S Partons and DGLAP equation

During our introduction to QCD and the running coupling we focused on the ultraviolet or high-energy behavior of
the theory and the running coupling relating subtracted divergences to resummed logarithms. In this section we will
follow a similar approach to infrared divergences, where we will find that collinear divergences lead to the DGLAP
equations for parton densities, which resum collinear logarithms.

5.1 Incoming partons

To predict for instance the Drell-Yan process at a hadron collider, we need to introduce parton distribution functions,
describing the probability of finding a collinear parton with momentum fraction x in a proton. A pdf is not an
observable, only a distribution in the mathematical sense: it has to produce reasonable results when we integrate it
together with a test function. Different parton densities have very different behavior — for the valence quarks (uud)
they peak (quite a bit) below & < 1/3, while the gluon pdf is small at 2z ~ 1 and grows very rapidly towards small z.
For some typical part of the relevant parameter space (z = 1073 - -- 10~1) the gluon density roughly scales like
fg(x) o< z72. Towards smaller = values it becomes even steeper.

While we cannot compute parton distribution functions f; () as a function of the momentum fraction x there are a
few predictions we can make based on symmetries and properties of the hadrons, leading to sum rules:

1. The parton distributions in an antiproton are linked to those inside a proton through the CP-symmetry, which is
exact for QCD. Therefore,

fi(z) = fa() (@) = fy(2) fi@) = fo(x) . 5.1

2. If the proton consists of three valence quarks uud, plus quantum fluctuations from the vacuum which can either
involve gluons or quark—antiquark pairs, the contribution from the sea quarks has to be symmetric in quarks and
antiquarks. The expectation values for the signed numbers of up and down quarks inside a proton have to fulfill

(V) = / dz (fulz) — falz) =2 (N2 = / dr (fa@) ~ fi@) =1.  (G2)

3. The total momentum of the proton has to consist of sum of all parton momenta. We can write this as the
expectation value

<Zx¢> _ /01 dr z (Zq: folx) +;fq(x) —l—fg(x)> =1. (5.3)

What makes this prediction interesting is that we can compute the same sum only taking into account the
measured quark and antiquark parton densities. We find

1
/0 dz x (Z folz) + qu(x)> e % . (5.4)

Half of the proton momentum is then carried by gluons.

With this pdf we can compute a hadronic cross section from its partonic counterpart,

(5.5)

1 o1
Utot:/o diCl/O dxs %:fi(xl)fj($2) Gij(x1225)

where i, j are the incoming partons with the momentum factions z; ;. The partonic energy of the scattering process is
s = w1225 with the LHC proton energy of v/.S = 13.6 TeV. The partonic cross section & includes all the necessary 6
and J functions for energy—momentum conservation. When we express a general n—particle cross section ¢ including
the phase space integration, the x; integrations and the phase space integrations can of course be interchanged, but
Jacobians will make life hard.
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5.2 Infrared divergences

Let us look at the radiation of additional partons in the Drell-Yan process. We can start for example by computing the
cross section for the partonic process

Q@ — Zg . (5.6)

This partonic process involves renormalization of ultraviolet divergences as well as loop diagrams which we have to
include before we can say anything reasonable, i.e. ultraviolet and infrared finite. To make life easier we study
collinear infrared divergences for the crossed process

It should behave like any other (2 — 2) jet radiation process, except that it has a different incoming state than the
leading order Drell-Yan process and hence does not involve virtual corrections. This means we do not have to deal
with ultraviolet divergences and renormalization, and can concentrate on parton or jet radiation from the initial state.

The amplitude for this (2 — 2) process is — modulo charges and averaging factors, but including all Mandelstam
variables
t s2=2m%(s+t—m%)

IMP> ~ =2 — . (5.7)

S st

The Mandelstam variable ¢ for one massless final—state particle can be expressed in terms of the rescaled emission
angle

t=—-s(l1—1)y with Y= %m € [0, 1] and T= % <1. (5.8)
Similarly, we obtain u = —s(1 — 7)(1 — y), so as a first check we can confirm that t + u = —s(1 — 7) = —s + m%.
The collinear limit when the gluon splits in the beam direction is given by
y—0 & t—0 & u=—s+my <0
|M|2 N 2 — 2sm22 + Qm% 1 n O(yo) . (5.9)

s(s—my) y

This expression is divergent for collinear gluon radiation or gluon splitting, i.e. for small angles y. We can translate
this 1/y divergence for example into the transverse momentum of the gluon or Z

spr = tu=s*(1—7)2 y(1 —y) = (s —m%)’y + O(y°) (5.10)
In terms of pp, the collinear limit our matrix element squared in Eq.(5.9) becomes
s2 —2sm% +2m% s —m%

