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Ising Model



Ising Model

H = −J
∑
〈i,j〉

σiσj with σk = ±1

m =
1

N

∑
σi magnetization

We are interested in the 2 dimensional case on a square lattice with

periodic boundary conditions and J > 0:

J > 0 ferromagnetic ↔ J < 0 antiferromagnetic
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Phase Transition in the Ising Model

Look at free energy needed to create an island of +1 in a sea of -1 with

boundary length L (”Peierls Argument”):

∆E ≈ 2JL

∆S ≈ ln 3L

⇒ ∆F ≈ L (2J − T ln 3) < 0

⇔ T > TC =
2

ln 3
J ≈ 1.8J

Qualitatively different behaviour at

different temperatures
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Phase Transition of the Ising Model

Phase Transition (Ehrenfest (1933)):

n-th order phase transition has a discontinuity at any n-th partial

derivative of the free energy F .
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Phase Transition of the Ising Model

Exact solution in the thermodynamic limit (Onsager (1944)):

−βf = ln 2 +
1

8π

∫ 2π

0

dφ d θ ln
[
cosh2 2βJ − sinh 2βJ (cosφ+ cosθ)

]
Heat capacity c = −β2∂2

βf has a log-divergence at the critical

temperature

TC =
2

ln
(
1 +
√

2
)J ≈ 2.27J

Easy to determine from magnetization:

m =


[
1− (sinh 2βJ)4

] 1
8

, T < TC

0, T > TC
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Phase Transition in the Ising Model

(a) T = 1.8J (b) T = 2.32J (c) T = 5J

Source: http://farside.ph.utexas.edu/teaching/329/lectures/node110.html
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Machine Learning Phases of

Matter (2017)



Machine Learning Phases of Matter (2017)

Published on 13 February 2017 by Carrasquilla and Melko

Try to find critical temperature of a ferromagnetic (square) Ising model

with supervised machine learning
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Machine Learning Phases of Matter (2017)

Analytical toy model with free parameter ε:

Input layer is σi = ±1

Hidden layer consists of perceptrons (Heaviside)

Output layer consists of sigmoids
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Machine Learning Phases of Matter (2017)

Learning toy model:

Train same network with arbitrary weights far from TC
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Machine Learning Phases of Matter (2017)
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Machine Learning Phases of Matter (2017)

Fully connected network with single hidden layer consisting of 100

sigmoid neurons

→ TC = (2.266± 0.002)J

Literature: TC = 2.2692J
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Machine Learning Phases of Matter (2017)
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Machine Learning Phases of Matter (2017)

Use same network without retraining on a triangular Ising model

→ TC = (3.65± 0.01)J

Literature: TC = 3.641J
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Fermion Sign Problem



Quantum Monte Carlo

Heisenberg model for spin 1/2-particles:

H = −J
∑
〈i,j〉

~Si ~Sj

Two particle Hamiltonian H = −J ~S1
~S2 has eigenbasis

|↑↑〉 , |↓↓〉 , 1√
2

(|↑↓〉 − |↓↑〉) , 1√
2

(|↑↓〉+ |↓↑〉)

Entangled eigenstates!
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Quantum Monte Carlo

1d-Chain with periodic boundary conditions:

H = −J
∑
i

~Si ~Si+1 =
∑
i

Hi =
∑

even i

Hi +
∑
odd i

Hi = He +Ho

Try to get the partition function numerically:

Z = Tr e−βH = Tr
(
e−∆τH)m = Tr

[(
e−∆τHe e−∆τHo

)m]
+O(∆τ 2)

=
∑

|σ1〉,...,|σ2m〉
{|σi 〉} Basis ∀i

〈σ1| e−∆τHe |σ2m〉 〈σ2m| e−∆τHo |σ2m−1〉 ... 〈σ2| e−∆τHo |σ1〉

+O(∆τ 2) =
∑
ω

p(ω)

→ Is p(ω) ≥ 0?
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Sign Problem

Z =
∑

|σ1〉,...,|σ2m〉
{|σi 〉} Basis ∀i

〈σ1| e−∆τHe |σ2m〉 〈σ2m| e−∆τHo |σ2m−1〉 ... 〈σ2| e−∆τHo |σ1〉

Look at ”spin flip” term:

〈↑↓| e−∆τ~S1
~S2 |↓↑〉 = e−∆τJ/4 sinh

∆τJ

4
< 0 if J < 0

Two particle system (m=1 for simplicity):

Z = ...+ 〈↑↓| e−∆τ~S1
~S2 |↓↑〉 〈↓↑| e−∆τ~S2

~S1 |↑↓〉+ ...

→ p ≥ 0
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Sign Problem

Three particles: H = −J
(
~S1
~S2 + ~S2

~S3 + ~S3
~S1

)
:

Z =
∑
〈σ1| e−∆τ~S1

~S2 |σ3〉 〈σ3| e−∆τ~S2
~S3 |σ2〉 〈σ2| e−∆τ~S3

~S1 |σ1〉

One can create a configuration similar to before which generates negative

probabilites:

|↓↑↑〉 , |↑↓↑〉 , |↑↑↓〉

→ ”frustrated antiferromagnet”
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Sign Problem

Ingredients for trouble:

• fermions

• negative couplings

• non bipartite lattice

A B

?

theoretical fix: always work in hamiltonian eigenbasis!

but diagonalization scales exponentially → NP-complete problems
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Machine learning quantum phases of matter beyond the fermion

sign problem (2017)

Also treat sign-problematic models with machine learning (Hubbard

model)
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Learning phase transitions by

confusion (2017)



Learning phase transitions by confusion (2017)

Published on 13 February 2017 by van Nieuwenburg, Liu and Huber

Try to find an unknown critical point of a system with pseudo-supervised

machine learning
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Learning phase transitions by confusion (2017)

Suppose a model which depends on a parameter T and there exists some

critical value TC in the interval (Ta,Tb) which yields differently

structured output above and below TC .
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Learning phase transitions by confusion (2017)

General Strategy to find the critical point TC :

• Propose some critical point T ′C

• Generate configurations far from T ′C and train the network with it

• Generate more configurations and record the performance of the

trained network

Do the above for all T ′C ∈ (Ta,Tb).
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Learning phase transitions by confusion (2017)

The performance P(T ′C ) should be maximal for T ′C = Ta,TC ,Tb as it is

easier to distinguish between differently structured configurations which

should be separated by TC :

P(T ′C ) ∝ 1− min {|T ′C − Ta|, |T ′C − TC |, |T ′C − Tb|}
Tb − Ta
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Learning phase transitions by confusion (2017)

Ising model with TC being the on at the thermodynamic limit
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Learning phase transitions by confusion (2017)

Heisenberg model with external field; TC = 3J being the literature value
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Summary

Neural networks can be trained to distinguish different phases

but

choosing the correct approach and network may be difficult.

Neural networks can find unkown phase transitions on their own but that

doesn’t have to be a phase transition.
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Further Reading

Ising model and statistical physics

Schwarz: Statistical Physics

https://www.thphys.uni-heidelberg.de/~biophys/PDF/Skripte/

StatPhys.pdf

Quantum monte carlo

Assaad and Evertz: World line and determinantal Quantum Monte Carlo

methods for spins, phonons, and electrons.

https://pawn.physik.uni-wuerzburg.de/~assaad/Reprints/

assaad_evertz.pdf

Paper

Machine learning phases of matter DOI:10.1038/nphys4035

Machine learning quantum phases of matter beyond the fermion sign

problem DOI:10.1038/s41598-017-09098-0

Learning phase transitions by confusion DOI: 10.1038/nphys4037
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