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asic Coordinates

Time: Friday 11:15-13:00

Location: INF 226 1.106 (K4) Glassbox

Contacts: Sebastian Dittmeier, Christoph Langenbruch, Klaus Reygers
First date: Friday 17.10. 11:15: Introduction, discussion of topics
[Seminar homepage]

[HeiCO-Info]

[Registration]

This seminar introduces machine learning techniques as well as classical
algorithms, and explores their applications in contemporary particle physics
experiments such as ATLAS, ALICE, CMS, and LHCb. Prior experience
with machine learning is helpful but not required.
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https://uebungen.physik.uni-heidelberg.de/vorlesung/20252/2100
https://heico.uni-heidelberg.de/heiCO/wbLv.wbShowLVDetail?pStpSpNr=391921
https://heico.uni-heidelberg.de/heiCO/ee/rest/pages/slc.tm.cp/course-registration/391921

*) Basic Coordinates I

Explore specific application of modern machine learning methods and
algorithms in particle physics

Choose topic, starting point of relevant references will be provided
Discussion with supervisor after first study of literature

Prepare 1 hour presentation (45 minutes + 15 minutes discussion)
Possible practice talk with supervisor

Presentation in seminar

Writeup (4-8 A4 pages) at end of semester
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Bayesian Parameter Estimation

Graph Neural Networks for Track Reconstruction

Graph Neural Networks for Full Event Reconstruction

Particle Tracking with the Kalman Filter

Anomaly Detection

Fast Machine Learning for Triggering and Data Acquisition

Uncertainty Quantification in ML Predictions

Particle Identification with Neural Networks

Generative Models for Detector Simulation

Symbolic regression
Jet tagging with Transformers
Quark flavour tagging with deep NNs
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Upgrade II: ~ 40 pp collisions/event™™

Current tracking algorithms scale ~ quadratically with # hits
GNNs scale approx. linearly with # hits [EPJC 81 (2021) 876]
Strong incentive to leverage ML algorithms for track reconstruction

ETX4VELO [arxiv:2406.12869] uses Exa.TrkX approach to reconstruct
tracks in LHCb Vertex Detector
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https://arxiv.org/abs/2103.06995
https://arxiv.org/abs/2406.12869

Graph Neural Networks for Track reconstruction

Current tracking algorithms scale ~ quadratically with # hits
GNNs scale approx. linearly with # hits [EPJC 81 (2021) 876]
Strong incentive to leverage ML algorithms for track reconstruction

ETXA4AVELO [arXiv:2406.12869] uses Exa.TrkX approach to reconstruct
tracks in LHCb Vertex Detector
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https://arxiv.org/abs/2103.06995
https://arxiv.org/abs/2406.12869
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Deep-learning Full Event Interpretation (DFEI) [CSBS 7 (2023) 12]
prototype to classify and reconstruct full heavy flavour decay chain
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Reconstruct Filter

Alternative to current approach of OR between trigger lines
Could reduce event size in Upgrade Il by only saving relevant particles

Similar approach to FEI algorithm at Belle Il which operates in cleaner
environment [CSBS 3 (2019) 6]

4 SD, CL, KR (Heidelberg University), 24.04.2025 ML in Particle Physics


https://arxiv.org/abs/2304.08610
https://arxiv.org/abs/1807.08680

Blue: reconstructed ancestors.
Green: particles from a b-hadron
Red: particles from the rest of the event
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Based on 3 sequential GNN modules

Node pruning:

Remove particles not from b-hadron
Edge pruning:

Remove edges between particles not
from the same b-ancestor

Lowest common ancestor inference:
Reconstruct intermed. particles

Trained on custom simplified
simulation
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nomaly detection

Anomaly detection spots outliers in a given collection of data

No NP signal at LHC so far, maybe not looking at right places?
Design searches with minimal assumptions (model-independent) for
anomalous events

Several ML-based approaches:
Classification w/o labels [JHEP 10 (2017) 174] + Bump hunting [PRD 99, 014038]
Autoencoders [SciPost Phys. 6, 030 (2019), .. .
LHC Olympics 2020: Challenge for Anomaly detection
[arXiv:2101.08320]
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https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1902.02634
https://arxiv.org/abs/1808.08979
https://arxiv.org/abs/2101.08320
https://arxiv.org/abs/2101.08320
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ML techniques can identify potential signal events with high efficiency

[JINST 8 P02013] [JPCS 664 082025] [JINST 14 (2019) P04013]

Need to be efficient, fast, robust

Monotonic Lipschitz NNs can address these requirements

[ML:ST 4 035020] [arXiv:2312.14265]
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https://arxiv.org/abs/1210.6861
https://arxiv.org/abs/1510.00572
https://arxiv.org/abs/1812.10790
https://arxiv.org/abs/2112.00038
https://arxiv.org/abs/2312.14265
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Lipschitz-constrained NNs also used in particle identification in the HLT1

Large improvement compared to conventional algo. [LHCB-FIGURE-2024-003]
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https://cds.cern.ch/record/2897528
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Fast simulation (NF) [2023 JINST 18 P10017] [L. Weng]

MC simulation can be extremely expensive, in particular shower simulation
e.g. repeated « emission (Bremsstrahlung) and v — eTe™ pair production

Employ generative models for fast simulation of particle showers

[CaloChallenge]| to trigger development and evaluate performance
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https://arxiv.org/abs/2302.11594
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://calochallenge.github.io/homepage/
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MC simulation can be extremely expensive, in particular shower simulation
e.g. repeated « emission (Bremsstrahlung) and v — e™e™ pair production

Employ generative models for fast simulation of particle showers
[CaloChallenge]| to trigger development and evaluate performance

Some tradeoff between accuracy and timing

SD, CL, KR (Heidelberg University), 24.04.2025 ML in Particle Physics


https://indico.cern.ch/event/1275551/contributions/5694771/
https://calochallenge.github.io/homepage/
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Classically: Identify one specific tagging particle, use BDT to predict mistag

ML in Particle Physics


https://arxiv.org/abs/2404.14145
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Classically: Identify one specific tagging particle, use BDT to predict mistag

Inclusive Tagger: DeepSet NN considering the full event [arXiv:2404.14145]

Tagging power higher than combination of exclusive taggers on simulation

Promising performance, but needs to be validated/calibrated on data
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https://arxiv.org/abs/2404.14145
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