6. Phonons

SS 2024

MVCMP-1

- 6.1 Specific heat Debye model:
- assumptions: solids are elastic, isotropic homogenous continua
 - excitations: sound waves with linear dispersion
 - Bose-Einstein distribution

internal energy: cut-off frequency \rightarrow Debye frequency $U(T) = \int_{0}^{\hbar\omega_{\rm D}} \hbar\omega \mathcal{D}(\omega) f(\omega, T) \,\mathrm{d}\omega$ $\propto \omega^{2}$

specific heat:

$$C_{V} = \frac{\partial U}{\partial T} = 9Nk_{\rm B} \left(\frac{T}{\Theta}\right)^{3} \int_{0}^{x_{\rm D}} \frac{x^{4} e^{x}}{\left(e^{x} - 1\right)^{2}} dx$$
$$\Theta = \hbar\omega_{\rm D}/k_{\rm B}$$

Limiting cases:

SS 2024

MVCMP-1

(i) $T \to \infty \longrightarrow x \to 0$

$$\lim_{x \to 0} \int_{0}^{x_{\rm D}} \frac{x^4 \,\mathrm{e}^x}{(\mathrm{e}^x - 1)^2} \mathrm{d}x \approx \int_{0}^{x_{\rm D}} \frac{x^4 \cdot 1}{x^2} \mathrm{d}x = \frac{x_{\rm D}^3}{3} = \frac{1}{3} \, \left(\frac{\Theta}{T}\right)^3$$
$$(1 + x - 1)^2$$

$$\longrightarrow$$
 $C_V = 3Nk_{\rm B}$ Dulong-Petit law

ii)
$$T \to 0 \longrightarrow x_{\mathrm{D}} \to \infty$$

$$C_V = 9Nk_{\rm B} \left(\frac{T}{\Theta}\right)^3 \underbrace{\int\limits_{0}^{\infty} \frac{x^4 \mathrm{e}^x}{\left(\mathrm{e}^x - 1\right)^2} \mathrm{d}x}_{4\pi^4/15} = \frac{12\pi^4}{5} Nk_{\rm B} \left(\frac{T}{\Theta}\right)^3$$

$$\longrightarrow C_V = \frac{12\pi^4}{5} N k_{\rm B} \left(\frac{T}{\Theta}\right)^3$$

- perfect agreement with theory
- only small temperature range
- Debye temperature $\Theta = 92 \,\mathrm{K}$

- . . .

		L	
	1	1	
6	6	3	21
	L		3.
		-	T

Element	$\Theta\left(\mathrm{K}\right)$	Element	$\Theta\left(\mathrm{K}\right)$	Element	$\Theta\left(\mathrm{K}\right)$	Element	$\Theta\left(\mathrm{K}\right)$
Ar	92	Cu	347	Mn	409	Sc	346
Ac^*	100	Er	118	Mo	423	Se	152
Ag	227	Fe	477	N^*	70	Si	645
Al	433	Ga	325	Na	156	Sm	169
Am	121	Gd	182	Nb	276	Sn	199
As	282	Ge	373	Nd	163	Sr	147
Au	162	H (para)	122	Ne	75	Ta	245
В	1480	H (orth)	114	Ni	477	Tb	176
Ba	111	³ He	19-33	Np	259	Те	152
Be	1481	Hf	252	O^*	90	Th	160
Bi	120	Hg	72	Os	467	Ti	420
C (Dia.)	2250	Ho	190	Pa	185	Tl	78
C (Gra.)	413	Ι	109	Pb	105	Tm	200
Ca	229	In	112	Pd	271	U	248
Cd	210	Ir	420	Pr	152	V	399
Ce	179	Κ	91	Pt	237	W	383
Cl*	115	Kr	72	Rb	56	Xe	64
Cm	123	La	145	Re	416	Y	248
Со	460	Li	344	Rh	512	Yb	118
Cr	606	Lu	183	Ru	555	Zn	329
\mathbf{Cs}	40	Mg	403	Sb	220	Zr	290

SS 2024 MVCMP-1

Compound	Θ (K)	Compound	Θ (K)	Compound	Θ (K)
AgBr*	140	$\mathrm{Cr}_2\mathrm{Cl}_3^*$	360	MgO^*	800
AgCl*	180	FeS_2^*	630	MoS_2^*	290
$As_2O_3^*$	140	KBr	173	m RbBr	131
$As_2O_5^*$	240	KCl	235	RbCl	165
$AuCu_3$	285	KI	131	RbI	103
BN*	600	InSb	206	SiO_2 (Quartz)	470
CaF_2	508	LiF	736	TiO_2^* (Rutile)	450
CrCl_2^*	80	LiCl	422	ZnS	315

low-dimensional systems

SS 2024

MVCMP-1

$$D(\omega) \propto \omega^{d-1} \longrightarrow C_V \propto T^d$$

 $d = 2 \longrightarrow C_V \propto T^2$

example: ³He atoms on graphite (sub-mono layers)

6.2 Heat Transport

6.2 Heat transport

Fourier equation

on
$$\boldsymbol{j} = -\Lambda \nabla T$$

 $\Lambda = \frac{1}{3} C v \ell$

in general

dominate phonon approximation (Debye)

- summation and integration can be avoided
- in addition: linear dispersion

6.2 Heat Transport

SS 2024

MVCMP-1

phonon-defect scattering

a) surfaces

SS 2024

MVCMP-1

$$\Lambda = \frac{1}{3} C v \ell \qquad \stackrel{\ell \approx d}{\longrightarrow} \qquad \Lambda \approx \frac{1}{3} C_V v d \propto T^3 \qquad \text{Casimir regime}$$

- roughed: mean free path factor 50 shorter
 - polished: mean free path 7 cm, sample length

- depends on sample cross-section
- temperature dependence as expected

b) influence of point defects (elastic scattering)

ightarrow Rayleigh scattering, since $\lambda_{
m phonon} \gg d_{
m defect}$

$\ell^{-1} =$	$\frac{n_{\rm p}V_{\rm A}^2}{4\pi}$	$\left(\frac{\Delta M}{M}\right)^2$	$q^4 \propto \omega^4$	1

is important at intermediate temperatures, since at low temperature q is too small and at high temperatures phonon-phonon scattering dominates

adding ⁶Li reduces heat transport

maximum becomes rounded

- T_{i} 10³ 100 T_{i} 100 T_{i} 100 T_{i} 100 T_{i} T_{i} T
- natSi: 10% of all Si atoms have mass difference