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Abstract

This is a set of lecture notes for the theory modules in master-level particle physics 1 and 2, where the second

class used to be taught as Standard Model. It assumes a solid theory background from the theory bachelor courses,

for instance analytical mechanics, ellectromagnetism, and quantum mechanics. Aspects of quantum field theory are

sketched and then skipped, we refer to the specialized lectures for more details. The goal of the lecture is to

understand the theory background of modern particle physics, from low to high energies, and be able to do simple

calculations.
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1 A simple scattering process

When we compute transition amplitudes for collider like LEP or LHC, we usually combine building blocks defined by

Feynman rules in a way which does not make it obvious that we are dealing with a quantum field theory. One of the

easiest processes we can look at is

e+e− → γ∗ → qq̄ , (1.1)

through a photon, all starting from these Feynman rules. Let is see what we start from and how we can compute this

process using so-called Feynman rules. For this scattering process we need to describe four external fermions, their

coupling to a photon, and the propagation of this boson from the e+e− annihilation to the point where is splits into a

quark and antiquark pair.

From theoretical mechanics we remember that there are several ways to describe a physical system and calculate its

time evolution. Assuming one degree of freedom or a real scalar field φ, we can for instance start with the action

S =

∫
d4xL (φ, ∂μφ) with x =

(
x0
�x

)
. (1.2)

The position x is given by a space-time 4-vector, as we know if from special relativity. Under the integral there is a

Lagrange density, which works exactly like the Lagrange function in mechanics, just that the object φ now is a

quantum field, and that in particle physics we use space-time and the Minkoswki metric (+ - - -). The action has to be

invariant under a variation δS = 0. We can translate this condition into the Euler-Lagrange equations

∂μ

(
∂L

∂(∂μφ)

)
=
∂L

∂φ
with ∂μ =

∂

∂xμ
. (1.3)

The second field for our switch from Lagrangian to the Hamiltonian is the (conjugate) momentum, which we can

calculate just like in a classical field theory. It is

π(x) =
∂L

∂(∂0φ)
= φ̇ . (1.4)

With these two field we define the third object which we can use to describe the dynamics of a system, the

Hamiltonian or energy functional

H(t) =
∫
d3x

(
πφ̇−L

)
. (1.5)

While for example in quantum mechanics this Hamiltonian is the basis of most calculations, in field theory we usually

start from the Lagrangian. This also means that at the end of the day we never really use the time-dependence given

by the conjugate momentum.

1.1 Boson field

We already know that for our scattering process we need to compute a transition amplitude between two kinds of

matter particles, namely incoming electrons and outgoing quarks, interacting via their electric charges. The interaction

is classically described by the electromagnetic Lagrangian based on the abelian U(1) field theory,

Lphoton = −1
4
FμνF

μν with Fμν = ∂μAν − ∂νAμ , (1.6)

in terms of a photon 4-vector field Aμ. This is exactly what we know from classical electrodynamics written in a

covariant way. The Maxwell equations

0 = ∂μFμν = ∂μ∂μAν − ∂μ∂νAμ = �Aν with � = ∂μ∂
μ (1.7)
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are the equations of motion for this photon field. In the last step we assume the Lorenz gauge condition ∂μA
μ = 0 and

find the d’Alembert equation for the vector potential Aμ.

To omit the vector index of the photon field, let us instead use the real scalar φ from Eq.(1.2) to illustrate bosonic

fields. Including a mass for this real scalar field we can write down its equation of motion which is the same for a

spin-zero scalar boson as for the spin-one vector boson of Eq.(1.7)(
�+m2

)
φ(x) = 0 . (1.8)

This Klein–Gordon equation corresponds to the d’Alembert equation for the electromagnetic vector potential in

Lorentz gauge. This equation of motion for a scalar field with a mass m corresponds to a Lagrangian

Lscalar =
1

2
(∂μφ)(∂

μφ)− m2

2
φ2 , (1.9)

which we can confirm using the Euler-Lagrange equation Eq.(1.3). If we want to compute the scattering amplitude in

momentum space, we need to Fourier-transform the scalar field into momentum space and then quantize it, i.e. define

commutation properties for the field in position and momentum space.

For our scattering process we need an object that describes the propagation of the (virtual) photon from its production

from an e+e− pair to its splitting into a qq̄ pair. This so-called propagator in position space is defined as a

time–ordered product of two field operators sandwiched between vacuum states. We can think of it as describing a

photon starting from its birth out of an e+e− pair to its death as a qq̄ pair,

Δ(x− x′) ≡ i 〈0|T (φ(x)φ(x′)) |0〉 . (1.10)

The time–ordered product of two operators is defined as

T (A(x)B(x′)) =

{
A(x)B(x′) x0 > x′0
B(x′)A(x) x′0 > x0

. (1.11)

We can transform this propagator into Fourier space and find

Δ(x− x′) = −
∫

d4k

(2π)4
e−ik(x−x′) 1

k2 −m2 + iε
. (1.12)

The propagator is the Green function for the Klein–Gordon equation Eq.(1.8), as we can explicitly confirm

(
�+m2

)
Δ(x− x′) = −

∫
d4k

(2π)4
(
�+m2

)
e−ik·(x−x′) 1

k2 −m2

=

∫
d4k

(2π)4
(
(−ik)2 +m2

)
e−ik·(x−x′) (−1)

k2 −m2

=

∫
d4k

(2π)4
e−ik·(x−x′)

= δ4(x− x′) . (1.13)

All these properties we will later use for the photon field Aμ, a vector field, where each component obeys the

Klein–Gordon equation. The propagator and quantization aspects like commutation relations for the field operators

will not change. The propagator only gets dressed by factors gμν where appropriate. For the propagator this

generalization is strictly speaking gauge dependent, gμν corresponds to Feynman gauge.

