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6.5 Ballistic Propagation of Phonons

b) position depended measurements

196 6 Phonons
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Fig. 6.19. Schematic drawings of experimental arrangements for heat-pulse exper-
iments. (a) Setup for time-resolved measurements, (b) setup for phonon-focusing
experiments

can clearly be distinguished, which are attributed to longitudinal and trans-
verse phonons. Only a single pulse of transverse phonons is observed because
the two transverse branches are degenerate in InSb along this direction.

The main purpose of this experiment was the investigation of the polariza-
tion dependence of the electron–phonon interaction [292]. Electrons couple to
lattice vibrations via density changes. Since pure transverse phonons produce
no change in density, it is expected that in metals or semiconductors with
a spherical Fermi surface, only longitudinal phonons couple to electrons. To
test this prediction, heat-pulse propagation was first studied in a nominally
pure InSb sample (impurity content n ≈ 2 × 1014 cm−3). A strong signal
due to longitudinal (L) phonons was found. In the n-doped sample (donor
concentration n ≈ 5 × 1017 cm−3), however, the longitudinal heat pulse was
strongly attenuated because of the strong electron–phonon interaction. In
contrast, transverse (T) phonons are hardly influenced by the presence of
electrons.
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Fig. 6.20. Propagation of heat pulses in
pure and n-doped InSb at 1.68 K. Heat
pulses were generated in a gold film of 450 Å
thickness and detected by a superconduct-
ing Al-Sn bolometer [292]
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6.4.2 Phonon Focusing

Crystals are elastically anisotropic. As a consequence, the vibrational energy
of a (plane) sound wave does not, in general, flow in the direction of its wave
vector but in the direction of its group velocity. The locus of all possible
group velocities is known as the group-velocity surface, or wave surface. This
concept is illustrated in Fig. 6.22. The left figure shows the schematic drawing
of a constant-frequency curve in q-space. The group velocity v = dω(q)/dq
for a given wave vector is normal to this curve. In the figure on the right,
the wave surface is constructed by connecting the tails of all group-velocity
vectors. This leads to the folded curve shown in Fig. 6.22b. It defines the shape
of a vibrational wavefront emanating from a point source in the crystal. One
unusual consequence of a folded wave surface is that for a given direction of
propagation more than one pulse arrives at the detector.
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Fig. 6.22. Construction of a wave surface. (a) Schematic drawing of a constant-ω
curve in q-space. The group velocity v(q) for a given wave vector q is normal
to this curve. (b) Construction of the wave surface by connecting the tails of all
group-velocity vectors [294]

An experiment carried out with a setup of the type drawn schematically in
Fig. 6.19b produces the images shown in Fig. 6.23. The four crystals have cu-
bic symmetry and were cut perpendicularly to their [111] direction, resulting
in the observed three-fold symmetry. To understand the details of the inten-
sity distribution the exact shape of the wave surface of the crystals has to be
known. We do not discuss further this interesting topic in low-temperature
physics because here we only wanted to give a brief introduction to this field
and refer the reader to [295] for more details.

An elegant alternative method of demonstrating the occurrence of phonon
focusing is shown schematically in Fig. 6.24. This method makes use of
the properties of superfluid helium films. Because of the fountain effect
(see Sect. 2.2) the thickness of the saturated superfluid helium film on a sur-
face above a liquid bath depends upon its temperature. Focusing of phonons
generated at a point source on one surface of a crystal leads to a spatial vari-
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Phonon Focussing on Cubic Crystals in ⟨111⟩ direction

example:

four cubic crystals, [111] direction

3-fold symmetry
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Phonon Focusing made visible by 4He Films

demonstration using superfluid 4He

ballistic phonons           substrate locally heated  
fountain effect 

film thickness changes phonon density
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Phonon Focusing 

CaF2 Nb at 1.8 K
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A. TOOLS OF THE TRADE 69

Figure 5 Wide-angle phonon images of Ge obtained by a single raster
scan over an obliquely oriented crystal. A pulsed Nd:YAG laser directly
excites the 1-cm cube immersed in liquid helium at 2 K. In (a) the detecting
bolometer is located at the center of the back left face, (001). In (b) the
detecting bolometer is located at the center of the back right face, (110).
Bright lines are phonon-focusing caustics. (From Northrop and Wolfe.3)
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Figure 6 Phonon image of y-cut quartz taken with an Al bolometer detec-
tor and a scanned electron beam as the heat-pulse source. (From Eichele
etalM)
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TeO2 

isotrop phonon propagation in glass experimental technique

Phonon Focusing 
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6.3 Thermal Conductivity in One-dimensional Samples

Geometry of setup: 
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Fig. 1. SEM micrograph of suspended nanostructure designed
to isolate and measure the four one-dimensional acoustic modes
of thermal transport. See text for description.

