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What is Machine Learning?

• Goal: Make predictions based on given data

• Formalization:

• Independent quantities x, f. e. spring constant k, mass m
• Dependent quantity y , f. e. period of pendulum T
• Dataset X = (x1, ...) and Y = (y1, ...) f. e. experimental data
• Model f (x;w), f : x→ y with parameters w, f. e. kw1mw2

• Cost function C(Y, f (X;w)), f.e. L2 norm
∑

i [yi − f (xi ;w)]2

→ Best parameters ŵ = argminw C(Y, f (X;w))

→ ”Training the model”
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→ Best parameters ŵ = argminw C(Y, f (X;w))

→ ”Training the model”



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

What is Machine Learning?

• Goal: Make predictions based on given data
• Formalization:

• Independent quantities x, f. e. spring constant k, mass m
• Dependent quantity y , f. e. period of pendulum T
• Dataset X = (x1, ...) and Y = (y1, ...) f. e. experimental data
• Model f (x;w), f : x→ y with parameters w, f. e. kw1mw2

• Cost function C(Y, f (X;w)), f.e. L2 norm
∑

i [yi − f (xi ;w)]2

→ Best parameters ŵ = argminw C(Y, f (X;w))

→ ”Training the model”



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Comparison to Fitting

Fitting:

• Goal: Best estimation of
parameters w

• Use all data to fit

• Minimize Cost function by
all means

Learning:

• Goal: Best prediction for
unknown x

• Split data set in training
and test sets

→ Cross validation

• Test set accuracy is
important!

→ Regularization

→ Subtle differences, very different algorithms!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Explicit Example: Image Classification

• Independent quantities: Pixel data x (flattened to a vector)

• Dependent quantity: Category y ∈ 0, 1

• Linear model: f (x;w, b) = σ(xTw + b)

• Sigmoid function σ(x) = 1
1+e−x

→ Model maps input to probability

→ f (x;w, b) = P(y = 1|x;w, b)
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Cost function for classification

• Idea: Maximize probability of correct classification

• Remember: P(y = 1|x) = σ(xTw + b) = 1− P(y = 0|x)

• Probability Pcorrect that classification is correct:

Pcorrect(x, y) =

{
P(y = 1|x) y = 1

1− P(y = 1|x) y = 0

= P(y = 1|x)y [1− P(y = 1|x)]1−y

• For multiple predictions: Pcorrect(X,Y) =
∏

i Pcorrect(xi , yi )

• Cross entropy:

−
∑
i

yi log
[
σ(xTi w + b)

]
+ (1− yi )log

[
1− σ(xTi w + b)

]
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Practical Example: MNIST

• Dataset of 70.000 handwritten digits

• Commonly used for machine learning experiments

• Lowest error rate 0,21% (CNN)
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MNIST classifier

• Cross entropy: only 2 output states

→ Take 1 classifier for every class

• Probabilities don’t add to 1

→ Take SoftMax (= Boltzmann distribution) function

xi 7→
exi∑
j e

xj
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MNIST classifier

→ Caps out at around 91%
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Can we do better with a more
complex model?
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Neural Networks

Figure: General architecture
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How to train a NN

• Want to minimize C(X ;w) w. r. t. w

• Gradient Descent:

1. Choose some initial w0

2. Compute gradient vi = ∇C(X ;wi )
3. Update weights wi+1 = wi − ηvi where η is the learning rate
4. Repeat until converged to minimum

→ Problems at every step!
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Simple algorithm - many problems

• How to choose w0?

→ Zero-mean, normal-distributed values work well enough in
most cases

• How to compute −∇C(X ;w)?

→ Backpropagation

• How to choose learning rate η?

→ Need to tune

• How do we know we have the correct minimum?

→ We don’t

• Do we even converge?
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Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :

• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)

• Error ∆l
k = ∂C

∂z lk
= ∂C

∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj

= σ′(z lj )
(∑

k w
l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)

• Gradient: ∂C
∂w l

jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

• Weigths w l
jk between j-th neuron in layer l − 1 and k-th

neuron in layer l

• Biases blj

• Weighted inputs to neuron z lk =
∑

j w
l
jka

l−1
j + blk

• Activation levels alk :
• a1k are the inputs

• alk = σ(z lk) = σ
(∑

j w
l
jka

l−1
j + blk

)
• Error ∆l

k = ∂C
∂z lk

= ∂C
∂alk

∂alk
∂z lk

= ∂C
∂alk

σ′(z lk)

• ∆l
k =

∑
k

∂C
∂z l+1

k

∂z l+1
k

∂z lj
= σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
• Gradient: ∂C

∂w l
jk

= ∂C
∂z lj

∂z lj
∂w l

jk

= ∆l
ja

l−1
k



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

1. Calculate the activation levels z lk and alk iteratively from front
to back

2. Find the error at top level ∆L
k = ∂C

∂aLk
σ′(zLk )

3. Propagate errors backwards ∆l
k = σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
4. Put everything together to find the gradient ∂C

∂w l
jk

= ∆l
ja

l−1
k

→ problem of vanishing or exploding gradients



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

1. Calculate the activation levels z lk and alk iteratively from front
to back

2. Find the error at top level ∆L
k = ∂C

∂aLk
σ′(zLk )

3. Propagate errors backwards ∆l
k = σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
4. Put everything together to find the gradient ∂C