1.2 Fermion field

Next, we need to describe (external) fermion fields. Matter particles or fermions, like leptons or quarks, have a

different equation of motion and a different contribution to the Lagrangian. A field describing a fermionic particle has
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to include two spin states of this particles. Moreover, in quantum field theory every fermion χ† has an antiparticle

with the same mass. The altogether four degrees of freedom naturally combine to one equation with the same mass

and the particle and the antiparticle described by one field ψ.

The form of the fermion field is given by the transformation property under the Lorentz transformation. We remind

ourselves that a scalar field φ(x) transforms under a Lorentz transformation via a unitary operator U(Λ) as

U(Λ)−1φ(x)U(Λ) = φ(Λ−1x) . (1.14)

The fermion field has to live in a different, the so-called spinor representation. It transforms under the Lorentz

transformation as

U(Λ)−1ψ(x)U(Λ) = Λ1/2 ψ(Λ
−1x) , (1.15)

where Λ1/2 is this special representation of the Lorentz transformation. We can define it using the four Dirac matrices

γμ with their anti–commutator Clifford algebra

{γμ, γν} = 2gμν 11 . (1.16)

The unit matrix has the same size as the γ matrices. That we usually write them as 4× 4 matrices has nothing to do

with the number of — also four — γ matrices. The explicit form of the γμ matrices is not relevant because it never

appears in actual calculations. All we need is a few trace relations arising from their commutators. A representation of

the Lorentz algebra in terms of the Dirac matrices is

Λ1/2 = exp
(ωμν

8
[γμ, γν ]

)
. (1.17)

This give us the transformation rule for the Dirac matrices

Λ−1
1/2 γ

μ Λ1/2 = Λμ
νγ

ν . (1.18)

We now postulate an equation of motion for the fermions, the Dirac equation, which describes fermions in Nature

perfectly. One way to motivate this form is by taking some kind of square root of the Klein-Gordon equation. Another

way is to write 2-spinors separately, for the two-spin states of the particle or of the antiparticle. Because of the spin,

each of these two Dirac equation is then written with the help of the Pauli matrices as generators of the spin group

SU(2). For the full Dirac spinor it reads

(iγμ∂μ −m11) ψ(x) ≡ (i /∂ −m11) ψ(x) = 0 . (1.19)

The unit matrix in the mass term is a four-by-four matrix, just like the Dirac matrices. Note that the size of the γ
matrix and the number of Lorentz indices μ is only coincidentally the same. We want to check that this equation is

invariant under Lorentz transformations, keeping in mind that Λ1/2 commutes with everything except for the Dirac

matrices

(iγμ∂μ −m11) ψ(x)→
(
iγμ(Λ−1)νμ∂ν −m11

)
Λ1/2ψ(Λ

−1x)

= Λ1/2Λ
−1
1/2

(
iγμ(Λ−1)νμ∂ν −m11

)
Λ1/2ψ(Λ

−1x)

= Λ1/2

(
iΛ−1

1/2γ
μΛ1/2(Λ

−1)νμ∂ν −m11
)
ψ(Λ−1x)

= Λ1/2

(
iΛμ

ργ
ρ(Λ−1)νμ∂ν −m11

)
ψ(Λ−1x)

= Λ1/2

(
igνργ

ρ∂ν −m11
)
ψ(Λ−1x)

= Λ1/2 (iγ
ν∂ν −m11) ψ(Λ−1x) = 0 . (1.20)

We also see that we can multiply the Dirac equation with (−iγμ∂μ −m11) and obtain

(−iγμ∂μ −m11) (iγν∂ν −m11) ψ(x) =
(
γμγν∂μ∂ν +m211

)
ψ(x)

=

(
γμγν + γνγμ

2
∂μ∂ν +m211

)
ψ(x)

=
(
∂2 +m211

)
ψ(x) , (1.21)
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symbol meaning operator

us(k) incoming fermion (e−, q) with momentum k and spin s as

v̄s(k) incoming anti–fermion (e+, q̄) bs
ūs(k) outgoing fermion (e−, q) a†s
vs(k) outgoing anti–fermion (e+, q̄) b†s

Table 1: Assignment of generation and annihilating operators for particle and antiparticle spinors in momentum space,

as given in Eq.(1.25).

which means that every fermion field that obeys the Dirac equation also fulfills a Klein–Gordon equation. We will see

this similarity when we construct the fermion propagator.

To define a mass term in the Lagrangian we need to form Lorentz scalars or invariants out of the fermion fields ψ.

Naively, (ψ†ψ) would work if the Lorentz transformations in (ψ†Λ†
1/2Λ1/2ψ) cancelled. Unfortunately Λ1/2 is not a

unitary transformation. Instead, one can show that the Dirac adjoint

ψ = ψ†γ0 with ψψ → ψψ (1.22)

has the correct transformation property. This allows us to write down the Lagrangian which corresponds to the Dirac

equation for a fermion field

Lfermion = ψ(i /∂ −m11)ψ . (1.23)

Because we will later need the fermion–photon interaction in the Lagrangian, we introduce the convenient form of the

covariant derivative

Lfermion-photon = ψ (i /D −m11)ψ

≡ ψ (i( /∂ + ie /A)−m11)ψ = ψ (i( /∂ −m11)ψ + eqAμ ψγ
μψ (1.24)

The last term describes the coupling of a vector photon field Aμ to a vector-like expression ψγμψ which we call a

vector current of a spinor field.