!DC-SQUIDS have been provided by M. Ketchen, IBM.

(1 mK!). For temperatures below 70 mK, the micro-
scopic resistor no longer follows the refrigerator temper-
ature which could be caused by an unknown spurious
power source of +10"!# W.

The twisted pair connected to the nanostructure heater
requires extensive electronic "ltering. This is to attenuate
the heat load from radio and microwave frequency
black-body radiation generated by the Johnson noise of
resistors at higher temperatures. We have installed two
sets of "lters, one set at 1 K and the other set at the
mixing chamber. Each "lter comprises of a 10-pole RC
network and a separate stainless-steel powder "lter. With
this system we attain an e!ective passband of only 140
Hz from 300 K and over 200 db of attenuation from
1 MHz to '20 GHz. This limits the total power radi-
ated down the heater wires to (10"!$ W.

We have demonstrated all of the essential techniques
to measure the phonon thermal conduction through
one-dimensional channels and expect to con"rm the
recent prediction of a universal thermal conductance.

These experiments are the beginning of a very exciting
new realm which may lead to the measurement of the
quantum nature of thermal transport involving single
phonons [12].
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heat flow:

6.5 Thermal Conductivity of One-Dimensional Samples 201

Fig. 6.26. View of experimental arrangement. (a) The suspended device consists
of a 4 µm × 4 µm ‘phonon cavity’ in the center patterned from the silicon nitride
membrane. The dark regions are areas where the membrane has been completely re-
moved. The bright ‘c’-shaped objects on the cavity are gold films serving as heaters.
They are connected with thin niobium leads on top of the phonon waveguides to
wire bond pads (not shown in this figure). (b) Close-up of one of the catenoidal
waveguides with a neck smaller than 200 nm [297]

Before we look at the experimental results let us consider the theoretical
predictions [298]. The energy current J flowing through a one-dimensional
sample of length L is given by

J =
1
L

∑

q

!ωqvq , (6.41)

where vq is the phonon velocity. The summation indicates that all thermally
excited phonons contribute to the heat flow. After replacing the sum by an
integral, the energy current between a heat source on the right side and a
heat sink on the left side can be expressed by

J =
∑

i

1
L

∞∫

0

D1
i (q) !ωi vi [fh(ω, T ) − fc(ω, T )] dq . (6.42)

Here, i denotes the index of the phonon mode taking part in the heat trans-
port, D1

i (q) the one-dimensional density of states in momentum space, and
vi the group velocity of the phonons. The thermal occupation of the phonon
states is expressed by the Bose–Einstein factor f(ω, T ), where the indices ‘h’
and ‘c’ stand for the hot and cold thermal reservoir, respectively. The lower
limit q = 0 for the integral follows from the fact that the sign of the wave
number of the ‘cold’ phonons coming from the heat sink has already been
taken into account by the sign of fc(ω, T ). Furthermore, in our consideration
we have put the transmission coefficient characterizing the coupling of the
waveguide modes to the reservoirs equal to unity.

We insert D1
i (q) = L/2π, and change the variables from q to ω. This leads

to a factor ∂q/∂ω, which just cancels the phonon group velocity ∂ω/∂q.
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phonons modes
group velocity

► transmission coefficient for coupling between bath and thin bar = 1

► ,                       ,            cancels with     

► small temperature difference 
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In addition, we assume that the temperature differences ∆T between the
reservoirs is small so that [fh(ω, T ) − fc(ω, T )] can be expanded. We keep
only the term linear in ∆T and use the abbreviation x = !ω/kBT . Thus, we
find for the thermal conductance

G =
J

∆T
=

k2
BT

h

∑

i

∞∫

0

x2ex

(ex − 1)2
dx

= NiG0 = Ni
π2

3
k2
BT

h
, (6.43)

where Ni = 4, because the waveguide can sustain four modes, namely one di-
latational, one torsional, and two flexural modes. It is remarkable that under
ideal conditions, each mode contributes the same amount to the conduc-
tance, namely G0 = (9.456 × 10−13 W K−2)T . Because of the cancellation
of the one-dimensional density of states and the group velocity, this result
does not depend on particle statistics. It is universal for fermions, bosons and
anyons.3