∂w l
jk

= ∆l
ja

l−1
k

→ problem of vanishing or exploding gradients



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

1. Calculate the activation levels z lk and alk iteratively from front
to back

2. Find the error at top level ∆L
k = ∂C

∂aLk
σ′(zLk )

3. Propagate errors backwards ∆l
k = σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)

4. Put everything together to find the gradient ∂C
∂w l

jk

= ∆l
ja

l−1
k

→ problem of vanishing or exploding gradients



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

1. Calculate the activation levels z lk and alk iteratively from front
to back

2. Find the error at top level ∆L
k = ∂C

∂aLk
σ′(zLk )

3. Propagate errors backwards ∆l
k = σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
4. Put everything together to find the gradient ∂C

∂w l
jk

= ∆l
ja

l−1
k

→ problem of vanishing or exploding gradients



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Backpropagation Algorithm

1. Calculate the activation levels z lk and alk iteratively from front
to back

2. Find the error at top level ∆L
k = ∂C

∂aLk
σ′(zLk )

3. Propagate errors backwards ∆l
k = σ′(z lj )

(∑
k w

l+1
jk ∆l+1

k

)
4. Put everything together to find the gradient ∂C

∂w l
jk

= ∆l
ja

l−1
k

→ problem of vanishing or exploding gradients



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Repairing the gradient

• Truncate too high values
• Use non-saturating activation functions, f. e. ReLU (rectified

linear unit)
σ(x) = max(0, x)

• Regularization also helps



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Repairing the gradient
• Truncate too high values

• Use non-saturating activation functions, f. e. ReLU (rectified
linear unit)

σ(x) = max(0, x)

• Regularization also helps



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Repairing the gradient
• Truncate too high values
• Use non-saturating activation functions, f. e. ReLU (rectified

linear unit)
σ(x) = max(0, x)

• Regularization also helps



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Repairing the gradient
• Truncate too high values
• Use non-saturating activation functions, f. e. ReLU (rectified

linear unit)
σ(x) = max(0, x)

• Regularization also helps



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Regularization

• Stochastic Gradient Descent

• Randomly divide training data into m minibatches
• Train on each minibatch (= epoch)

• Dropout

• Randomly neglect neurons during training steps

• Batch normalization

• Add ’Batch Normalization’ layers
• Standardize mean and variance between layers

→ Prevent overfitting



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Regularization

• Stochastic Gradient Descent
• Randomly divide training data into m minibatches

• Train on each minibatch (= epoch)

• Dropout

• Randomly neglect neurons during training steps

• Batch normalization

• Add ’Batch Normalization’ layers
• Standardize mean and variance between layers

→ Prevent overfitting



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Regularization

• Stochastic Gradient Descent
• Randomly divide training data into m minibatches
• Train on each minibatch (= epoch)

• Dropout

• Randomly neglect neurons during training steps

• Batch normalization

• Add ’Batch Normalization’ layers
• Standardize mean and variance between layers

→ Prevent overfitting



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Regularization

• Stochastic Gradient Descent
• Randomly divide training data into m minibatches
• Train on each minibatch (= epoch)

• Dropout

• Randomly neglect neurons during training steps

• Batch normalization

• Add ’Batch Normalization’ layers
• Standardize mean and variance between layers

→ Prevent overfitting



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Regularization

• Stochastic Gradient Descent
• Randomly divide training data into m minibatches
• Train on each minibatch (= epoch)

• Dropout
• Randomly neglect neurons during training steps

• Batch normalization

• Add ’Batch Normalization’ layers
• Standardize mean and variance between layers

→ Prevent overfitting



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Regularization

• Stochastic Gradient Descent
• Randomly divide training data into m minibatches
• Train on each minibatch (= epoch)

• Dropout
• Randomly neglect neurons during training steps

• Batch normalization

• Add ’Batch Normalization’ layers
• Standardize mean and variance between layers

→ Prevent overfitting



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Regularization

• Stochastic Gradient Descent
• Randomly divide training data into m minibatches
• Train on each minibatch (= epoch)

• Dropout
• Randomly neglect neurons during training steps

• Batch normalization
• Add ’Batch Normalization’ layers

• Standardize mean and variance between layers

→ Prevent overfitting



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Regularization

• Stochastic Gradient Descent
• Randomly divide training data into m minibatches
• Train on each minibatch (= epoch)

• Dropout
• Randomly neglect neurons during training steps

• Batch normalization
• Add ’Batch Normalization’ layers
• Standardize mean and variance between layers

→ Prevent overfitting



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Regularization

• Stochastic Gradient Descent
• Randomly divide training data into m minibatches
• Train on each minibatch (= epoch)

• Dropout
• Randomly neglect neurons during training steps

• Batch normalization
• Add ’Batch Normalization’ layers
• Standardize mean and variance between layers

→ Prevent overfitting



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

MNIST example revisited

→
Caps at 97.9%!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

MNIST example revisited

→
Caps at 98.1%!



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Weakpoints of DNNs

• No spatial structure

• Do not scale well with input size

→ Can we reduce the network size?



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Weakpoints of DNNs

• No spatial structure

• Do not scale well with input size

→ Can we reduce the network size?



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Weakpoints of DNNs

• No spatial structure

• Do not scale well with input size

→ Can we reduce the network size?



Short Introduction to Machine Learning Deep Neural Networks Convolutional Neural Networks Summary

Basic Idea

Figure: General Structure of CNNs
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