Just like in the bosonic case we now Fourier-transform the Dirac field operators, which we know have to include four

degrees of freedom, particle and anti-particle with two spins each,

ψ(x) =

∫
d3k

(2π)32k0

∑
spin s = ±1/2

(
eikxvs(k)b

†
s(
�k) + e−ikxus(k)as(�k)

)

ψ(x) =

∫
d3k

(2π)22k0

∑
spin s = ±1/2

(
eikxūs(k)a

†
s(
�k) + e−ikxv̄s(k)bs(�k)

)
. (1.25)

The 4-dimensional spinors u and v in Fourier space create or annihilate the particle, while ū and v̄ create or annihilate

the antiparticle in Fourier space, as listed in Tab. 1. As before, we skip the quantization steps and directly quote the

spin sums for the spinors u and v and their Dirac adjoints

∑
spin s = ±1/2

us(k)ūs(k) = /k +m11

∑
spin s = ±1/2

vs(k)v̄s(k) = /k −m11 . (1.26)

These spin sums do not combine spinors to scalars, but to Dirac matrices. For many applications in LHC physics the

masses are negligible, and since they really complicate formulas we evaluate the spin sums without masses whenever

we can.
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1.3 Scattering

Now we have everything we need to compute a transition amplitude for our scattering process

e−(k1, s1) + e+(k2, s2)→ q(k3, s3) + q̄(k4, s4) , (1.27)

where kj and sj are the four-momenta and spin orientations of the external fermions, and k1 + k2 + k3 + k4 = 0. We

neglect the electron and quark masses of the external particles. In the future, or more specifically asymptotically for

t→ +∞, the initial state limt→−∞ |t〉 ≡ |i〉 will have evolved into the final state limt→∞ |t〉 = S|i〉 via a yet

unknown linear operator S . To describe this scattering into a final state 〈f | we need to compute the transition

amplitude

S ≡ 〈f |S|i〉 = 〈q3q̄4|S|e+1 e−2 〉 = 〈0|a†3b†4 S a1b2|0〉 . (1.28)

We use a single iindex to indicate the momenta and spins of the external particles. This transition amplitude is not a

vacuum expectation value, but the operator S sandwiched between physically measurable states made from the

vacuum using the generation and annihilation field operators a, a†, b, b† defined in Eq.(1.25).

The transition matrix element S can be computed from the time evolution of the initial state i∂t|t〉 = H(t)|t〉 in the

interaction picture with a time-dependent Hamilton operator,

S = T
(
e−i

∫
dtH(t)

)
, (1.29)

again with time ordering T . This form ensures that it generates a unitary transformation. For our computation we will

be fine with the interaction Hamiltonian for two incoming and two outgoing fermios, each pair involving a different

particle species j with charge qj ,

Hint(t) = −
∫
d3xLint(x) ⊃

∑
j

−eqj
∫
d3xAμ ψjγ

μψj , (1.30)

in terms of the four-vector x including its first entry t = x0. We skip the corresponding calculation and just give the

result for the numbering of the incoming and outgoing particles defined in Eq.(1.27)

S =
∑
spins

i(2π)4δ4(k1 + k2 − k3 − k4) e2qeqq ū3γμv4 1

(k1 + k2)2
v̄2γ

μu1 . (1.31)

Stripping off unwanted prefactors we define the transition matrix element for quark–antiquark production in QED as

M = e2qeqq (ū3γμv4)
1

(k1 + k2)2
(v̄2γ

μu1) , (1.32)

We have to square this matrix element or transition amplitude to compute the transition probability. Part of the

squaring is the sum over all spins which uses the spin sums Eq.(1.26) to get rid of the spinors and then some trace

rules to get rid of all Dirac matrices. For neither the spinors nor the Dirac matrices we need to know their explicit form

|M|2 =
∑

spin, color

e4q2eq
2
q

1

(k1 + k2)4
(v̄4γνu3)(ū1γ

νv2) (ū3γμv4) (v̄2γ
μu1)

=e4q2eq
2
qNc

1

(k1 + k2)4

∑
spin

(v̄4γνu3)(ū1γ
νv2) (ū3γμv4) (v̄2γ

μu1) . (1.33)

The color factor Nc is the number of outgoing color singlet states we can form out of a quark and an antiquark with

opposite color charges. Because color only appears in the final state we sum over all possible color states or multiply

by Nc. In the next step we can observe how the crucial structure of transition amplitudes with external fermions,
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namely traces of chains of Dirac matrices, magically form:

|M|2 =e4q2eq2qNc
1

(k1 + k2)4

∑
spin

(v̄4)i(γν)ij(u3)j(ū3)k(γμ)kl(v4)l · · · for one trace

=e4q2eq
2
qNc

1

(k1 + k2)4

⎛
⎝∑

spin

(v4)l(v̄4)i

⎞
⎠

⎛
⎝∑

spin

(u3)j(ū3)k

⎞
⎠ (γν)ij(γμ)kl · · ·

=e4q2eq
2
qNc

1

(k1 + k2)4
( /k4)li( /k3)jk(γν)ij(γμ)kl · · · using Eq.(1.26), no masses

=e4q2eq
2
qNc

1

(k1 + k2)4
Tr ( /k4γν /k3γμ) Tr ( /k1γ

ν /k2γ
μ) both traces again. (1.34)

In the final step we need a standard expression for the Dirac trace. Longer traces become very complicated very fast,

and we evaluate them using symbolic manipulation on the computer. We find

|M|2 =e4q2eq2qNc
1

(k1 + k2)4
4 (k3νk4μ + k3μk4ν − gμν(k3k4)) 4 (kν1kμ2 + kμ1 k

ν
2 − gμν(k1k2))

=16e4q2eq
2
qNc

1

(k1 + k2)4
[2(k1k3)(k2k4) + 2(k1k4)(k2k3) + 0× (k3k4)(k1k2)] with gμνg

μν = 4

=32e4q2eq
2
qNc

1

(k1 + k2)4
[(k1k3)(k2k4) + (k1k4)(k2k3)] , (1.35)

To evaluate this matrix element we first introduce Mandelstam variables as squares of sums of 4-vectors,

s = (k1 + k2)
2 ≈ 2(k1k2) > 0 t = (k1 + k3)