-2 2
S br

IM[* ~ +0}) . (.11

The matrix element for the tree level process qg — Zq has a leading divergence proportional to 1/p2.. To compute the
total cross section for this process we need to integrate the matrix element over the two-particle phase space.
Approximating the matrix element as C’ /y or C'/p3. this gives us

m; max max max

Yy o C/ P C DT C PT 1 pmax
/ dy— :/_ dpy— = 2/_ dpr pr — :20/_ dpr— = 2C log —— (5.12)
ymin Y PE" Pt Py br Py pr br
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The form C'/p2 for the matrix element is of course only valid in the collinear limit; in the non—collinear phase space
C' is not a constant.

For this divergence we can follow the same strategy as for the ultraviolet divergence. First, we regularize it for
example using dimensional regularization. Then, we find a well-defined way to get rid of it. Dimensional
regularization means writing the two-particle phase space in n = 4 — 2¢ dimensions. Just for reference, the complete
formula for the y-distribution reads

—2+4¢€ 2 € € _ 1—2e 2 € 2
 do _ (4 (Ng> Gk SR VI <“§> _MP (5.13)
dy  T(l—¢) \mz ye(l—y)e mz ) y(l —y)*

In the second step we only keep the factors we are interested in. The additional factor 1/y¢ regularizes the integral at
y — 0, as long as € < 0 by slightly increasing the suppression of the integrand in the infrared regime. This means that
for infrared divergences we choose n = 4 + 2|e| space~time dimensions. After integrating the leading collinear
divergence 1/y' T we are left with a pole 1/(—¢).

What is important to notice is again the appearance of a scale ;3¢ with the n-dimensional integral. Now it arises from
an infrared regularization and is referred to as factorization scale. The actual removal of the infrared pole —
corresponding to the renormalization in the ultraviolet case — is called mass factorization and works exactly the same
way as renormalizing a parameter: in a well-defined scheme we subtract the pole from the fixed-order matrix element
squared.

5.3 Parton splitting

Infrared divergences occur for massless particles in the initial or final state, so we need to go through all ways
incoming or outgoing gluons and quark can split into each other. The factorized phase space is common to all
different channels. The first and at the LHC most important case is the splitting of one gluon into two,

9(pa) = g(ps) + g(pc)  with  p2 > pi.p: . (5.14)

The two daughter gluons are close to mass shell while the mother has to have a finite positive invariant mass. We
assign the direction of the momenta as p, = —pp — p. and describe the kinematics of this approximately collinear
process in terms of the energy fractions z and 1 — z defined as

E E.
s il =1- 12 7= (p = o) = 2mipe) = 221~ 2)(1 — cos ) = =(1 — 2) EZ6* + O(6")
1 p2
0=0,+60,~ — e , 1
& b+ B\ 2(1—2) (5.15)

in the collinear limit and in terms of the opening angle § between p;, and .. Using this phase space parameterization
we divide an (n + 1)-particle process into an n-particle process and a splitting process of quarks and gluons. First, this
requires us to split the (n + 1)-particle phase space alone into an n-particle phase space and the (collinear) splitting,

o B PR A, g B
T 2@n)3 By 202n)3E] T 2(2m)3|Ea| 2(27)3|E| [ By
— gp. Ipeadprprdd 1
T 202m)3|E.| 2
2
— 4o, Pes®p1do 1 (5.16)

" 4(2m)3|E.| =z

We can separate the (n + 1)-particle space into an n-particle phase space and a (1 — 2) splitting phase space without
any approximation.
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Our next task is to translate p. 3 and p% into z and p2 # 0. This can be done if we assume approximately collinear
collinear splittings, where we find that

dp. d
Pes _ %2 (14 00) and  dp = z(1— 2)dp? . (5.17)
|E.| 1—=z
This gives us the final result for the separated collinear phase space, assuming azimuthal symmetry in an addition step,
dzdp? do dz dp?
d®,11 = d®, ——2— (1 4+ O(0)) = d,, 2 (1+0(0) . 5.18

Adding the transition matrix elements to this factorization of the phase space we can write a full factorization in the
collinear approximation as
d071+1 = |-/\/ln+1|2 d(I)n+1
2
dp; dz
4(2m)?

