

 $(\mathbf{k}'\uparrow,-\mathbf{k}'\downarrow) \left.\begin{array}{c} \bullet \quad \text{electron with } \mathbf{k} \text{ plus hole with } -\mathbf{k}' \\ \bullet \quad \text{electron with } -\mathbf{k} \text{ plus hole with } \mathbf{k}' \end{array}\right\} \text{ two quasi-particles}$

energy of remaining Cooper pairs $W_1 = -2 \sum_{\mathbf{k}} E_{\mathbf{k}} v_{\mathbf{k}}^4$

energy difference:
$$\delta E = W_1 - W_0 = 2E_{k'} = 2\sqrt{\eta_{k'}^2 + \Delta_0^2}$$

dispersion of quasi-particles

→ even if unpaired electrons have no kinetic energy ($\eta_{k'} = 0$) to break a Cooper pair one must invest $2\Delta_0$

• energy gap: $\delta E_{\min} = 2\Delta_0$

10.2 Microscopic Theory

Density of states of quasi-particles

SS 2024

MVCMP-1

 $D_{n}(\eta_{k}) \longleftrightarrow D_{s}(E_{k})$ each state in normal conductor is uniquely connected with one in the superconductor

$$\implies D_{\rm s}(E_{\boldsymbol{k}})\,\mathrm{d}E_{\boldsymbol{k}} = D_{\rm n}(\eta_{\boldsymbol{k}})\,\mathrm{d}\eta_{\boldsymbol{k}},$$

$$D_{\rm s}(E_{\boldsymbol{k}}) = D_{\rm n}(\eta_{\boldsymbol{k}}) \frac{\mathrm{d}\eta_{\boldsymbol{k}}}{\mathrm{d}E_{\boldsymbol{k}}} = \begin{cases} D_{\rm n}(E_{\rm F}) \frac{E_{\boldsymbol{k}}}{\sqrt{E_{\boldsymbol{k}}^2 - \Delta_0^2}} & \text{for } E_{\boldsymbol{k}} > \Delta_0\\ 0 & \uparrow & \text{for } E_{\boldsymbol{k}} < \Delta_0 \end{cases}$$

singularity at
$$E_{k} = \Delta_{0}$$

experimental observation using superconducting tunnel junctions

10.2 Microscopic Theory

BCS state at finite temperatures

Cooper pairs \longrightarrow quasi-particles \longrightarrow BCS state weakens \longrightarrow energy gap decreases

BCS theory in weak coupling limit

$$\Delta_{0} = 2 \hbar \omega_{\rm D} e^{-2/\mathcal{V}_{0} D(E_{\rm F})}$$

$$k_{\rm B} T_{\rm c} = 1.14 \hbar \omega_{\rm D} e^{-2/\mathcal{V}_{0} D(E_{\rm F})}$$

$$\Delta_0 = 1.76 \, k_{\rm B} T_{\rm c}$$

	Al	Cd	Hg	In	Nb	Pb	Zn	
$\Delta_0/(k_{ m B}T_{ m c})$	1.7	1.6	2.3	1.8	1.9	2.15	1.6	

energy gap at finite temperatures

$$\frac{\Delta(T)}{\Delta_0} = 1.74 \sqrt{1 - \frac{T}{T_c}}$$

weak coupling regime does not really apply

4

Experimental observation of flux quantization 1961

10.3 Macroscopic Quantum State

Josephson effects (1962)

Schrödinger equations

 $\mathrm{i}\hbar\dot{\Psi}_1 = \mu_1\Psi_1 + \mathcal{K}\Psi_2$

 $i\hbar\Psi_2 = \mu_2\Psi_2 + \mathcal{K}\Psi_1$ / \ chemical potential coupling strength

ansatz
$$\Psi_1 = \sqrt{n_{\mathrm{s1}}} \mathrm{e}^{\varphi_1}$$
 and $\Psi_2 = \sqrt{n_{\mathrm{s2}}} \mathrm{e}^{\varphi_2}$

with $n_{\mathrm{s}}=n_{\mathrm{s}1}=n_{\mathrm{s}2}$

Josephson equations

$$\dot{n}_{s1} = \frac{2\mathcal{K}}{\hbar} n_s \sin(\varphi_2 - \varphi_1) = -\dot{n}_{s2}$$
$$\hbar (\dot{\varphi}_2 - \dot{\varphi}_1) = -(\mu_2 - \mu_1) = 2eV$$

 $V = 0 \longrightarrow \mu_1 = \mu_2 \longrightarrow I_s = I_c \sin(\varphi_2 - \varphi_1) \quad \text{dc Josephson effect}$ $V \neq 0 \longrightarrow \mu_2 - \mu_1 = -2eV \longrightarrow I_s = I_c \sin(\omega_J t + \varphi_0) \quad \text{ac Josephson effect}$ $\omega_J = 2eV/\hbar$

Brain Josephson

10.3 Macroscopic Quantum State

Experimental observation of dc Josephson effect

hysteresis parameter: $eta_{
m c}=2\pi I_{
m c}R^2C/\Phi_0$

- hysteretic Josephson junction
- for $I < I_c$ current is determined by current source
- for $l > l_c$ super current breaks down

overdamped junction (small *R* and *C*)

non-hysteretic Josephson junction

for I > I_c super current breaks down

11. Cooling Techniques

⁴He bath cryostat: glass dewar

⁴He Bath cryostat: metal dewar

helium transport vessel

helium transfer tube

Radiation shields – super insulation

multiple radiation shields \rightarrow smaller steps \rightarrow reduction of heat flow

30 to 80 layers of low conductivity high reflection material \rightarrow aluminized Mylar

apparent thermal conductivity $\sim 10^{-4}$ to 10^{-5} W/(m K)

Cryostats with 1-K-Pot

SS 2024

MVCMP-1

⁴He $L = 90 \text{ J mol}^{-1}$ ³He $L = 40 \text{ J mol}^{-1}$

Vapor pressure curve of various cryogenic liquids

Clausius-Clapeyron equation

vapor pressure curve

4

³He cryostats

cooling power $\dot{Q} = \dot{n}_{\rm g} L \propto p \propto {\rm e}^{-L/RT}$

Cooling power of a ³He cryostat with charcoal absorption pump

MVCMP-1 Bardeen – Josephson Debate

The Nobel Laureate Versus the Graduate Student

In a recent note, Josephson uses a somewhat similar formulation to discuss the possibility of superfluid flow across the tunneling region, in which no quasi-particles are created. However, as pointed out by the author [Bardeen, in a previous publication], pairing does not extend into the barrier, so that there can be no such superfluid flow.

Physics Today 54, 46-51 (2001)