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Fig. 10.29. Excitation energy of quasipar-
ticles close to the Fermi energy. Hole-like
states are left of the origin, electron-like
states to the right side

with the second electron of the pair with the wave vector −k. Similarly, the
electron now being in state k′, interacts with the hole at −k′.

As mentioned above, the common ground state of the Cooper pairs is
separated from the quasiparticle states by the energy gap ∆0. The quasi-
particle density of states Ds(Ek) follows directly from the density of the
normal state since no state is lost in the superconducting transition, i.e.,
Ds(Ek) dEk = Dn(ηk) dηk, where Dn(ηk) represents the electronic density of
states in the normal conductor. In the vicinity of the Fermi energy, we may
put Dn(ηk) ≈ Dn(EF) = const., and we obtain

Ds(Ek) = Dn(ηk)
dηk

dEk
=

⎧
⎨

⎩
Dn(EF)

Ek√
E2

k − ∆2
0

for Ek > ∆0

0 for Ek < ∆0 .
(10.97)

In Fig. 10.30a, the predicted density of states Ds(Ek) of the quasiparticles
is drawn. At Ek = ∆0, the density of states is expected to diverge. For
ηk ≫ ∆0, the quasiparticle density Ds(Ek) is expected to merge with Dn(ηk)
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Fig. 10.30. (a) Quasiparticle density of states versus excitation energy. (b) Exper-
imentally determined density of states of Pb versus normalized excitation energy.
The measurement was carried out with a Pb/MgO/Mg-tunnel junction [483]

10.2 Microscopic Theory

Excitation of BCS ground state

ground state:

breaking of one Cooper pair:

electron with      plus  hole with

electron with        plus  hole with
two quasi-particles

energy of remaining Cooper pairs

energy difference: 

dispersion of quasi-particles

even if unpaired electrons have
no kinetic energy (             ) to break a 
Cooper pair one must invest   

energy gap: 

two particle description

ground state
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10.2 Microscopic Theory

Density of states of quasi-particles

each state in normal conductor is uniquely 
connected with one in the superconductor 

singularity at   
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with the second electron of the pair with the wave vector −k. Similarly, the
electron now being in state k′, interacts with the hole at −k′.

As mentioned above, the common ground state of the Cooper pairs is
separated from the quasiparticle states by the energy gap ∆0. The quasi-
particle density of states Ds(Ek) follows directly from the density of the
normal state since no state is lost in the superconducting transition, i.e.,
Ds(Ek) dEk = Dn(ηk) dηk, where Dn(ηk) represents the electronic density of
states in the normal conductor. In the vicinity of the Fermi energy, we may
put Dn(ηk) ≈ Dn(EF) = const., and we obtain
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In Fig. 10.30a, the predicted density of states Ds(Ek) of the quasiparticles
is drawn. At Ek = ∆0, the density of states is expected to diverge. For
ηk ≫ ∆0, the quasiparticle density Ds(Ek) is expected to merge with Dn(ηk)
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Fig. 10.30. (a) Quasiparticle density of states versus excitation energy. (b) Exper-
imentally determined density of states of Pb versus normalized excitation energy.
The measurement was carried out with a Pb/MgO/Mg-tunnel junction [483]
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A typical experimental setup is depicted in Fig. 10.37. First, a thin metal
strip is evaporated on a substrate. Then the surface of this film is oxidized to
make the insulator, and finally the second strip is evaporated. The thickness
of the oxide layer is typically of the order of 2 nm.

Metal strip 1Metal strip 2

I

V

Fig. 10.37. Diagram of a tunnel junc-
tion. Metal strip 1 is oxidized before
evaporating metal strip 2 . The oxide
layer is typically 2 nm thick

We will first consider tunneling between two normal metals with an insu-
lating layer in between. This configuration is often called an ‘NIN junction’.
In Fig. 10.38, the density of states close to the Fermi level of the two metals
is drawn for T = 0, dark areas symbolize occupied states. Note that there are
no states in the insulator between the two metals in the energy range con-
sidered here. Applying a voltage V across the tunnel junction causes a shift
of the Fermi level by the amount eV . As indicated by the arrow, electrons
are now able to tunnel from occupied states of the metal on the left to the
empty states on the right. The resulting current I is proportional to V as in
an ordinary ohmic resistance. Unfortunately, experiments such as this do not
give much information about the electronic states.
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Fig. 10.38. Energy-level diagram for an NIN junction. The density of states is
shown in the vicinity of EF. The zero point of the energy is suppressed, occupied
states are represented by dark areas. (a) V = 0, no current can flow. (b) V ̸= 0,
electrons from occupied states tunnel into empty states

