

b) position depended measurements

single crystals are elastically anisotropic

sound waves are propagating not always in direction of

wave vector, but in direction of the group velocity

Sample
$$v = d\omega(q)/dq$$

Construction of wave front

SS 2024

MVCMP-1

example:

four cubic crystals, [111] direction

3-fold symmetry

Phonon Focusing made visible by ⁴He Films

SS 2024

MVCMP-1

Phonon Focusing

 CaF_2

Nb at 1.8 K

Phonon Focusing

Ge wide-angle measurement y-cut quartz e-beam scanning

Phonon Focusing

TeO₂

experimental technique

PROBE LIGHT PULSES

isotrop phonon propagation in glass

Geometry of setup:

SS 2024

MVCMP-1

 $4 \times 4 \ \mu m^3$ island with gold resistors as heaters and thermometers

minimal width of bridge w < 200 nm

6.3 Thermal Conductivity in One-dimensional Samples

heat flow:

SS 2024

MVCMP-1

 $J = \frac{1}{L} \sum \hbar \omega_{\boldsymbol{q}} v_{\boldsymbol{q}}$

length of sample

assumptions

transmission coefficient for coupling between bath and thin bar = 1

$$\blacktriangleright \ \mathcal{D}_i^1(q) = L/2\pi, \quad q \iff \omega, \quad \frac{\partial q}{\partial \omega} \text{ cancels with } v = \frac{\partial \omega}{\partial q}$$

• small temperature difference ΔT

 $\longrightarrow [f_{\rm h}(\omega,T) - f_{\rm c}(\omega,T)]$ can be expanded, keep only terms linear in ΔT

number of contributing modes

Quantized of Heat Conduction: Sample Geometry

for given geometry

SS 2024

MVCMP-1

 $N_i = 4 \times 4 \text{ legs} = 16$ modes: 1 longitudinal (dilatation) 1 torsional 2 bending

 $G_0 = (9.456 \times 10^{-13} \,\mathrm{W \, K^{-2}}) \,T$

transition roughly at 0.8 K /
$$T_{\rm crossover} \approx \frac{h\nu}{2wk_{\rm B}} \approx 0.8 \, {\rm K}$$

expected for:

$$q_{
m th}pprox k_{
m B}T/(\hbar v) < arDelta q = rac{\pi}{w}$$

spacing between lowest lying modes

SS 2024 MVCMP-1

Element	Ŷехр	Ytheo	$m_{ m th}^{st}/m$	Element	Ŷехр	γ_{theo}	$m_{ m th}^*/m$
Ag	0.64	0.64	1.00	Cu	0.69	0.50	1.37
Al	1.35	0.91	1.48	Ga	0.60	1.02	0.59
Au	0.69	0.64	1.08	In	1.66	1.26	1.31
Ba	2.70	1.95	1.38	К	2.08	1.75	1.19
Be	0.17	0.49	0.35	Li	1.65	0.75	2.19
Ca	2.73	1.52	1.80	Mg	1.26	1.00	1.26
Cd	0.69	0.95	0.73	Na	1.38	1.3	1.22
Cs	3.97	2.73	1.46	Pb	2.99	1.50	1.99

good qualitative agreement for simple metals

 $\gamma_{
m exp}/\gamma_{
m theo} = m_{
m th}^*/m$ for quantitative agreement

but: transition series metals

SS 2024

MVCMP-1

example nickel: $m_{\rm th}^* \approx 15\,m$

reason is *d*-electrons contribute, which are not (completely) free

involved in covalent bond, highly oriented

no spherical Fermi surface

- *d*-electrons with large density of state dominate at $E_{\rm F}$
- *d*-electrons are localized

b) metal with heavy electrons

SS 2024

MVCMP-1

examples: CeCu₂Si₂

cer electronic configuration [Xe] $5d^1 4f^1 6s^2$

- ▶ T > 15 K, D(E) and m^* are constant
- ▶ T < 15 K, C/T increase strongly with decreasing temperature

7.1 Specific Heat

Heavy fermion systems

SS 2024

MVCMP-1

- interesting class of solids with strongly correlated electrons
- effective masses m^* up to 2000 m_e observed
- origin: interaction with localized spins

$$\chi = \mu_0 \mu_{\rm B}^2 D(E_{\rm F}) \propto n^{1/3} m^*$$

$$\searrow$$
Wilson ratio:
$$R = \frac{\chi}{\gamma} \frac{\pi^2 k_{\rm B}^2}{\mu_0 \mu_{\rm eff}^2}$$

$$\swarrow$$

$$\gamma \propto n^{1/3} m_{\rm th}^*$$

important: Fermi liquid theory

$$C = rac{m^*}{m} \ C_{
m FG} \ = \left(1 + rac{1}{3} \ F_1
ight) C_{
m FG}$$

analogy to ³He reaches even further

→ some heavy fermion systems show unconventional superconductivity (S \neq 0) : UPt₃, URu₂Si₂...

metals, no superconductors, no semiconductors

Boltzmann equation \longleftrightarrow kinetic gas theory

- starting point: equilibrium distribution without external fields $f_0(\mathbf{k})$
- with field: stationary non-equilibrium value of $f(m{k},m{r},t)$

Fermi-Dirac distribution

• expand $f_0(\mathbf{k}) - f(\mathbf{k}, \mathbf{r}, t)$ in linear order + relaxation ansatz for collisions

$$\implies \text{ linearized Boltzmann equation } f(\mathbf{k}) \approx f_0(\mathbf{k}) + \underbrace{f_0(\mathbf{k})}_{\hbar} \mathcal{E} \cdot \underbrace{\frac{\partial f_0(\mathbf{k})}{\partial \mathbf{k}}}_{\text{electric field}}$$

 $\implies j_x = -e \int D(k) v_x(k) f(k) dk = -\frac{e}{\pi^2} \int k^2 v_x(k) f(k) dk$

$$\longrightarrow \sigma = \frac{1}{3} e^2 D(E_{\rm F}) v_{\rm F}^2 \tau(E_{\rm F}) \longrightarrow \sigma = \frac{n e^2}{m} \tau(E_{\rm F})$$

scattering time determined by:

- defect scattering
- phonon scattering
- magnon scattering (in ferromagnets)
- electron-electron scattering (can be neglected in most cases)

a) defect scattering

SS 2024

MVCMP-1

local charge density variations

local strain fields (less important)

Local charge variations

- Rutherford scattering on ionic cores of impurity atoms
- scattering cross section : $\sigma_{
 m cross} \propto \left(\Delta Z\right)^2$
- resistivity $\varrho_{\rm D} \propto \left(\Delta Z\right)^2$
- residual resistance of copper with 1 at% impurities with different valence electrons configurations
- agrees well with: $\varrho_{
 m D} \propto \left(\Delta Z\right)^2$