2 ≈ 2(k1k3) < 0 u = (k1 + k4)
2 ≈ 2(k1k4) , (1.36)

where in this sign convention all momenta are incoming, k1 + k2 + k3 + k4 = 0, and in the second step we neglect the

masses. The second Mandelstam variable can be expressed through the polar or scattering angle

t =
s

2
(−1 + cos θ) ∈ [−s, 0] . (1.37)

Allowing the external particles have a finite mass we can use this 4-momentum conservation to show

s+ t+ u = k21 + k22 + k23 + k24 ≡ m2
1 +m2

2 +m3
3 +m2

4 . (1.38)

In our case all masses are zero and we find the compact form

|M|2 = 32e4 q2eq
2
qNc

1

s2

[
t2

4
+
u2

4

]

= 8e4 q2eq
2
qNc

1

s2
[
s2 + 2st+ 2t2

]
= 8e4 q2eq

2
qNc

[
1 + 2

t

s
+ 2

t2

s2

]
. (1.39)

We can briefly check if this number is indeed positive, using the definition of the Mandelstam variable t for massless

external particles in terms of the polar angle: the upper phase space boundary t = 0 inserted into the brackets in

Eq.(1.39) gives [· · · ] = 1, just as the lower boundary t = −s with [· · · ] = 1− 2 + 2 = 1. For the central value

t = −s/2 the minimum value of the brackets is [· · · ] = 1− 1 + 0.5 = 0.5.

The azimuthal angle φ plays no role at colliders, unless you want to compute gravitational effects on Higgs production

at ATLAS and CMS. Any LHC Monte Carlo will either random-generate a reference angle φ for the partonic process

or pick one and keep it fixed.
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1.4 Feynman rules

Feynman rules are calculational rules which we can extract from the Lagrangian and which allow us to derive

Eq.(1.32) directly. We start by drawing Feynman diagrams for all ways we can link the given initial and final states

through interaction vertices and internal propagators. For our scattering process there is only one diagram:

u

v̄

ū

v

It consist of four external fermions labeled according to Tab. 1, one internal photon, and two interaction vertices.

From Eq.(1.25) and Tab. 1 we know how to describe external fermions in terms of spinors.

Spin sums are the only way to get rid of spinors in the computation. Equation (1.26) shows that as long as we neglect

fermion masses the two spinors u and v for particles and antiparticles are identical. To link external particles to each

other and to internal propagators we need vertices. If two fermions and a gauge boson interact via a vector current

proportional to γμ, and adding a conventional factor i, the one vertex rule in QED reads

ieqf γ
μ (f − f̄ − γ). (1.40)

This factor i we can consistently change for all three-point and four-point vertices in our theory. Finally, there is the

intermediate photon which propagates between the γμ and the γν vertices. The wave line in the Feynman diagram

corresponds to

−i gμν

p2 + iε
. (1.41)

Again, the factor −i is conventional. For a bosonic propagator it does not matter in which direction the momentum

flows. Blindly combining these Feynman rules gives us directly Eq.(1.32), so all we need to do is square the matrix

element, insert the spin sums and compute the Dirac trace.

We do not need it for our QED calculation, but for instance process e−γ → e−γ is described by an intermediate

fermion propagator in the s-channel. This propagator is described by the Feynman rule

i
/p+m11

p2 −m2
= i

/p+m11

/p2 −m2
= i

/p+m11

( /p+m11)( /p−m11)
= i ( /p−m11)

−1
. (1.42)

It lives in the same space as gamma matrices. Because the sign of the 4-momentum matters we asign it in parallel to

the fermion arrow. This will work fine until we have to deal with Majorana particles in the neutrino sector or

supersymmetry (for those who still remember that).

Whenever we compute such a matrix element starting from a Feynman diagram nothing tells us that the lines in the

Feynman diagrams are not actual physical states propagating from the left to the right. Even including loop diagrams

will still look completely reasonably from a semi–classical point of view. Feynman rules define an algorithm which

hides all field theory input in the calculation of scattering amplitudes and are therefore perfectly suited to compute the

differential and total cross sections on the computer.

1.5 Chirality

The vector structure of the QED couplings, for example mediated by a covariant derivative Eq.(1.24) we did not

actually motivate. It happens to work on the Lagrangian level and agrees with data, so it is correct. We can write a

completely general interaction of two fermions with a boson in terms of basis elements

g ψMψ =
∑

basis j

gj ψMjψ . (1.43)
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For a real (4× 4) matrix M the necessary 16 basis elements can be organized such that they are easy to keep track of

using Lorentz transformation properties. This eventually leads to the so-called Fierz transformation. The vector γμ

from the QED interaction gives us four such basis elements, the unit matrix a fifth. Another six we already know as

well, they are the generators of the spinor representation [γμ, γν ]. All of them are linearly independent.

Five basis elements are still missing. To define them, we start with another (4× 4) matrix which is invariant under

proper Lorentz transformations. We can write it in two equivalent forms

γ5 = iγ0γ1γ2γ3 ≡ i

4!
εμνρσγ

μγνγργσ , (1.44)

using the totally anti–symmetric Levi–Civita tensor εμνρσ. This form already shows a major technical complication in

dealing with γ5: in other than four space–time dimensions we do not know how to define the Levi–Civita tensor,

which means that for example for regularization purposes we cannot analytically continue our calculation to

n = 4− 2ε dimensions. The main properties of γ5 are

γ25 = 11 and {γμ, γ5} = 0 . (1.45)

It gives us all 16 basis element for the interaction of two spinors:

degrees of freedom basis elements Mj

scalar 1 11

vector 4 γμ

pseudoscalar 1 iγ5

axialvector 4 γμγ5

tensor 6
i

2
[γμ, γν ]

In the renormalizable Standard Model as a fundamental theory, tensor interactions do not play a role.

