A few underlying concepts

Units in particle physics

When quoting particle masses, momenta and energies, Sl units are not
very practical. Instead we use GeV (MeV) as the base unit:

Mass GeV/c’ E=mc?

Momentum GeV/c

Energy GeV

Length (GeV/ic)! ——— 0.197 fm
Time (GeV/n)!' — 0.658-10 s
Cross section (GeV/ac)? —— 0.389-mb

0.389-107"cm?

hic =0.197GeV -fm
h=0.658GeV - -10*"s
(hc)’ = 0.389GeV?-mbarn  1bam=1b=10"m"




Natural units h=c =1 inaddition: &, = H#, =1

Simplification of formulae: E’ = p2 +m?

All components of a 4-vetor have the same dimension / unit.

All units can be now expressed in GeV. To calculate a result in Sl units,
need to multiply result with powers of #C, i, Or c
2 e’ 1
° = 1 (In Slunits: o = =
4z 137 dre,nc 137

)

Definitionof a: o =

E.q.: Lifetime of a particle .

To determine the lifetime of a particle the total decay widths I" (=sum of partial
decay widths I';) is calculated. The dimension of the decay widths is energy.
With /i = 1 the relation between lifetime and I" simplifies to:

Lifetime in units 1/GeV can be easily converted into seconds by

multiplying with # = 0.658GeV 10 **s
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Relativistic Kinematics

Special relativity:

Particles in particle physics are often relativistic: Need relativistic description of
the kinematics and a relativistic formulation of quantum mechanics.

4-vectors:
contravariant form: (X”):(X X', x>, x)=(t,X)=x (time, space)

<p,u):(p0 p p D ) (E,B)=p (energy, momentum)
covariant form: (Xﬂ): (x°,—x',—x%,—x*) = (t,—X)

(p,)=(p"-p',—p",—p") = (E,—P)

1
1% v . v _1
X,=9,X and x"=g"x, with g" =g, = »
metric tensor 1

Scalar product: ~ a-b=ab" =g, ab” ;
1



| orentz transformations: ? ¥

4
System X’ moves with speed_ﬁ relative to X: B
o (—
(B is the velocity in units of c)

; H
X
> >
- Z
x' =X t' y —By\(t
y'=y or using X' _ 1 X
7' = y(z - ft) 4-vectors y' 1 y
t'=y(t-pz) z') \-pr y )\z
\ J
|
Lorentz trf. of contravariant 4-vect: X = (A)f x"
. . _ A1 same form as
. ry\ _ 1
For the covariant form one finds: (xﬂ) = A (xﬂ) A but -y — +By

One can easily show that scalar products a b* are Lorentz invariant (AA‘1 =1)
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4-vect ivatives:
vector derivatives o O 0 0

0 (6 0 0O aj Lorentz OX OX 8y 5y

oG ot 8x’ay’8z Transformation 5 - azjg (@t jg
oz’ 0z' )oz \oz')ot
9 _ %jﬁ{ﬂ]ﬁ
ot’ ot' Joz \ot')ot
one finds:
o/ ot ¥y +By\( 01 ot i.e. the 4-derivative 0
, transforms like a covariant 5y~
010x _ 1 01 ox vector. Therefore
ol oy’ 1 010y 3 s A s
0/ o0Z' —I—,B]/ 14 0/ 0z 5Xﬂ:(5t’5x,§y’52j: H
i: 8,_ 0,—8,—8 = 0"
ox, \ot ox oy oz
o o F
0,0" = D’Alembert operator
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Scalar products of 4-momenta and kinematics.

Lorentz invariance of scalar products is very useful if the kinematics of
scattering or decay processes is discussed. One can change to the most
appropriate coordinate system (most often CMS) to calculates the kinematic
quantities.

Example: 4-momentum p* of a particle with rest mass m

where the last equality can easily be
calculated in the particles rest frame
where E=m and p=1.

~ 2

pp*=E —p°=m
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Example: Lab-system e*, E, =2GeV 5 > 5 e, E, =8GeV
1 2

=% =%

with P, =—p,

E
El* — E; — CzMS

Kinematics in CMS: > <
pl ’ El p2’ E2

(pf+p)) =(E,+E,.p, +p,) =(p™ +py* Y =(E +E,,p, +p;)
J

l
| _ N \ J
=(E+E,)" =(B +B,) '
if electron mass is neglected |ﬁ,| =E, — (E1 + E;‘,O)2 =E., s

= 2487 ~(8-2)" |GeV’

=64 GeV’ Eoys =8GeV

=4GeV
73

— % — %
Pi| = |P




Example: Particle decay and invariant mass

—+

T

2

m: =p =(pt) =(p +p4%) AP, +p..)