= |-/\/ln+1|2 o, (1 + 0(9))

dp? dz
1672

205 5T
~ —> P(2) IM,|? d,

a

. - 2 2 _
assuming | |[M,,41]? =~ p’;s P(z) [M,[?
a

2
P g, % piyy (5.19)

p2 27

:U,n

For splitting incoming partons we replace p2 — t, the usual Mandelstam variable. We can show this assumed
factorization by constructing the appropriate splitting kernels P(z) for all quark and gluon configurations:

* First comes gluon splitting into two gluons. To compute its transition amplitude we need to write down all
gluon momenta and polarizations in a specific frame. We skip the derivation and just quote the result

— 242 N, z 1—2z
3_ 295 Ney 1_ P
Mo =20 o | 2 4s -+ 122 TR
292 5
= Pyyg(2) IMn|?
. z 1-=2
& Py g(z) =Ca [1 — + — +2(1 - z)] , (5.20)

using C'4 = N.. The splitting kernel is symmetric when we exchange the two gluons z and (1 — z). It diverges
if either gluon becomes soft. The notation P;._; ~ P;; is inspired by a matrix notation which we can use to
multiply the splitting matrix from the right with the incoming parton vector to get the final parton vector.

* A second kernel describes the splitting of a gluon into two quarks. Again, we omit the calculation and quote
Prg(z)=Tr[2+(1-2)% . (5.21)
It is symmetric under z <> (1 — z) because QCD does not distinguish between the outgoing quark and antiquark.

* The third splitting is gluon radiation off a quark line,

- 14 22
Py q(2) =CFp T . (5.22)
—z
* Just switching z <> (1 — z) we can read off the kernel for a quark splitting into the final-state gluon
A 1+ (1—2)2
Pyy(z) = OF% . (5.23)

Similar to ultraviolet divergences these splitting kernels are universal. They do not depend on the hard n-particle
matrix element as part of the full (n + 1)-particle process.
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Figure 1: Path of an incoming parton in the (x — t) plane. Because we define ¢ as a negative number its axis is labelled
l¢].

5.4 DGLAP equation

To describe successive splittings we start with a quark inside the proton with an energy fraction x, as it enters the
hadronic phase space integral. As this quark is confined inside the proton, it can only have small transverse
momentum, which means its four-momentum squared ¢, is negative and its absolute value |t| is small. For the
incoming partons which if on—shell have p? = 0 it gives the distance to the mass shell. Let us simplify our kinematic
argument by assuming that there exists only one splitting, namely successive gluon radiation off an incoming quark,
where the outgoing gluons are not relevant

(zo.to) (x1,t1) (T, tn)
nsy n

In that case each collinear gluon radiation will decrease the quark energy and increase its virtuality through recoil,
Tjr1 < Ty and |tj+1| = —tj_;,_l > —t]' = |tj| . (5.24)

We know what the successive splitting means in terms of splitting probabilities and can describe how the parton
density f(z, —t) evolves in the (x — t) plane as depicted in Figure 1. The starting point (¢, to) is, probabilistically,
given by the energy and kinds of parton and hadron. We then interpret each branching as a step downward in
x; — x;j11 and assign to a increased virtuality |¢;41| after the branching. The actual splitting path in the (x — t) plane
is made of discrete points. The probability of a splitting to occur is given by Eq.(5.19),

s - dt Qs =~ dt

2—; P(z) v dz = 2—; P, q(2) - dz . (5.25)
At the end of the path we will probe the evolved parton density at (x,,, t,, ), entering the hard scattering process and its
energy—momentum conservation.

To convert a partonic into a hadronic cross section, we probe the probability or the parton density f(x, —t) over an
infinitesimal square,

[‘ij z; + 555] and [|tj|, |t7| + 513} . (526)
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Using our (z, t) plane we can compute the flows into this square and out of this square, which together define the net
shift in f in the sense of a differential equation,

6fin - (Sfoul = 5f(I, 7t) . (5.27)

We compute the incoming and outgoing flows from the history of the (z, ¢) evolution. At this stage our picture
becomes a little subtle; the way we define the path between two splittings in Figure 1 it can enter and leave the square
either vertically or horizontally. Because we want to arrive at a differential equation in £ we choose the vertical drop,
such that the area the incoming and outgoing flows see is given by d¢. If we define a splitting as a vertical drop in z at
the target value ¢; 1, an incoming path hitting the square can come from any x-value above the square. Using this
convention and following the fat solid lines in Figure 1 the vertical flow into (and out of) the square (z, t) is
proportional to Jt as the size of the covered interval