The data shown in Fig. 6.27 confirm this concept. In this graph, the nor-
malized thermal conductance of the four waveguides is plotted. At high tem-
peratures, the conductivity is proportional to T 3, as expected in the Casimir
regime. From this set of data an effective mean free path ℓeff ≈ 0.9µm can
be deduced. One-dimensional behavior is expected when the wave number
qth ≈ kBT/(!v) of the thermal phonons becomes smaller than the spacing
between the lowest-lying modes that is roughly given by ∆q ≈ π/w.
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Fig. 6.27. Reduced thermal con-
ductance G of four one-dimensional
‘waveguides’. Below 0.8 K the wave-
guides behave like one-dimensional
samples. Above that cross-over tem-
perature the conductivity increases
proportional to T 3, as expected in
the Casimir regime for a three-
dimensional sample [297]

3 It is worth mentioning that the electrical conduction of a thin, one-dimen-
sional wire follows directly from (6.43) if we use the Wiedemann–Franz law
Λel/σ = (π2/3)(kB/e)2T (see (7.26)). Taking into account that in the electrical
case two ‘channels’ exist because of the spin degeneracy, we immediately obtain
Gel = 2e2/h for the quantized unit of the electric conductance.
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Quantized of Heat Conduction: Sample Geometry

for given geometry

Fig. 1. SEM micrograph of suspended nanostructure designed
to isolate and measure the four one-dimensional acoustic modes
of thermal transport. See text for description.

!DC-SQUIDS have been provided by M. Ketchen, IBM.

(1 mK!). For temperatures below 70 mK, the micro-
scopic resistor no longer follows the refrigerator temper-
ature which could be caused by an unknown spurious
power source of +10"!# W.

The twisted pair connected to the nanostructure heater
requires extensive electronic "ltering. This is to attenuate
the heat load from radio and microwave frequency
black-body radiation generated by the Johnson noise of
resistors at higher temperatures. We have installed two
sets of "lters, one set at 1 K and the other set at the
mixing chamber. Each "lter comprises of a 10-pole RC
network and a separate stainless-steel powder "lter. With
this system we attain an e!ective passband of only 140
Hz from 300 K and over 200 db of attenuation from
1 MHz to '20 GHz. This limits the total power radi-
ated down the heater wires to (10"!$ W.

We have demonstrated all of the essential techniques
to measure the phonon thermal conduction through
one-dimensional channels and expect to con"rm the
recent prediction of a universal thermal conductance.

These experiments are the beginning of a very exciting
new realm which may lead to the measurement of the
quantum nature of thermal transport involving single
phonons [12].
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7. Conduction Electrons

7.1 Specific heat

a) simple metals

Drude (1900)               Sommerfeld  (1927)                   Bloch (1940)

free electrons gas

free electrons gas:

phonons

electrons:
7.1 Specific Heat 207
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Fig. 7.1. Low-temperature specific heat of copper [301]. (a) C plotted linearly
versus temperature. The contribution of the electrons and of the phonons are rep-
resented by dashed and dashed-dotted lines, respectively. The full line reflects the
sum of the two contributions. (b) C/T versus T 2. This plot permits the separation
of the electronic and lattice contributions by graphical means

Since the calculated value of γ is proportional to the electronic mass m, the
fit to the experimental data is often improved by the introduction of an effec-

Table 7.1. Electron density n, Fermi temperature TF, experimental and theoretical
Sommerfeld coefficient γexp and γtheo, and the ratio γexp/γtheo. Apart from the
densities of the alkali metals Li (77 K), Na (5 K), K (5 K), Rb (5 K), and Cs (5 K),
the electron densities in the table were obtained at room temperature. After [302]

Element n TF γexp γtheo γexp/γtheo

(1022 cm−3) (104 K) [mJ (K2mol)−1] [mJ (K2mol)−1]

Li 4.70 5.51 1.75 0.75 2.3

Na 2.65 3.77 1.46 1.08 1.3

K 1.40 2.46 1.92 1.67 1.2

Rb 1.15 2.15 2.42 1.92 1.3

Cs 0.91 1.84 3.22 2.21 1.5

Cu 8.47 8.16 0.67 0.50 1.3

Ag 5.86 6.38 0.65 0.63 1.1

Au 5.90 6.42 0.65 0.63 1.1

Mg 8.61 8.23 1.34 1.00 1.7

Ba 3.15 4.23 2.72 1.96 1.4

Al 18.10 13.60 1.25 0.91 1.4

In 11.50 10.00 1.79 1.21 1.5

Sn 14.80 11.80 1.83 1.37 1.3

Pb 13.20 11.00 2.92 1.50 1.9

► electrons dominate below ∼ 4 K
► very good qualitative agreement
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good qualitative agreement for simple metals