0 —
K/v' i ‘ | ’ | ! |
Rest frame of Laboratory frame

mother particle K

Using the 4-momenta of the two pions one
can thus calculate the mass of the kaon!
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Mandelstam variables

Cross sections and other Lorentz invariant observables are often
expressed in an Lorentz invariant form using scalar products of
4-momenta: Mandelstam variables (square of 4-momenta)

1 3 S:(p1+p2)2:(p3+p4)2
t:(pl _p3)2 :(pz _p4)2
) 4 u:(p1_p4)2:(p2_p3)2

S+t+u=m +m; +m; +m;

. Pa
Meaning of s, t, u . - P, P Z
becomes clear if you g q For identical
look at the g2 of different , 7 , B, - , ) particles
. 2 - 4
scattering processes:
2 a2 2
q° =S5=Egys q =t q =u
s-channel t-channel u-channel
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Non-relativistic perturbation theory

Transition amplitude in quantum mechanics: V (x) small perturbation

Hamilton-Operator:

) ) e p?
H e H() - Hnrur = 2
m

+ V(F)

~n

|i>, |f> are solutions of the unperturbed free particle Hamiltonian H

7 E.
e3. = = . =, 7
Y; = N exp(ik;@ — iw;t) with k; = %7 and wW; = —=

h

N = normalization

Transition amplitude (describing the transition probability):

Ali = f) = Agi = (f|Hwwli) = / U3V (F)id "
Considering higher orders: \_./

n)
A= Asi+ Y Ao A+
n#i, f

Ei—En—}-iE nz
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Fermi’s Golden Rule

Transition rate from initial state |i>to final state |f>

. 2
Wi — 2m |.Afi| /)(Ef)

: : . dn
With  p(Ef) density of final states at energy E;: p(E;) = 9E
E,=E,
dn _rdn Density of states which fulfill
Where d_EEf—E, ) d_E5(E’ - E)dE energy conservation: E; = E,

We therefore can rewrite the “golden rule”:

0y =27 || A, 6(E, - E)dn

What is dn or alternatively p ? 27



Density p of final-states with energy E;

State density for a free particle in a cubic box with V=L3

Assuming periodic boundary conditions one finds for one dimension (x):

27
|n 1-D: kx :T°n, n:1,2,3...
Wave number: 27 dn L L
dk, = dp, == —dn dp. 2z (_ 27zh}
L’ 4
In 3 dimension: dn = ~d’p = -d’p _,an_ 4 p? :
(27) (27) p (27)
dn dn dp
E)="0| =—"C
thus p(E;) JE|. ~dpdE
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N-particle state density (phase space factor): Only N-1 momenta /
particles independent

dnpy L 3, 13 3 4
PN = —r with dny = 223D - d°prd®pa - - - dPpN_1
(W |
d / Y-l :
oy(E) = T3 = 230 1) sz 4> p1d p2---d°pN

Normalization volume d3 i
V often set to 1. = ( ( sz) H )l
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Lorentz invariance:

Above, neither phase space factor nor transition amplitude are Lorentz invariant.

For the amplitude the wave-functions are usually normalized to 1 particle in
the normalization volume. Instead, to make the amplitude Lorentz invariant,
one normalizes to 2E particles. For a process a+b—1+2 one finds the
Lorentz invariant transition amplitude (matrix element):

My = <t’-’;’¢'{, }H WWwW

u‘-i'l.!"2> = (2E, - 2Ey - 2E; - 2E5)'/? Ari

Lorentz invariant Phase space:
In the same way one needs to replace d3p by d3p/2E to make the phase
space factor Lorentz invariant.
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Particle decay

In the following we discuss the two-body decay a — 1 +2 in a Lorentz invariant
formulation (in lab frame, particle a is in rest).