P
Ofn(—t) = bt (O‘ ®f) (z, 1)
2mt
5t Ydz a, - x
=7 ) = 2 P (1)
Ot Ydz a, - T . , ,
=3 7 2 P(z)f <;, 7t> assuming f(z',—t) =0fora’ > 1. (5.28)

We use the definition of a convolution

o= [ ' derdaaf (a)g(w2) 6(z — wyaa) = / ) (j) -/ gy (x) glas) . (5.29)

o T1 Z2 €2

The outgoing flow we define as leaving the infinitesimal square vertically. Following the fat solid line in Figure 1 it is
also proportional to §t

asP(y)

ot Loay -
2 ) = oot [ a5 PG (5.30)

1
d four(—t) = 0t / dy
0
The y-integration is not a convolution, because we know the starting condition and integrate over all final
configurations. Combining Eq.(5.28) and Eq.(5.30) we can compute the change in the quark pdf as

50~ = 0 = 8o = | 01 TP () Ly 22 PG S -0
=3[ %5 reer ()
N 5}05(5_,;) - _1t) /ld & pa f (L) (5.31)

Strictly speaking, we require o to only depend on ¢ and introduce the so-defined plus subtraction

F(2)1 =F(z)—6(1 —=2) /01 dy F(y) or /0.1 dz % = /0.1 dz <1f(_z)z — 1f(_11> . (5.32)

For the second definition we choose F'(z) = 1/(1 — z), multiply it with an arbitrary test function f(z) and integrate
over z. The plus—subtracted integral is by definition finite in the soft limit z — 1, where some splitting kernels
diverge. The plus prescription is related to dimensional regularization, defined as

/1d 1 /1d 1 € L
Zz = z = —
0 (1—z)te 0 e e

0

- withe >0, (5.33)
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corresponding to 4 + 2e dimensions. We can relate the dimensionally regularized integral to the plus subtraction as

PG N L (O s (V) 1
/0 dZ (1 _Z)l—e _/0 dZ (1 ) +f(1)/ Z (1 _Z)l—e
- [(a: I8 s o) + 1
0 €

1—2
= /1 dz _JE) (14+0O(e)) + /) by definition
0 (1—2)+ €
s /0 &g f(zz))lfe - f(el) :/0 dz %(1+(9(e)) . (5.34)

The dimensionally regularized integral minus the pole, i.e. the finite part of the dimensionally regularized integral, is
the same as the plus—subtracted integral modulo terms of the order e. The difference between a dimensionally
regularized splitting kernel and a plus—subtracted splitting kernel manifests itself as terms proportional to 6(1 — z).
They represent contributions to a soft—radiation phase space integral.

To regularize our splitting kernel ﬁ’m_q in Eq.(5.22) we can define two subtraction schemes,
1+ 22 1 1+ 22 Pool+yr 1427 P14 22

TE) —a+a) S 75(172)/ dy Y STE +6(1*Z>/ dy —=
1—2z/, -2/, 1—-=2 1—y 1-=2 0 1—y

e o (52

fé(lfz)/o dyy 11:6(17,2)/0 dy(erl):gé(lfz). (5.35)

This means we can write the quark splitting kernel in two equivalent ways

. 1+ 22 _ 1+ 22 3

Going back to our differential equation, the infinitesimal Eq.(5.31) is the Dokshitzer—Gribov-Lipatov—Altarelli—Parisi
or DGLAP equation. For now it describes the virtuality or scale dependence of the quark parton density, and we need
to generalize is to quarks and gluons. For the quark density on the left hand side it is

dfg(x, —t) _ dfy(z dz s
dilog(—t) =t ZZ( t) Z/ > or Py j(z )f]( ) . (5.37)

Modifying Eq.(5.31) the relevant splittings on the right hand side are

ot Ydz oy dZ [
Ofq(z,—t) = [

- x
v ~ %Pqu(Z) Jfq <;7_t>+ , 2 Py Pog(z )fg( )
Lo
- [ 2 Pt it 0| (5.38)
0 s
Of the three terms the first and the third together define the plus—subtracted splitting kernel P,._,(z), just following

the argument above. The second term is a convolution proportional to the gluon pdf. Quarks can be produced in gluon
splitting but cannot vanish into it. Therefore, the second term in Eq.(5.38) includes P, 4, without a plus—regulator

Pyeg(2) = Py y(2) = TR [+ (1 - 2)7] . (5.39)

This kernel is indeed missing a soft-radiation divergence for z — 1.
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The second parton density we have to study is the gluon density. The incoming contribution to the infinitesimal square
is given by the sum of four splitting scenarios each leading to a gluon with virtuality —;;

=[5 [ (5. (5m0)) e (3 50 5 5]
A pron () (L E) G e

using Py g = Py in the first line and Py (1 — z) = Py 4(2) in the second. To leave the volume element in
(x,t)-space a gluon can either split into two gluons or radiate one of n s light-quark flavors. Combining the incoming
and outgoing flows we find

oy, 1) =2 Oldzz o= [2Bysloy (So-) + Brcal) (fu (5o-0) + fa (5. -1))]
7% Oldy;‘i [Pgw(yH”queg(y)} folz,—1) (5.41)

Unlike in the quark case these terms do not immediately correspond to regularizing the diagonal splitting kernel using
the plus prescription.