An obvious question is: what does it mean to include a factor γ5 in the interaction, i.e. what distinguishes a scalar

from a pseudoscalar and a vector from an axialvector? We can give an easy answer by defining three transformations

of our field in space and time. The first one is the parity transformation P which mirrors the three spatial coordinates

(t, �x)→ (t,−�x). The second is charge conjugation C which converts particles into their anti–particles. Both of them

leave the Dirac equation intact and can be represented by a unitary transformation. The third transformation is

time reversal T which converts (t, �x)→ (−t, �x), also leaves the Dirac equation intact, but only has an anti–unitary

representation. Every single one of them is violated in our Standard Model.

Instead of writing out the representation of these transformations in terms of Dirac matrices we characterize them

using the basic interactions from Eq.(1.43). Parity symmetry does not allow any interaction including γ5, which

means it forbids pseudoscalars and axialvectors. Time reversal symmetry does not allow any complex couplings gj .

Because any field theory described by a Lagrangian not including some kind of external field is invariant under CPT,

and we have never observed CPT violation, a combined CP-invariance is essentially the same as T invariance.

To look at the parity and CP symmetry more systematically, we rotate the {11, γ5} plane and define the two matrices

PR,L =
1

2
(11± γ5) . (1.46)

It is easy to show that the two are orthogonal projectors,

PLPR =
1

4
(11− γ5) (11 + γ5) =

1

4

(
11− γ25

)
= 0

P
2
R,L =

1

4

(
11± 2γ5 + γ25

)
=
1

4
(211± 2γ5) =

1

2
(11± γ5) = PR,L . (1.47)
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We first look at what happens when we write a kinetic term with left-handed and right-handed projectors or fermion

fields,

ψ /∂ψ = ψ /∂
(
P
2
L + P

2
R

)
ψ

= ψ (PR /∂PL + PL /∂PR)ψ

= (PLψ) /∂(PLψ) + (PRψ) /∂(PRψ)

= ψL /∂ψL + ψR /∂ψR . (1.48)

The general kinetic term covers left-handed and right-handed fields. Their effect on a mass term is different,

ψ 11ψ = ψ (PL + PR)ψ

= ψ
(
P
2
L + P

2
R

)
ψ

= ψ†γ0
(
P
2
L + P

2
R

)
ψ with ψ = ψ†γ0

= ψ† (
PRγ

0
PL + PLγ

0
PR

)
ψ with {γ5, γμ} = 0

= (PRψ)
†γ0(PLψ) + (PLψ)

†γ0(PRψ) with γ†5 = γ5,P
†
L,R = PL,R

= (PRψ)11(PLψ) + (PLψ)11(PRψ)

= ψR 11ψL + ψL 11ψR . (1.49)

To include a fermion mass we need to combine left-handed and right-handed projectors and fermion fields,

ψ /∂ ψ = ψR /∂ ψR + ψL /∂ ψL

ψ 11ψ = ψR 11ψL + ψL 11ψR . (1.50)

In other words, we can write for example QED in terms of independent left and right handed fields as long as we

neglect all fermion masses. This defines the chiral limit where the Lagrangian is symmetric under ψL ↔ ψR.

Introducing fermion masses breaks this chiral symmetry, or turning the argument around, to introduce fermion masses

we need to combine a left-handed and a right-handed fermion fields and give them one common Dirac mass.

Moving on to interactions, we define a combined vector–axialvector coupling as γμ ± γμγ5 = 2γμPR,L. Sandwiching

this coupling between fermion fields gives for example

ψ γμPL ψ = ψ γμP
2
L ψ

= ψ†
PL γ0 γμ PLψ with {γ5, γμ} = 0

= (PLψ)
†
γ0 γμ PLψ with γ†5 = γ5

= ψL γμ ψL with ψL,R ≡ PL,R ψ . (1.51)

If we call the eigenstates of PR,L right-handed and left-handed fermions ψL,R this chirality allows us to define a

vector coupling between only left handed fermions by combining the vector and the axialvector couplings with a

relative minus sign. The same is of course true for right handed couplings. We can now describe the γf̄f coupling in

QED using the Feynman rule

−iγμ (�PL + rPR) with � = r = qe . (1.52)

At this stage it is not obvious at all what chirality means in physics terms. However, we will see that in the Standard

Model the left handed fermions play a special role: the massive W bosons only couple to them and not to their right

handed counter parts. So chirality is a property of fermions known to one gauge interaction of the Standard Model as

part of the corresponding charge.
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1.6 Helicity and spin

There exists a property which is identical to chirality for massless fermions and has an easy physical interpretation,

helicity. It is defined as the projection of the particle spin onto its three-momentum direction

h = �s · �p|�p| =
(
�s+ �L

)
· �p|�p| =

�J · �p|�p| with �p ⊥ �L , (1.53)

or equivalently the projection of the combined orbital angular momentum and the spin on the momentum direction.

From quantum mechanics we know that there exist discrete eigenvalues for the z component of the angular

momentum operator, symmetric around zero. Applied to fermions this gives us two spin states with the eigenvalues of

h being ±1/2. Unfortunately, there is no really nice way to show this identity. What we need to know is that the spin

operator is in general given by

�s = γ5γ
0 �γ . (1.54)

We can show this by writing it out in terms of Pauli matrices, but we will skip this here and instead just accept this

general form. We then write the solution ψ to the massless Dirac equation after transforming it into momentum space

ψ(�x) = u(�p) exp(−ip · x) (
γ0p0 − �γ�p

)
u(�p) = 0

γ5γ
0 γ0p0 u(�p) = γ5γ

0 �γ�p u(�p)

γ5p0 u(�p) = �s · �p u(�p) with
(
γ0

)2
= 11

γ5 u(�p) =
�s · �p
p0

u(�p)

γ5 u(�p) = ±�s · �p|�p| u(�p) = ±h u(�p) . (1.55)

In other words, the chirality operator γ5 indeed gives us the helicity of a particle, modulo a sign depending on the sign

of the energy. For the helicity it is easy to argue why for massive particles this property is not Lorentz invariant and

hence not a well defined property: massless particles propagate with the speed of light, which means we can never

boost into their rest frame or pass them. For massive particles we can do that and this way switch the sign of �p and the

sign of h. Luckily, for almost all Standard Model fermions we can neglect their masses at the LHC.