for quantitative agreement

ڱڹڳ ࡧ ڹ FɑǘƷ˥ʾʂɱ˒ Ȫɱ ýʂɑȪǃ˒

ĊƆƭܿ ܩڳܿڹ ýʂɩɩǘʾȄǘɑǃ Ʒʂǘ͎ƷȪǘɱ˥ ঳ṷ̈́ʳ ʂȄ ˒ʂɩǘ ɩǘ˥Ɔɑ˒ Ɔɱǃ ˥Țǘ ƷʂɩʳƆʾȪ˒ʂɱ ʂȄ ˥Țǘ ṷ̈́ʳǘʾȪɩǘɱ˥Ɔɑ ǃƆ˥Ɔ
̣Ȫ˥Ț ˥Țǘ ̝Ɔɑ˺ǘ˒ ʂȄ ˥Țǘ ɩʂǃǘɑ ʂȄ Ȅʾǘǘ ǘɑǘƷ˥ʾʂɱ˒ܿ gʾʂɩݦ ǃȪ͍ǘʾǘɱ˥ ˒ʂ˺ʾƷǘ˒ܿݧ
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ĊȚǘ ˒ʂݱƷƆɑɑǘǃ ȚǘƆ̝̰ ȄǘʾɩȪʂɱ ˒̰˒˥ǘɩ˒ܪ ˒˺ƷȚ Ɔ˒ ,ǘ�ɑ� ʂʾ ,ǘ,˺�ýȪܪ� ṷ̈́ȚȪƭȪ˥ ˒˺ʾʳʾȪ˒Ȫɱȇ
ʳʾʂʳǘʾ˥Ȫǘ˒ܿ �ɱ ˥Țǘ˒ǘ ɩǘ˥Ɔɑ˒ܪ ˥Țǘ ˒˥ʾʂɱȇ Ȫɱ˥ǘʾƆƷ˥Ȫʂɱ˒ ƭǘ˥̣ǘǘɱ ˥Țǘ �ɱ ˥Țǘ ƷƆ˒ǘ ʂȄ ˥Țǘ ǘɑǘƷݱ
˥ʾʂɱ˒ Ȫɱ˥ǘʾƆƷ˥Ȫɱȇ ̣Ȫ˥Ț ǘƆƷȚ ʂ˥Țǘʾ Ɔ˥ ɑʂ̣ ˥ǘɩʳǘʾƆ˥˺ʾǘ˒ܪ ˥Țǘ ˒ʳǘƷȪ͘Ʒ ȚǘƆ˥ Ȫ˒ ˒ʂ ɑƆʾȇǘ ˥ȚƆ˥
Ȫ˥ ɩ˺˒˥ ƭǘ ǃǘ˒ƷʾȪƭǘǃ ̣Ȫ˥Ț ǘ͍ǘƷ˥Ȫ̝ǘ ǘɑǘƷ˥ʾʂɱ ɩƆ˒˒ǘ˒ ʂȄ ˺ʳ ˥ʂॳø˥Ț Ć ����ॳܿ � ǃȪ˒Ʒ˺˒˒Ȫʂɱ
ʂȄ ˥Țǘ˒ǘ ɩǘ˥Ɔɑ˒ ̣Ȫ˥Ț ˥ȚǘȪʾ ̝ǘʾ̰ ˒˺ʾʳʾȪ˒Ȫɱȇ ɑʂ̣ ˥ǘɩʳǘʾƆ˥˺ʾǘ ʳʾʂʳǘʾ˥Ȫǘ˒ ̣ʂ˺ɑǃ ȇʂ ƭṵ̈́ʂɱǃ
˥Țǘ ˒Ʒʂʳǘ ʂȄ ˥ȚȪ˒ ƭʂʂɈܿ