First, the contribution to  fi, proportional to f, or fz which is not matched by the outgoing flow. From the quark case
we already know how to deal with it. The corresponding splitting kernel does not need any regularization, so we define
5 1+ (1—2)?

Pyq(2) = Ppeg(z) = Cp—— . (5.42)

We see that the structure of the DGLAP equation implies that the two off-diagonal splitting kernels do not include any
plus prescription P;; = P; ;. We could have expected these kernels are finite in the soft limit, = — 1.

Next, we can compute the y-integral describing the gluon splitting into a quark pair directly,

1 1
— / dy &2 ng Py g(y) = s ny Tr / dy [1 -2y +2y°] using Eq.(5.39)
0 271' 271' 0
1
o 5 23
=—5-ns1r [y—y +]
2 3 0
2 ay
=350 Tr . (5.43)

Finally, the two terms proportional to the pure gluon splitting Py, in Eq.(5.41) require some work. The y-integral
from the outgoing flow has to consist of a finite term and a term we can use to define the plus prescription for Py, .
The integral gives

1 1 r
g~ Qg Y 1—y .
— | dy =P, =— dy |—— 4+ —Z +y(1 - Eq.(5.20
/0 Y5 Poea(y) 5 CA/O v, Ty +y( y)] using Eq.(5.20)
Lt
Qg 2y
=— 2 C d _“g 1—
5 A/O y _1_y+y( y)]
1 r 1
o 2(y—1) R / 2
——=C dy |2 4y(1—y)| - =C d
5 A/O N +y( y)} or O ) Wiy

1 1
as 2 as 1
dy [-2+y—y?] - 220, [ d
o /0 v [22+y-vl -5 A/O 1

[ 1 1 g 1 1
e O I U d
27TCA[ T3 3] or CA/O 12

I
|
|
2

a, 11 Qg ! 1
S R (5.44)
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The second term in this result is what we need to replace the first term in the splitting kernel of Eq.(5.20) proportional
to1/(1 — z) by 1/(1 — z)4. We can see this using f(z) = z and correspondingly f(1) = 1 in Eq.(5.32). The two
finite terms in Eq.(5.43) and Eq.(5.44) are included in the definition of I:’g<_g ad hoc. Because the regularized splitting
kernel appears in a convolution, the two finite terms require an explicit factor 6(1 — z). Collecting all of them we
arrive at

z 1-=2 11 2
Py g(2) =2C4 <(1 e + . +2(1— z)) + 3 Cad(l—2)— 3 " Tr 6(1 —2). (5.45)

This result concludes our computation of all four regularized splitting kernels.

Before discussing and solving the DGLAP equation, let us briefly recapitulate: for the full quark and gluon particle
content of QCD we have derived the DGLAP equation which describes a factorization scale dependence of the quark
and gluon parton densities. The universality of the splitting kernels is obvious from the way we derive them — no
information on the n-particle process ever enters the derivation.

The DGLAP equation is formulated in terms of four splitting kernels of gluons and quarks which are linked to the
splitting probabilities, but which for the DGLAP equation have to be regularized. With the help of a plus—subtraction
all kernels P, ;(z) become finite, including in the soft limit = — 1. However, splitting kernels are only regularized
when needed, so the finite off-diagonal quark—gluon and gluon—quark splittings are unchanged. This means the plus
prescription really acts as an infrared renormalization, moving universal infrared divergences into the definition of the
parton densities. The original collinear divergence has vanished as well.