1.7 Cross section measurements

To compute a 2→ 2 scattering rate we combine the scattering matrix element from Eq.(1.39) with a two-particle

phase space integration for massless particles,

s2
dσ

dt

∣∣∣∣∣
2→2

=
π

(4π)2
Kij |M|2 (1.56)

with an averaging factor Kij for initial–state spins and colors, as only the sum is included in Eq.(1.39). For incoming

electrons as well as incoming quarks this factor Kij includes 1/4 for the spins. For an incoming qq̄ pair we would also

average over the color, 1/N2
c .

For our QED process we then find the differential cross section in four space–time dimensions, using α = e2/(4π)

dσ

dt
=

1

s2
π

(4π)2
1

4
8 q2eq

2
q (4πα)

2 Nc

[
1 + 2

t

s
+ 2

t2

s2

]

=
1

s2
2πα2 Nc q

2
eq

2
q

[
1 + 2

t

s
+ 2

t2

s2

]
. (1.57)
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We integrate this expression over the polar angle or the Mandelstam variable t to compute the total cross section

σ =
1

s2
2πα2 Nc q

2
eq

2
q

∫ 0

−s

dt

[
1 + 2

t

s
+ 2

t2

s2

]

=
1

s2
2πα2 Nc q

2
eq

2
q

[
t+

t2

s
+
2t3

3s2

]0
−s

=
1

s2
2πα2 Nc q

2
eq

2
q

[
s− s2

s
+
2s3

3s2

]

=
1

s
2πα2 Nc q

2
eq

2
q

2

3
⇒ σ(e+e− → qq̄)

∣∣∣∣∣
QED

=
4πα2Nc

3s
q2eq

2
q . (1.58)

In the history of QCD, this process played a crucial role, namely the production rate of quarks in e+e− scattering. For

small enough energies we can neglect the Z exchange contribution. At leading order we can then compute the

corresponding production cross sections for muon pairs and for quark pairs in e+e− collisions.

R ≡ σ(e+e− → hadrons)

σ(e+e− → �+�−)
=

∑
quarks

4πα2Nc

3s
q2eq

2
q

4πα2

3s
q2eq

2
�

= Nc

(
3
1

9
+ 2

4

9

)
=
11Nc

9
, (1.59)

for example for five quark flavors where the top quark is too heavy to be produced at the given e+e− collider energy.

For those interested in the details we did take one short cut: hadrons are also produced in the hadronic decays of

e+e− → τ+τ− which we strictly speaking need to subtract. This way, R as a function of the collider energy is a

beautiful measurement of the weak and color charges of the quarks in QCD.

Finally, if we face the fact that most particle physicists nowadays work on precision hadron colliders, and high-energy

e+e−-colliders are either a thing of the past or a dream for the future, we want to compute our QED process the other

way around. This means we move the quarks into the initial state and include a color-averaging factor. The

corresponding process is called the Drell–Yan process

σ(qq̄ → �+�−)

∣∣∣∣∣
QED

=
4πα2

3Ncs
q2� q

2
q . (1.60)

It will be the process which guides us through the discussion of modern collider physics. Obviously, to describe lepton

pair production at the LHC, we need to include the massive electroweak gauge bosons, not just the photons. We will

get to that later.
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2 Extra: helicity amplitudes

In research, transition amplitudes are not computed by squaring matrix elements and computing gamma matrix traces.

Instead, all elements of the Feynman rules are evaluated numerically, combined, and then squared. From the previous

section we know how to compute the cross section for Z production by writing down all external spinors, external

polarization vectors, interaction vertices and propagators and squaring the amplitude analytically. The amplitude itself

inherits external indices for example from the polarization vectors, while |M|2 is a real positive number with a fixed

mass dimension depending on the number of external particles.

As an example for a more modern computation of transition amplitudes, we consider again lepton pair production in

QED,

uū→ γ∗ → μ+μ− . (2.1)

The structure of the amplitudeM with two internal Dirac indices μ and ν involves one vector current on each side

(ūfγμuf ) where f = u, μ are to good approximation massless, so we do not have to be careful with the different

spinors u and v. The entries in the external spinors are given by the spin of the massless fermions obeying the Dirac

equation. For each value of μ = 0 · · · 3 each current is a complex number, computed from the four component of each

spinor and the respective 4× 4 gamma matrix γμ. The intermediate photon propagator has the form gμν/s, which is a

real number for each value of μ = ν. Summing over μ and ν in both currents forms the matrix element. To square this

matrix element we need to sumM∗ ×M over all possible spin directions of the external fermions.

Instead of squaring this amplitude symbolically we can follow exactly the steps described above and compute an array

of numbers for different spin and helicity combinations numerically. Summing over the internal Dirac indices we

compute the matrix element; however, to compute the matrix element squared we need to sum over external fermion

spin directions or gauge boson polarizations. The helicity basis we have to specify externally. This is why this method

is called helicity amplitude approach. To explain the way this method works, we illustrate it for muon pair production

based on the implementation in the Madgraph/Helas package.

