8 ¢ _ oc 93

T 5,1
zk Oay 0z,
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Backpropagation Algorithm

® Weigths lek between j-th neuron in layer / — 1 and k-th
neuron in layer /
® Biases b}
® Weighted inputs to neuron z| = ija '+ bl
® Activation levels a}:
® al are the inputs
. af(:o(zk)—a(z whal” +b’)
® Error Al = 8 = ﬂﬁ =2 ,U’(zk)

]
zk 83,( 62
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Backpropagation Algorithm

Weigths lek between j-th neuron in layer /| — 1 and k-th
neuron in layer /

Biases b}

Weighted inputs to neuron z} = ija '+ bl

Activation levels a}:
® al are the inputs

. a'k=o<zk>—a(z whal ™ + b))

I oc 8ak /
[ — — OL %
Error A} ('9zk 832 92l = a ,0 (z})

I ac_ 0z
A _ZkalJrl ai
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Backpropagation Algorithm

® Weigths lek between j-th neuron in layer / — 1 and k-th
neuron in layer /

® Biases b}

* Weighted inputs to neuron z; = 3~ m/j’kajl._:l + b,

°

Activation levels a}:
® al are the inputs

-a:o@o=a(2w¢%*+b0

/ ac 92 /
. p— — —
Error A} az = Ba] 0z aa o'(z)

9zt
Al = T 2 S = (&) (Sewp AL
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Backpropagation Algorithm

® Weigths lek between j-th neuron in layer / — 1 and k-th
neuron in layer /
® Biases b}
® Weighted inputs to neuron z| = j lekajl-_l + b,
® Activation levels a}:
® al are the inputs

-%:o@o=a(2w¢%*+bo

° I _ _ oc 94 _ /
Error A} az = Ba] 0z aa o'(z)
! ac 0z I+1 A 1+1
o =¥y 2l = o) (Sewi Al
® Gradient: 86%

Jjk
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Backpropagation Algorithm

® Weigths lek between j-th neuron in layer / — 1 and k-th
neuron in layer /
® Biases b}

® Weighted inputs to neuron z| = i m/j’kayjl._:l + b,

® Activation levels a}:
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1. Calculate the activation levels z/ and a} iteratively from front
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Backpropagation Algorithm

1. Calculate the activation levels z/ and a} iteratively from front
to back

2. Find the error at top level AL = aacLU (z})
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Backpropagation Algorithm

1. Calculate the activation levels z/ and a} iteratively from front
to back

2. Find the error at top level AL = aacLa (z})

3. Propagate errors backwards Al = o '(z; N (Zk JHA/H)
4. Put everything together to find the gradient 8‘9% = AJ/-akfl
ik

— problem of vanishing or exploding gradients
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Repairing the gradient

® Truncate too high values
¢ Use non-saturating activation functions, f. e. ReLU (rectified
linear unit)
o(x) = max(0, x)
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Repairing the gradient

® Truncate too high values
¢ Use non-saturating activation functions, f. e. ReLU (rectified
linear unit)
o(x) = max(0, x)

® Regularization also helps
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® Stochastic Gradient Descent
® Randomly divide training data into m minibatches

Summary
[e]e)



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks
[e]e] o] 00000
000000 00000e

[e]e]
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® Randomly divide training data into m minibatches
® Train on each minibatch (= epoch)
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® Dropout
® Randomly neglect neurons during training steps
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® Stochastic Gradient Descent

® Randomly divide training data into m minibatches
® Train on each minibatch (= epoch)

® Dropout

® Randomly neglect neurons during training steps
® Batch normalization

® Add 'Batch Normalization' layers
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Regularization

® Stochastic Gradient Descent

® Randomly divide training data into m minibatches
® Train on each minibatch (= epoch)

® Dropout
® Randomly neglect neurons during training steps
® Batch normalization

® Add 'Batch Normalization' layers
® Standardize mean and variance between layers
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Regularization

® Stochastic Gradient Descent

® Randomly divide training data into m minibatches
® Train on each minibatch (= epoch)

® Dropout

® Randomly neglect neurons during training steps
® Batch normalization

® Add 'Batch Normalization' layers

® Standardize mean and variance between layers

— Prevent overfitting
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Single Layer Network
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MNIST example revisited

2 Layer DNN
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Weakpoints of DNNs

® No spatial structure
® Do not scale well with input size

— Can we reduce the network size?

Summary
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Figure: General Structure of CNNs
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Low level convolutions
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Summary

® Basic Concepts of ML
Motivation and Structure of DNNs

® How to train a neural network
Short outlook to CNNs
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