The only approximation we make in the computation of the splitting kernels is that in the y-integrals the running
coupling «s does not depend on the momentum fraction. In its standard form and in terms of the factorization scale
u3. = —t the DGLAP equation reads

df; dz o, s
Pilzoir) ffgffF -3 / =2 P(e) i (Somr) = 5 2 Py @f) wpr)|. 649

5.5 Solving the DGLAP equation

While it is hard to solve the DGLAP equation in Eq.(5.46) in general, we can simplify our life by solving it for
eigenvalues in parton space. This gets rid of the sum over partons on the right hand side, and one such parton density
is the non—singlet parton density,

B =(fs—fa) - (5.47)

Since gluons cannot distinguish between quarks and antiquarks, the gluon contribution to their evolution cancels, at
least in the massless limit, at arbitrary loop order. The corresponding DGLAP equation with leading order splitting
kernels is

dfS(z, pr) _/1 dz

2% p Ns (2 . 5.48
leg,LL%‘ 2 o q<—q(z) fq (Z7I“LF) ( )

To solve it we need a transformation which simplifies a convolution, leading us to the Mellin transform. Starting from
a function f(x) of a real variable 2 we define the Mellin transform into moment space m

1 c+1i00 m
M([f](m) = ./0 drz™ ! f(x) flz) = i/ dm M , (5.49)

y m
27 Jo—ioo T

where for the back transformation we choose an arbitrary appropriate constant ¢ > 0, such that the integration contour
for the inverse transformation lies to the right of all singularities of the analytic continuation of M[f](m). The
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important property for us is that the Mellin transform of a convolution is the product of the two Mellin transforms,
which gives us the transformed DGLAP equation

AM[f3®](m, pr) Qg Ldz z\ ,
S =M e () @] o

;L; M[Pyq ® f};s}(m)
= 25 MIPyg)m)  MIEYYm, ) (550,

with the simple solution

2
M[fg‘s](m,up) = M[fgs](m,/z,F,o) exp <;; M([Pyq)(m)log —léF )
HEo

) 52 M[Pgeq](m)

= MU o) (‘F

2
PEo

5\ =v(m)
= M[f3%](m, pro) <”2F) , (5.51)
HE0
defining y(m) = M[P](m).

This solution still includes xr and as as two free parameters. To simplify this form we can include s (u%) in the
running of the DGLAP equation and identify the renormalization scale p of the strong coupling with the
factorization scale

HF = [R = [ (5.52)

Physically, this identification is clearly correct for all one-scale problems where we have no freedom to choose either
of the two scales. In the DGLAP equation it allows us to replace log u? by o as
d _ dlog a d 1 dag d d

= = — = —ayb . 5.53
dlog 2 dlogp? dlogas  ag dlogu? dlogag “s00 dlog ag (5-53)

The additional factor of s will cancel the factor a5 on the right hand side of the DGLAP equation Eq.(5.50)

dM[FNS)(m, i
o T i) ) MU Ym)
o (1
Mf](m, ) = M[f3P)(m, po) exp (—27;0 v(m) log aEZ%;)
= ML), o) (jﬁg%) . 5.5

Among other things, in this derivation we neglect that some splitting functions have singularities and therefore the
Mellin transform is not obviously well defined. Our convolution is not really a convolution either, because we cut it
off at QF etc; but the final structure in Eq.(5.54) really holds.

Instead of the non-singlet parton densities we find the same kind of solution in pure Yang—Mills theory, i.e. in QCD
without quarks. Looking at the different color factors in QCD this limit can also be derived as the leading terms in N..
In that case there also exists only one splitting kernel defining an anomalous dimension . We find in complete
analogy to Eq.(5.54)

~(m)

MIf,)m, 1) = MIfy)(m, o) (ZEZD ‘ (5.55)
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The solutions to the DGLAP equation are not completely determined, because it an integration constant in terms of
wo- The DGLAP equation does not determine parton densities, it only describes their evolution from one scale pp to
another, just like a renormalization group equation for the strong coupling.

Remembering how we arrive at the DGLAP equation we notice an analogy to the case of ultraviolet divergences and
the running coupling. We start from universal infrared divergences. We describe them in terms of splitting functions
which we regularize using the plus prescription. The DGLAP equation plays the role of a renormalization group
equation for example for the running coupling. It links parton densities evaluated at different scales p . In analogy to
the scaling logarithms considered in Section 4.7 we should test if we can point to a type of logarithm the DGLAP
equation resums by reorganizing our perturbative series of parton splitting.

5.6 Resumming collinear logarithms

In our discussion of the DGLAP equation and its solution we for instance encounter the splitting probability in the
exponent. To make sense of such a structure we remind ourselves that such ratios of as values to some power can
appear as a result of a resummed series. Such a series would need to include powers of (M [}5])" summed over n
which corresponds to a sum over splittings with a varying number of partons in the final state. Parton densities cannot
be formulated in terms of a fixed final state because they include effects from any number of collinear partons
summed over the number of such partons. For the processes we can evaluate using parton densities fulfilling the

DGLAP equation this means that they always have the form

pp— T+ X where X includes any number of collinear jets. (5.56)

The same argument leads us towards the logarithms the running parton densities re-sum. To identify them we build a
physical model based on collinear splitting, but without using the DGLAP equation. We then solve it to see the
resulting structure of the solutions and compare it to the structure of the DGLAP solutions in Eq.(5.55).