Madgraph computes matrix elements this way. Other event generators have corresponding codes serving the same

purposes. In our case, Madgraph5 automatically produces a Fortran (!!) routine which then calls functions to compute

spinors, polarization vectors, currents of all kinds, etc. These functions are available as the Helas library. For our toy

process Eq.(2.1) the slightly shortened Madgraph5 output reads

REAL*8 FUNCTION MATRIX1(P,NHEL,IC)
C
C Generated by Madgraph 5
C
C Returns amplitude squared summed/avg over colors
C for the point with external lines W(0:6,NEXTERNAL)
C
C Process: u u˜ > mu+ mu- / z WEIGHTED=4 @1
C

INTEGER NGRAPHS, NWAVEFUNCS, NCOLOR
PARAMETER (NGRAPHS=1, NWAVEFUNCS=5, NCOLOR=1)

REAL*8 P(0:3,NEXTERNAL)
INTEGER NHEL(NEXTERNAL), IC(NEXTERNAL)

INCLUDE ’coupl.inc’

DATA DENOM(1)/1/
DATA (CF(I, 1),I= 1, 1) / 3/

CALL IXXXXX(P(0,1),ZERO,NHEL(1),+1*IC(1),W(1,1))
CALL OXXXXX(P(0,2),ZERO,NHEL(2),-1*IC(2),W(1,2))
CALL IXXXXX(P(0,3),ZERO,NHEL(3),-1*IC(3),W(1,3))
CALL OXXXXX(P(0,4),ZERO,NHEL(4),+1*IC(4),W(1,4))
CALL FFV1_3(W(1,1),W(1,2),GC_2,ZERO, ZERO, W(1,5))
CALL FFV1_0(W(1,3),W(1,4),W(1,5),GC_3,AMP(1))
JAMP(1)=+AMP(1)

DO I = 1, NCOLOR
DO J = 1, NCOLOR
ZTEMP = ZTEMP + CF(J,I)*JAMP(J)
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ENDDO
MATRIX1 = MATRIX1 + ZTEMP*DCONJG(JAMP(I))/DENOM(I)

ENDDO

END

The input to this function are the external four-momenta p(0 : 3, 1 : 4) and the helicities of all fermions nhel(1 : 4) in

the process. Remember that helicity and chirality are identical only for massless fermions because chirality is defined

as the eigenvalue of the projectors (11± γ5)/2, while helicity is defined as the projection of the spin onto the

momentum direction, i.e. as the left or right handedness. We give the exact definition of these two properties in

Section 1. The entries of nhel will be either +1 or −1. For each point in phase space and each helicity combination the

Madgraph subroutine MATRIX1 computes the matrix element using standard Helas routines.

· IXXXXX(p,m, nhel, nsf, F ) computes the wave function of a fermion with incoming fermion number, so either

an incoming fermion or an outgoing anti–fermion. As input it requires the four-momentum, the mass and the

helicity of this fermion. Moreover, nsf = +1 marks the incoming fermion u and nsf = −1 the outgoing

anti–fermion μ+, because by convention Madgraph defines its particles as u and μ−.

The fermion wave function output is a complex array F (1 : 6). Its first two entries are the left–chiral part of the

fermionic spinor, i.e. F (1 : 2) = (11− γ5)/2 u or F (1 : 2) = (11− γ5)/2 v for nsf = ±1. The entries F (3 : 4)
are the right–chiral spinor. These four numbers can directly be computed from the four-momentum if we know

the helicity. The four entries correspond to the size of one γ matrix, so we can compute the trace of the chain of

gamma matrices. Because for massless particles helicity and chirality are identical, our quarks and leptons will

only have finite entries F (1 : 2) for nhel = −1 and F (3 : 4) for nhel = +1.

The last two entries of F contain the four-momentum in the direction of the fermion flow, namely

F (5) = nsf(p(0) + ip(3)) and F (6) = nsf(p(1) + ip(2)).

· OXXXXX(p,m, nhel, nsf, F ) does the same for a fermion with outgoing fermion flow, i.e. our incoming ū and

our outgoing μ−. The left–chiral and right–chiral components now read F (1 : 2) = ū(11− γ5)/2 and

F (3 : 4) = ū(11 + γ5)/2, and similarly for the spinor v̄. The last two entries are F (5) = nsf(p(0) + ip(3)) and

F (6) = nsf(p(1) + ip(2)).

· FFV1 3(Fi, Fo, g,m,Γ, Jio) computes the (off–shell) current for the vector boson attached to the two external

fermions Fi and Fo. The coupling g(1 : 2) is a complex array with the interaction of the left–chiral and

right–chiral fermion in the upper and lower index. For a general Breit–Wigner propagator we need to know the

mass m and the width Γ of the intermediate vector boson. The output array Jio again has six components which

for the photon with momentum q are

Jio(μ+ 1) = − i

q2
FT
o γμ

(
g(1)

11− γ5
2

+ g(2)
11 + γ5
2

)
Fi μ = 0, 1, 2, 3

Jio(5) = −Fi(5) + Fo(5) ∼ −pi(0) + po(0) + i (−pi(3)− po(3))
Jio(6) = −Fi(6) + Fo(6) ∼ −pi(1) + po(1) + i (−pi(2) + po(2)) . (2.2)

The first four entries in Jio correspond to the index μ or the dimensionality of the Dirac matrices in this vector

current. The spinor index is contracted between FT
o and Fi.

As two more arguments Jio includes the four-momentum flowing through the gauge boson propagator. They

allow us to reconstruct qμ from the last two entries

qμ = (ReJio(5),ReJio(6), ImJio(6), ImJio(5)) . (2.3)

· FFV1 0(Fi, Fo, J, g, V ) computes the amplitude of a fermion–fermion–vector coupling using the two external

fermionic spinors Fi and Fo and an incoming vector current J which in our case comes from FFV1 3. Again,

the coupling g(1 : 2) is a complex array, so we numerically compute

FT
o /J

(
g(1)

11− γ5
2

+ g(2)
11 + γ5
2

)
Fi . (2.4)
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All spinor and Dirac indices of the three input arguments are contracted in the final result. Momentum

conservation is not enforced by FFV1 0, so we have to take care of it by hand.

Given the list above it is easy to follow how Madgraph computes the amplitude for uū→ γ∗ → μ+μ−. First, it calls

wave functions for all external particles and puts them into the array W (1 : 6, 1 : 4). The vectors W (∗, 1) and

W (∗, 3) correspond to Fi(u) and Fi(μ
+), while W (∗, 2) and W (∗, 4) mean Fo(ū and Fo(μ

−).