gȪȇܿ ܩںܿڹ 6ǘɱ˒Ȫ˥̰ ʂȄ ˒˥Ɔ˥ǘ˒ ʂȄ ɱȪƷɈǘɑܿ ĊȚǘ Ʒʂɱݱ
˥ʾȪƭ˺˥Ȫʂɱ ʂȄ ˥Țǘ ५ݱǘɑǘƷ˥ʾʂɱ˒ ʂ̝ǘʾɑƆʳ˒ ˥ȚƆ˥ ʂȄ
˥Țǘ ॹݱƭƆɱǃܪ ̣Țʂ˒ǘ ȪɩƆȇȪɱǘǃ Ʒʂɱ˥ʾȪƭ˺˥Ȫʂɱ Ȫ˒
˒Țʂ̣ɱ Ɔ˒ ǃƆ˒Țǘǃ ɑȪɱǘܿ ĊȚǘ ʂƷƷ˺ʳȪǘǃ ˒˥Ɔ˥ǘ˒ Ɔʾǘ
ȚȪȇȚɑȪȇȚ˥ǘǃ ƭ̰ ǃƆʾɈǘʾ ƭɑ˺ǘܿ �Ȅ˥ǘʾݦ �ܿ ,ƆɑɑƆ̣Ɔ̰ܪ
,ܿýܿ ŀƆɱȇܪ êȚ̰˒ܿ ñǘ ̝ܿ % ܪڸ ڷںڱڲ ܿݧڴڸںڲݦ
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but: transition series metals

example nickel:                                        reason is d-electrons contribute, which are not (completely) free

involved in covalent bond, highly oriented
no spherical Fermi surface 

► d-electrons with large density of state dominate at EF
► d-electrons are localized

7.1 Specific Heat
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b) metal with heavy electrons

examples:    CeCu2Si2 cer electronic configuration  [Xe] 5d1 4f1 6s2

g = Cel /T extrapolated from high T

at low temperatures  T à 0

g not constant below 15 K 

4f electrons are localized at high T
and form a conduction band at low T

effective mass: 

► T > 15 K,  D(E) and m* are constant

► T < 15 K,  C/T increase strongly with decreasing temperature

7.1 Specific Heat
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Heavy fermion systems

7.5 Heavy-Fermion Systems 237
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Fig. 7.23. Specific heat C/T of dif-
ferent heavy-fermion compounds as
a function of T 2. Substances with
a Sommerfeld coefficient γ = C/T
above the tinted area are consid-
ered to be heavy-fermion systems. For
comparison: this limit corresponds to
γ ≈ 270 γNa [329]

7.5.2 Susceptibility

Besides the enormously high specific heat, heavy-fermion systems also exhibit
a strongly enhanced susceptibility. In ordinary nonmagnetic metals there is
an almost temperature-independent susceptibility, the so-called Pauli suscep-
tibility

χ = µ0µ
2
BD(EF) ∝ n1/3m∗ . (7.43)

However, at high temperatures, heavy-fermion systems exhibit a Curie–Weiss
like behavior that can be attributed to the localized moment of f -electrons. At
temperatures below T ∗, the temperature variation of χ flattens and finally the
susceptibility remains approximately constant. The enhanced, temperature-
independent susceptibility can be interpreted as the Pauli susceptibility of
the heavy quasiparticles.

As an example, the susceptibility of CeAl3 is shown in Fig. 7.24. At high
temperatures, the expected Curie–Weiss behavior of systems with magnetic
moments is found. From these data it follows that all Ce-ions carry a magnetic
moment of 2.56 µB, corresponding roughly to that of free trivalent Ce-ions.3
As shown in the insert of the figure, the susceptibility becomes approximately
constant below 1.5 K and χ ≈ 3.6 × 10−2 cm3 mol−1 is found. This value is
about two orders of magnitude greater than that of free electrons. Just like
the specific heat, the susceptibility (7.43) is proportional to the density of
states and we conclude that the high effective mass of the quasiparticles is
the origin of this unusual behavior.

This conclusion is supported by the clear correlation between γ and χ
displayed in Fig. 7.25. In the range T ≪ T ∗, the strongly enhanced value
of the magnetic susceptibility and the specific heat of heavy-fermion systems
3 In a quantitative comparison it has to be taken into account that the crystal

field modifies the magnetic moments.

7.2 Electrical Conductivity 209

The specific heat divided by temperature C/T of a CeCu2Si2 crystal in
its normal conducting state is depicted in Fig. 7.3a. Below 20 K, γ is not
constant but rises with decreasing temperature. An extrapolation of the high-
temperature data to T = 0 leads to γ ≈ 30mJ (mol K2)−1. Extrapolating
the low-temperature data shown in the insert results in the astonishingly
high value γ ≈ 1050mJ (mol K2)−1. In Fig. 7.3b, the specific heat of CeAl3
is shown. The very high value γ ≈ 1800mJ (mol K2)−1 is found at 0.35 K.
For CeAlCu4, a Sommerfeld coefficient as high as γ ≈ 2200mJ (mol K2)−1 is
reported [304]. From the relation γ ∝ n1/3m∗

th it follows that the exceptionally
high values of γ are caused by the extremely large effective electron masses.
The reason for this anomaly and further interesting properties of this class
of substances will be discussed in Sect. 7.5 at the end of this chapter after
our discussion of the Kondo effect.
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Fig. 7.3. Specific heat of heavy-fermion systems. (a) Specific heat divided by
temperature C/T of CeCu2Si2 versus T 2. The low-temperature behavior is shown
in the insert in the upper part of the figure with spread scale [305]. (b) C/T of
CeAl3 versus T [306]