We start from the basic equation defining the physical picture of parton splitting in Eq.(5.19). Only taking into account
gluons in pure Yang—Mills theory the starting point of our discussion was a factorization, schematically written as

dt as -
Ont1 = /dz7 o Py y(2)on . (5.57)

For a moment, we forget about the parton densities and assume that they are part of the hadronic cross section o,.

To treat initial state splittings, we need a definition of the virtuality ¢. If we remember that ¢ = p? < 0 we can
introduce a positive transverse momentum variable 2. such that

2 P> dt  dp? dp?
pr_ Pr L dt_dph iy

-t = - — = =
11—z 1-=z2 t  pa P

(5.58)

From the definition of pr in Eq.(??) we see that = is really the transverse three-momentum of of the parton pair after
splitting. The factorized form in Eq.(5.57) becomes a convolution in the collinear limit,

1 2 32
dz, T He dpT ,, o (113
0n+1(x,,uF):/ — Pyey (x> Jn(wn,uo)/ P Os(R) (5.59)
n s

=2
z9 N 2 Prpn 2
Because the splitting kernel is infrared divergent we cut off the convolution integral at . Similarly, the transverse
momentum integral is bounded by an infrared cutoff 1o and the physical external scale p . This is the range in which
an additional collinear radiation is included in o, 1.

For splitting the two integrals in Eq.(5.59) it is crucial that p is the only scale the matrix element o,, depends on. The
other integration variable, the transverse momentum, does not feature in o,, because collinear factorization is defined
in the limit p% — 0. All through the argument of this subsection we should keep in mind that we are looking for
assumptions which allow us to solve Eq.(5.59) and compare the result to the solution of the DGLAP equation. To
develop this physics picture of the DGLAP equation we make three assumptions:
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1. If pp is the global upper boundary of the transverse momentum integration for collinear splitting, we can apply

the recursion formula in Eq.(5.59) iteratively

o1 -1
dx., T dxr To
On+1(2, wr) N/ —— Pog (x ) / Tll Pyeyg <T1) o1(x1, po)
vy T x

n

Tog N
« /HF 4Pt aS(“R) / Pra O‘“ ) . (5.60)
o pT,n Ho T1

2. We identify the scale of the strong coupling «s; with the transverse momentum scale of the splitting,
1k = Pt - (5.61)

This way we can fully integrate cs/(27) and link the final result to the global boundary .

3. Finally, we assume strongly ordered splittings in the transverse momentum. If the ordering of the splitting is
fixed externally by the chain of momentum fractions x, this means

g < Py < Pro <o < ph (5.62)

Under these three assumptions the transverse momentum integrals in Eq.(5.60) become
PT,2 dﬁ%‘ 1 as(ﬁ%,l)

/“F Aptp s (Pr) /m AP s (PF2) / ,
o ]7%’,77, 271— o [7%,2 27T Mo ﬁ%,l 271—

_/NF dﬁ%}n 1 /PT,B dp%g 1 /PT2 de,l 1

- ) ) e ) —Q ) )

p p p

Ho Tn 27bo log PzT,n o T2 o5 b lo p Ho T,1 27bo log pg“?l
Q

QCD QCD

1 /HF dﬁ%n 1 /PT,a dp‘%’Q 1 /PT,z dﬁ%l 1 5.63)
(271'[)0)” J o ﬁ%’,n lo ﬁ%",n Ho 13%72 1 ]3%,2 Ho ﬁ%’,l 1 ﬁ%,l . '

2 2 2
AQCD AQCD AQCD

We can solve the individual integrals by switching variables, for example in the last integral

loglog;prgnyz//\2 2 dlax
P i (az) = dloglog x

T2 52 1
/ ZT’l —— = / dloglog 2T’1 with — =
Ko pT,l 1 pT 1 log log 2 /A2 AQCD (CLJ/) 1Og x