396 10 Superconductivity

More interesting results are obtained with a superconductor-insulator-
normal metal junction, often called a ‘SIN junction’. The energy-level diagram
for T = 0 is depicted in Fig. 10.39 using the ‘semiconductor representation’
(see Sect. 10.3.3). The energy gap of the superconductor prevents the flow of
quasiparticles through the barrier as long as V < ∆/e. As soon as the applied
voltage exceeds the critical voltage Vc = ∆/e, quasiparticles can cross the
barrier as indicated in Fig. 10.39b. A current is expected, steeply growing
with the voltage because of the rapidly rising number of quasiparticles that
are able to tunnel across the barrier into empty states.
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Fig. 10.39. Energy-level diagram for an SIN junction at absolute zero. (a) V < Vc,
no free states are available for tunneling quasiparticles, (b) V > Vc = eV , quasi-
particles tunnel from the superconductor to the normal conductor

At finite temperatures, the situation is slightly different. As discussed in
Sect. 10.3.3 and shown in Fig. 10.40, quasiparticles are thermally excited,
resulting in populated states above the gap, and empty states below. There-
fore, quasiparticles can tunnel through the barrier at voltages smaller than Vc

and a weak current is observed. The magnitude of the current depends on
the density of states and the occupation numbers. Since quasiparticles move
in both directions, the tunneling current I(V ) is expressed by

I(V ) = I0

∫
Ds(Ek)Dn(E + eV ) [f(E) − f(E + eV )] dE , (10.109)

where I0 is a constant depending on the geometry of the junction [492]. Of
course, this formulation is also valid for other types of junctions if the ap-
propriate densities of states are inserted. For SIN junctions, Dn(E) can be
replaced by Dn(EF), and f(E) by a step function. Carrying out the inte-
gration and differentiating with respect to the voltage, we obtain the simple
relation

dI/dV ∝ Ds(Ek = eV ) . (10.110)

experimental observation using superconducting tunnel junctions

schematic setup
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10.2 Microscopic Theory

BCS state at finite temperatures

Cooper pairs              quasi-particles               BCS state weakens             energy gap decreases 

BCS theory  in weak coupling limit

10.3 Microscopic Theory of Superconductivity 389

This equation has to be solved numerically. Before we consider the outcome
of this calculation, we can use the equation to evaluate the transition temper-
ature Tc. Knowing that the energy gap ∆ vanishes at Tc, we insert T = Tc,
and ∆ = 0, to obtain

2
V0 D(EF)

=
!ωD∫

0

dη

η
tanh

(
η

2kBTc

)
. (10.103)

In the weak coupling limit V0 D(EF) ≪ 1, the numerical solution leads to

kBTc = 1.14 !ωD e−2/V0D(EF) . (10.104)

This relation explains the isotope effect mentioned at the beginning of
this section, since Tc ∝ ωD ∝ M−1/2, where M is the atomic mass. It also
makes it plausible that deviations from this law exist. First, the derivation
of (10.104) was based on the assumption that one-phonon exchange (10.62)
gives a satisfactorily description of the attractive interaction between the
electrons. Secondly, (10.69) drastically simplifies the corresponding expres-
sion, and finally, in all calculations a spherical Fermi surface was assumed.
None of these simplifications are necessarily true for real metals.

Inserting (10.93) in (10.104), we find the important relation

∆0 = 1.76 kBTc , (10.105)

connecting energy gap ∆0 and transition temperature Tc. This simple equa-
tions is expected to hold for all superconductors as long as the simplifications
mentioned above are fulfilled. In Table 10.3, experimental values for the ratio
∆0/kBTc are given. In most cases fair agreement between theory and experi-
ment is found, but in mercury and lead this ratio is considerably higher than
expected. In these metals, the electrons are strongly coupled to phonons, thus
creating pronounced charge clouds in the lattice. In this case, screening and
retardation effects play an important role. These effects are correctly taken
into account by the Eliashberg theory [484]. Good agreement with experimen-
tal results is found, but a treatment of this rather sophisticated theory would
go far beyond the scope of this book.

Table 10.3. ∆0/kBTc for some superconducting elements. After [485]

Al Cd Hg In Nb Pb Zn

∆0/(kBTc) 1.7 1.6 2.3 1.8 1.9 2.15 1.6

The numerical integration of (10.102) supplies us with the theoretical tem-
perature dependence of the energy gap . In Fig. 10.32, the theoretical curve
for the normalized energy gap ∆(T )/∆0 is plotted together with experimental
data. Close to absolute zero, the energy gap is approximately constant. But

energy gap at finite temperatures weak coupling regime
does not really apply
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10.3 Macroscopic Quantum State

flux quantization

Josephson effecta) flux quantization

Macroscopic wave function

phase is well defined in entire superconducting system

consider superconducting ring in magnetic field

phase difference along a path

quantum mechanical current density

with q = -2e and M = 2m

integration along closed contour line L

Stokes theorem

magnetic flux enclosed by the ring is quantized

closed loop
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10.3 Macroscopic Quantum State

Experimental observation of flux quantization  1961
Deaver and Fairbank

Doll and Näbauer

10.4 Flux Quantization – Josephson Effect 403

London pointed out as early as 1950 that magnetic flux ought to be quan-
tized [11]. It is of great significance that the charge entering the expression
for the flux quantization is 2e, i.e., the charge of a Cooper pair. Therefore,
the experimental determination of the flux quantum that was accomplished
in 1961 by Doll and Nähbauer [495], and Deaver and Fairbank [496], was a
direct demonstration of the existence of Cooper pairs. In these experiments,
a thin superconducting hollow cylinder was cooled down in a very weak mag-
netic field. After switching off the external magnetic field, the magnetic dipole
moment of the cylinders was measured for a number of different applied mag-
netic fields. The experimental results demonstrated that the trapped flux was
quantized, and was in fact given by (10.121).