The partial decay width (decay rate) I'(a—1+2) for
the given process is given by the transition rate o;. ¢, = 27;“/4,, |2 S(E, - E)dn
Using the non-invariant expressions one finds:

Bp1 d3po
(2m)3 (27)3

I'a—=14+2) =ws = (2m) [|A z| )(E, — E1 — Eg)o (Pa — P1 — P2)

Use Lorentz invariant transition amplitude:

d3pr d3po

= 5(E,—E,—E A

2E 1= E2)8%(a — i ’)2)(2r)32E1 (27)32E;
I
N3 Lorentz invariant
_ Bp; orentz invarian
For N particles: dLISP =
p ¢ }:[1 (27)32E, phase space dLISP
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If there is more than one decay channel of particle a: I'= Z L

I'; - 1
Branching ratio: BR; = T lifetime: 7 = T I can be calculated.

Coming back to the 2-body decay of particle a in rest:

d3p d3po
27)32E; (2m)32E,

(27)4 2 < 3o = o
- fil“0(Ea — By — E2)d°(pa — pi —Pz)(

T r

5 =0, b =B
Mass m, Mass m, P =P

d3p1 d3ps

¢ 2F, 2F5

flez| O(ma E1 EQ) (])1 —I—pg)

™2my

I
/ |Mfi|2 4E1E20(ma — By — Ey)dpy

2.
8T4mg P

87r2ma /|Mf2| ) (ma \/mi—p? —/m3 — pl) 15 E dp1dy
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With some calculation....

D
r=_*1 2/|Mﬁ|2ds21

B 32m2m?2

1 —
V[m2 — (my 4+ m2)?] [m2 — (m1 — ma)?]

with PL=o

1
For equal particles 1=2: P1 = 5\/’"3 — 4m7

Decay width (rate) is proportional to |M¢|? (as expected) and
the phase space dependence results into a proportionality to p;,
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Cross section

Cross section = Incoming Scattering rate
. , particle flux / N
Scattering rate per target particle > S
incident flux —> target particles b,
¢a =n,v, density n,
o = N d 't/ locit
ensity n,, velocity v,
¢aNb g g
Scattering rate for scattering volume V: N s 1

Ng=n_(v,+v,)-nV o N, v, Ava
N —> %
o = ith ¢, =n_(v, +Vv
iV with ¢ ( b) /

With appropriate normalization of wave
function n, =n, =1/V o =
One can express the cross section through
the transition rate (here use V=1):

i

(v, +Vv,) - (v, +Vv,)
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Using Fermi’s Golden Rule and the Lorentz invariant form of transition amplitude

(2m)"
Vg + Up

Bpr Bpo
(27)3 (27)3

g —

/ A2 5(Ea + Es — E1 — E2)0(a + b — Pi52)

l use Lorentz invariant transition amplitude and phase space

(2m) 2 d3py Ppoy

) / |Mfi|2 0(Eaq + Ep — E1 — E2)0(Pa + Py — P1P2)

 4EeBifea + o 2E; 2E;
‘ l
[
F = 4E.Ep(va + vp) . i
- o Using v = g =
= 4 (Ea|pb| + Eb|pal) =

b=

Calculating F2 one can show that F can F—=14 [(‘pa 'Pb)2 _ ,mzmz]
be written in a Lorentz invariant form: “

In the CMS frame:
p.=-p,=p, und E, +E, =Js —— F =4p/s
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Cross section im CMS:

1 d3 21 (13])2

- ) E E
7= G | MrPOWE - B - B ENEE

:51 = _ﬁz = ﬁf
Pf /
’t d
7= 6471'2 S pi /'Mf I i
Differential cross section:
do B 1

i
dQs 6472 s p; IMM
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Example: e'e —> uu e—» e
e" H

The derivation of the Feynman rules and the calculation of the above process
will be the topic of the first theory block. Here we just use the result.

If one uses unpolarized electron/positron beams one should average over the
helicity states of the incoming electrons. Moreover, the muon polarization is in
general not observed. For the cross section one needs to add all possible
muon polarization states. The leads to an “average matrix element”

$2 — u?
52

3 _ o 4 (P -p3)% + (p1 - pa)*
IMgi|” = 2e 5
(p1-p2)
| )

[

if one ignores the fermion masses

= 2¢* = e* (1 + cosby)

do 1 pr g4 a? At
—_— 1 ; .”' H —_— ]. : -7‘ 9 — .
dQdy 6472 s p; =15 eostp) 4.5'( +oosby) = o= %
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