7.2 Electrical Conductivity

In this section, we discuss some interesting low-temperature aspects of the
electrical conductivity of metals. Superconductivity will be excluded from
our discussion because we will treat this phenomenon separately in Chap. 10.
To avoid unnecessary conceptual complications we mainly pay attention to
simple metals. Concerning transition metals we only make a very brief remark
since they often stand out due to peculiarities in their physical properties. As
mentioned before, in these metals not only s-electrons but also d-electrons are
present in the conduction band. Although the density of states of d-electrons
at the Fermi energy exceeds that of s-electrons they hardly contribute to

7.1 Specific Heat

► interesting class of solids with strongly correlated electrons

► effective masses m* up to 2000 me  observed

► origin: interaction with localized spins

Wilson ratio:

important: Fermi liquid theory

analogy to 3He reaches even further 

some heavy fermion systems show unconventional superconductivity (S ≠ 0) : UPt3, URu2Si2 …
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metals, no superconductors, no semiconductors

7.2 Electrical Conductivity

Boltzmann equation                  kinetic gas theory

► starting point:  equilibrium distribution without external fields

► with field: stationary non-equilibrium value of

► expand             - in linear order + relaxation ansatz for collisions  

Fermi-Dirac distribution

linearized Boltzmann equation

electric fieldscattering time
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scattering time determined by: 

7.2 Electrical Conductivity

► defect scattering
► phonon scattering
► magnon scattering (in ferromagnets)

► electron-electron scattering  (can be neglected in most cases)
a ) defect scattering

local charge density variations

local strain fields  (less important)

Local charge variations

7.2 Electrical Conductivity 215

( ∆Z )2

0

2

4

6

8

ρ d
e

/µ
Ω

cm
(a

t.-
%

)−1

16941

Cu

Zn

Ga

Ge

As

Fig. 7.5. Residual resistivity ϱde of cop-
per alloyed with elements having a dif-
ferent number of valence electrons. The
resistivity is normalized to an impurity
content of one atomic per cent [308]

Concentration Dependence

Alloying two metals usually leads to an increase of the resistivity because
of the loss of periodicity. Provided that the two components are completely
miscible, as is the case in disordered alloys, the concentration dependence of
the resistivity can be described with Nordheim’s rule [309].

This rule can be made plausible by simple considerations: We start with
the reasonable assumption that for the binary mixture AxB1−x an average
potential with amplitude U0 = xUA + (1 − x)UB exists, where UA and UB

represent the potentials of the atoms A and B, respectively. Deviation from
the average potential is given by (U0 − UA) = (1 − x)(UB − UA) at the sites of
atoms A, and (U0 − UB) = x(UA − UB) at the atoms B. These deviations give
rise to the above-mentioned electron scattering. As a crude approximation,
the probabilities wA and wB for the scattering of the conduction electrons
are given by

wA = (1 − x)2
∣∣∣∣
∫

ψ∗(k) (UB − UA)ψ(k′) d3k′
∣∣∣∣
2

(7.18)

and

wB = x2

∣∣∣∣
∫

ψ∗(k) (UA − UB)ψ(k′) d3k′
∣∣∣∣
2

=
x2

(1 − x)2
wA . (7.19)

From (7.16) and (7.17) it follows that the resistivity can be expressed by
ϱde ∝ xwA + (1 − x)wB since scattering probability and scattering cross sec-
tion are proportional to each other. Inserting (7.18) and (7.19) leads directly
to Nordheim’s rule

ϱde ∝ x(1 − x) . (7.20)

This concentration dependence has been confirmed by measurements of
the resistivity of many disordered alloys. In particular, a maximum is ob-
served at x = 0.5, since at this composition the disorder has its maximum.

► Rutherford scattering on ionic cores of impurity atoms
► scattering cross section :
► resistivity

► residual resistance of copper with 1 at% impurities

► agrees well with: 

with different valence electrons configurations 