In Fig. 10.45 the result of a more recent measurement with a hollow cylin-
der of tin with a diameter of 56µm is shown. Obviously, the trapped magnetic
flux does not follow the steady variation of the cooling field but clearly ex-
hibits the expected quantization. The rounding of the curve is caused by
the fact that, under the given experimental conditions, in some cases a flux
quantum is not trapped inside the cylinder along its whole length.
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Fig. 10.45. Magnetic flux trapped
by a thin hollow cylinder made of tin
(length 24 mm, diameter 56 µm) as a
function of the cooling field [497]

From the quantization of the magnetic flux it immediately follows that
the current in a closed loop is quantized as well. A continuous variation of
the current is not possible since the phase of the wave function can only be
changed by a multiple of 2π. Thus, only phase jumps would be allowed, but
such changes require a temporary destruction of the coherence of the wave
function. In this case, the condensation energy of all the Cooper pairs would
have to be raised. Therefore, a jump such as this does not occur, and no
flux quantum can leave the superconducting loop, meaning that persistent
currents are absolutely stable.

mirror

lead

quartz 

Tin

Tin

modern measurement
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10.3 Macroscopic Quantum State

Josephson effects  (1962)

Brain Josephson

Schrödinger equations

chemical potential coupling strength

ansatz                              and 

Josephson equations

with

dc  Josephson effect

ac  Josephson effect
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10.3 Macroscopic Quantum State

Experimental observation of dc Josephson effect

Josephson junction

► hysteretic Josephson junction
► for I < Ic current is determined by current source
► for I > Ic super current breaks down 

► non-hysteretic Josephson junction
► for I > Ic super current breaks down 

underdamped junction (large R and C) overdamped junction (small R and C)

hysteresis parameter: 

x R
C
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11. Cooling Techniques

4He bath cryostat: glass dewar
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11.1 Bath Cryostats

4He Bath cryostat: metal dewar
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helium transport vessel helium transfer tube

11.1 Bath Cryostats
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multiple radiation shields à smaller steps à
reduction of heat flow

30 to 80 layers of low conductivity 
high reflection material  à aluminized  Mylar

apparent thermal conductivity  
~ 10–4 to 10–5 W/(m K)

Radiation shields – super insulation

11.1 Bath Cryostats
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Cryostats with 1-K-Pot

11.1 Bath Cryostats

11.3 Simple Helium-Bath Cryostats 469
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Fig. 11.16. Vapor pressure of different
cryogenic liquids as a function of tem-
perature (after [574]). The points (•)
indicate the lowest temperatures that
can be achieved in practice with mod-
erate efforts

the exponential relation between vapor pressure and temperature. Therefore,
the evaporation rate, and in turn the cooling power, can hardly be increased
under these conditions.

The use of 3He has two essential advantages over 4He. First, the high
vapor pressure allows temperatures as low as 0.3 K to be reached with modest
pumping systems. Secondly, 3He does not possess the problem created by the
creeping superfluid film, which leads to an unwanted heat transport from
warm to cold parts in 4He evaporation cryostats. However, the cost for 3He
is much higher than for 4He. The first 3He evaporation cryostat was build by
Roberts and Sydoriak in 1954 to measure the vapor pressure and the specific
heat of 3He [575].

Since then, many different types of 3He evaporation cryostats have been
designed, two of which are shown schematically in Fig. 11.17. To precool the
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Fig. 11.17. Schematic illustration of two types of 3He evaporation cryostats for
(a) single shot and (b) continuous operation (After [576])

Clausius-Clapeyron equation

Vapor pressure curve of various  cryogenic liquids

vapor pressure curve
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3He cryostats

cooling power

11.1 Bath Cryostats
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Cooling power of a 3He cryostat with charcoal absorption pump

11.1 Bath Cryostats
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Bardeen – Josephson Debate

Physics Today 54, 46-51 (2001)

The Nobel Laureate Versus the Graduate Student 

In a recent note, Josephson uses a somewhat 
similar formulation to discuss the possibility of 
superfluid flow across the tunneling region, in 
which no quasi-particles are created. However, 
as pointed out by the author [Bardeen, in a 
previous publication], pairing does not extend into 
the barrier, so that there can be no such 
superfluid flow.