Adeo

log I3QT,2 / A(2)CD

— (5.64)
log g / AQCD

This gives us for the chain of transverse momentum integrals, shifted to get rid of the lower boundaries,

log p% 2/AQCD /pT’EpT’Z log % I/AQCD
log #0/ AQCD 1 08 o / AQCD

/pT’Zsz’3 o 10gﬁ%"2/A6CD o 1ngT,z/AQCD
log Mo/ AQCD log M(z)/ A(2)CD

= log

PT n=pF log 92, /A2 PT.2=PT,3
/ dlog 5P Tn/ Aaeo / dlog
log :LLO/AQCD
T, n—ﬂF logﬁn/Aé(:D
log :“()/AQCD
2
log ﬁQT J/A(QQCD )

g
log /LO/ AQCD log /Lo/ AQCD

PT,n=HF

lo
dlog

/m = bgﬁ%n/f\éw...loo
2

n—1

—_— . e e g
log g /Agep \2 n—1 log [J,O/AQCD

1 log i3 /A3ep ) 1 2)\"
L (1og o8rr/Agen | _ L <1og as(“g)> . (5.65)
log 15/ Adcp as(pg)

n!
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This is the final result for the chain of transverse momentum integrals in Eq.(5.60). After integrating over the
transverse momenta, the strong coupling is evaluated at yup = pp. This leaves us with the convolution integrals from
Eq.(5.59),

1 1 ozs(,u%) " /1 dz,, z /1 dxy To
(1) ~— ] “np o (Z) o Erp (22 o). (5.66
Ont1(z, 1) _ <27rb0 og as?)) | wn oo\ G e\ g o1(21, pio) (5.66)

As before, we Mellin-transform the equation into moment space

dl’n xT dIl Zo
> M |:/1.0Inpg<_g (%) ./:‘z[)'l'lpgﬁg <1‘1> 01(171,#0)] (WL)

1 1 o, (2
M[O—n-i-l](mau)'\'n!( log (ko)

27Tb0 045(:“2)
L2 "
:L‘ (27r1b01 Zﬁ(23)> ¥(m)" Mlor)(m, po) using () = M[P](m)

" nl

1(1 ) as(pd

b og ) fy(m)) Mo1](m, o) - (5.67)

Finally, we sum the production cross sections for up to n collinear jets,

> Miousslm. i =Miol(m i) 3 3 (55 105 28 o))

!l \2mby  © as(p?)

=MJo1](m ex 2m) o (i)
—M[ 1]( aMO) p(QTrbo lgas(NQ))

n

2\ Zrho
=M[o1](m, po) (aS(HO)> : (5.68)

as(p?)

This is the same structure as the DGLAP equation’s solution in Eq.(5.55). It means that we can understand the physics
of the DGLAP equation using our model calculation of a successive gluon emission, including the generically variable
number of collinear jets in the form of pp — u™p~ + X, as shown in Eq.(5.56). On the left hand side of Eq.(5.68) we
have the sum over any number of additional collinear partons; on the right hand side we see fixed order Drell-Yan
production without any additional partons, but with an exponentiated correction factor. Comparing this to the running
parton densities we can draw the analogy that any process computed with a scale dependent parton density where the
scale dependence is governed by the DGLAP equation includes any number of collinear partons.

We can also identify the logarithms which are resummed by scale dependent parton densities. Going back to Eq.(5.12)
reminds us that we start from the divergent collinear logarithms log p7** /pT'" arising from the collinear phase space

renormalization scale yr factorization scale

source ultraviolet divergence collinear (infrared) divergence
poles cancelled counter terms parton densities

(renormalization) (mass factorization)
summation resum self energy bubbles  resum parton splittings
parameter running coupling cvs (%)  running parton density f;(z, pur)
evolution RGE for o DGLAP equation
large scales decrease of oo increase of o for gluons/sea quarks
theory background | renormalizability factorization

proven for gauge theories  proven all orders for DIS

proven order-by-order DY...

Table 2: Comparison of renormalization and factorization scales appearing in LHC cross sections.

54



integration. In our model for successive splitting we replace the upper boundary by . The collinear logarithm of
successive initial—-state parton splitting diverges for ;19 — 0, but it gets absorbed into the parton densities and
determines the structure of the DGLAP equation and its solutions. The upper boundary pr tells us to what extent we
assume incoming quarks and gluons to be a coupled system of splitting partons and what the maximum momentum
scale of these splittings is. Transverse momenta pr > pp generated by hard parton splitting are not covered by the
DGLAP equation and hence not a feature of the incoming partons anymore. They belong to the hard process and have
to be consistently simulated. While this scale can be chosen freely we have to make sure that it does not become too
large, because at some point the collinear approximation C' =~ constant in Eq.(5.12) ceases to hold.
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