The first vertex we evaluate is the incoming quark–photon vertex. Given the wave functions Fi =W (∗, 1) and

Fo =W (∗, 2) FFV1 3 computes the vector current for the massless photon in the s-channel. Not much changes if we

instead choose a massive Z boson, except for the arguments m and Γ in the FFV1 3 call. Its output is the photon

current Jio ≡W (∗, 5).
The last step combines this current with the two outgoing muons coupling to the photon. Since this number gives the

final amplitude, it should return a complex number, not an array. Madgraph calls FFV1 0 with Fi =W (∗, 3) and

Fo =W (∗, 4), combined with the photon current J =W (∗, 5). The result AMP is copied into JAMP without an

additional sign which could have come from the relative ordering of external fermions in different Feynman diagrams

contributing to the same process.

The only remaining sum left to compute before we square JAMP is the color structure, which in our simple case

means one color structure with a color factor Nc = 3.

As an added bonus Madgraph produces a file with all Feynman diagrams in which the numbering of the external

particles corresponds to the second argument of W and the numbering of the Feynman diagrams corresponds to the

argument of AMP. This helps us identify intermediate results W , each of which is only computed once, even if is

appears several times in the different Feynman diagrams.

As mentioned above, to calculate the transition amplitude Madgraph requires all masses and couplings. They are

transferred through common blocks in the file coupl.inc and computed elsewhere. In general, Madgraph uses unitary

gauge for all vector bosons, because in the helicity amplitude approach it is easy to accommodate complicated tensors,

in exchange for a large number of Feynman diagrams.

The function MATRIX1 described above is not yet the full story. When we squareM symbolically we need to sum

over the spins of the outgoing states to transform a spinor product of the kind uū into the residue or numerator of a

fermion propagator. To obtain the full transition amplitude numerically we correspondingly sum over all

helicity combinations of the external fermions, in our case 24 = 16 combinations.

SUBROUTINE SMATRIX1(P,ANS)
C
C Generated by Madgraph 5
C
C Returns amplitude squared summed/avg over colors
C and helicities for the point in phase space P(0:3,NEXTERNAL)
C
C Process: u u˜ > mu+ mu- / z
C

INTEGER NCOMB, NGRAPHS, NDIAGS, THEL
PARAMETER (NCOMB=16, NGRAPHS=1, NDIAGS=1, THEL=2*NCOMB)

REAL*8 P(0:3,NEXTERNAL)

INTEGER I,J,IDEN
INTEGER NHEL(NEXTERNAL,NCOMB),NTRY(2),ISHEL(2),JHEL(2)
INTEGER JC(NEXTERNAL),NGOOD(2), IGOOD(NCOMB,2)
REAL*8 T,MATRIX1
LOGICAL GOODHEL(NCOMB,2)

DATA NGOOD /0,0/
DATA ISHEL/0,0/
DATA GOODHEL/THEL*.FALSE./

DATA (NHEL(I, 1),I=1,4) /-1,-1,-1,-1/
DATA (NHEL(I, 2),I=1,4) /-1,-1,-1, 1/
DATA (NHEL(I, 3),I=1,4) /-1,-1, 1,-1/
DATA (NHEL(I, 4),I=1,4) /-1,-1, 1, 1/
DATA (NHEL(I, 5),I=1,4) /-1, 1,-1,-1/
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DATA (NHEL(I, 6),I=1,4) /-1, 1,-1, 1/
DATA (NHEL(I, 7),I=1,4) /-1, 1, 1,-1/
DATA (NHEL(I, 8),I=1,4) /-1, 1, 1, 1/
DATA (NHEL(I, 9),I=1,4) / 1,-1,-1,-1/
DATA (NHEL(I, 10),I=1,4) / 1,-1,-1, 1/
DATA (NHEL(I, 11),I=1,4) / 1,-1, 1,-1/
DATA (NHEL(I, 12),I=1,4) / 1,-1, 1, 1/
DATA (NHEL(I, 13),I=1,4) / 1, 1,-1,-1/
DATA (NHEL(I, 14),I=1,4) / 1, 1,-1, 1/
DATA (NHEL(I, 15),I=1,4) / 1, 1, 1,-1/
DATA (NHEL(I, 16),I=1,4) / 1, 1, 1, 1/
DATA IDEN/36/

DO I=1,NEXTERNAL
JC(I) = +1

ENDDO

DO I=1,NCOMB
IF (GOODHEL(I,IMIRROR) .OR. NTRY(IMIRROR).LE.MAXTRIES) THEN

T = MATRIX1(P ,NHEL(1,I),JC(1))
ANS = ANS+T

ENDIF
ENDDO

ANS = ANS/DBLE(IDEN)
END

The important part of this subroutine is the list of possible helicity combinations stored in the array nhel(1 : 4, 1 : 16).
Adding all different helicity combinations means a loop over the second argument and a call of MATRIX1 with the

respective helicity combination. Because of the naive helicity combinations many are not allowed the array GOODHEL
keeps track of valid combinations. After an initialization to all ‘false’ this array is only switched to ‘true’ if MATRIX1
returns a finite value, otherwise Madgraph does not waste time to compute the matrix element. At the very end, a

complete spin–color averaging factor is included as IDEN and in our case given by 2× 2×N2
c = 36.

Altogether, Madgraph provides us with the subroutine SMATRIX1 and the function MATRIX1 which together

compute |M|2 for each phase space point given as an external momentum configuration. This helicity method might

not seem particularly appealing for a simple (2→ 2) process, but it makes it possible to compute processes with many

particles in the final state and typically up to 10000 Feynman diagrams which we could never square symbolically, no

matter how many graduate students’ live times we throw in.
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