

dilute solutions of ³He in He-II ($c_3 < 0.15$, T < 0.5 K)

- → ⁴He: passive background fluid
- \longrightarrow ³He: "free" atoms in a quasi vacuum and effective mass $m_3^* = 2.4 m_3$

Fermi gas

SS 2024

MVCMP-1

$$T_{\rm F} = rac{\hbar^2}{2m_3^*k_{
m B}} \left(3\pi^2 n_3
ight)^{2/3} \propto \, c_3^{2/3}$$

- T_{λ} depends on c_3
- ▶ pure ³He: transition Fermi gas → Fermi liquid
- ▶ high *T*, dilute solution: classical gas with *m**

- low T: transition classical gas \rightarrow Fermi gas
- lines correspond to theory

Finite solubility of ³He in liquid ⁴He at T = 0

reason: difference in zero-point motion of ³He and ⁴He

v. Waals interaction identical for ³He-³He and ³He-⁴He but: larger zero-point motion of ³He weakens the bonding stronger effective binding for

compared to

concentrated phase

dilute phase

in equilibrium on finds

SS 2024

MVCMP-1

• $T = 0 \longrightarrow c_3 = 1$ for concentrated phase (pure ³He)

• necessary energy to bring one ³He atom into "vacuum" $L_3(T=0)$

- $\longrightarrow \mu_{3,c}(0,1) = \mu_3(0) = -L_3(0) = -2.473 \,\mathrm{K}$ latent heat
- ► dilute phase: $E_3 = -\mu_{3,d}(0,0) \longrightarrow$ binding energy $c_{3,d} \rightarrow 0$
- ▶ with increasing concentration, the effective binding energy for ³He is reduced because of the Pauli principle \longrightarrow Fermi gas: $E_{\rm F} = k_{\rm B}T_{\rm F}(c_3)$

5.1 Specific heat and phase diagram

equilibrium concentration at T = 0

SS 2024

MVCMP-1

 $-L_3(0) = -E_3(0, c_3) + k_{\rm B}T_{\rm F}(c_3)$

pressure dependence

maximum at 8.7 bar

concentration $c_3 = 0.096$

▶ calculation of E₃(0,c₃) is not trivial
 → Bardeen, Baym, Pines model

5.2 Normalfluid Component

determination of $Q_n \longrightarrow$ Andronikasvili-type experiment

15 mica sheets 4 cm diameter 190 μ m spacing

5.2 Normalfluid Component

Osmotic pressure

SS 2024

MVCMP-1

- ⁴He flows to solution to thin the ³He concentration
- ³He is blocked
 - osmotic pressure

van't Hofft law ($T \gg T_{\rm F}$, classical regime)

 $\Pi = n_3 k_{\rm B} T \propto c_3 T$

 $T \ll T_{
m F}$, degenerate Fermi gas

$$\Pi = \frac{2}{5} n_3 k_{\rm B} T_{\rm F} \propto c_3^{5/3} = \text{ const}$$
depends on c_3

transition from FG to classical gas

First sound

SS 2024

MVCMP-1

$$v_1^2 = \left(\frac{\partial p}{\partial \varrho}\right)_{S,c_3} \left[1 + \frac{\varrho_{\rm s}}{\varrho_{\rm n}} \left(\frac{\partial \varrho}{\partial c_3} \frac{c_3}{\varrho}\right)^2\right]$$

Second sound

$$v_2^2 = \frac{\rho_s}{\rho_n} \left[\overline{S} \left(\frac{\partial T}{\partial S} \right)_{\varrho, c_3} + c_3^2 \frac{\partial (\mu_3 - \mu_4)}{\partial c_3} \right] \left[1 + \frac{\rho_s}{\rho_n} \left(\frac{\partial \rho}{\partial c_3} \frac{c_3}{\rho} \right)^2 \right]^{-1}$$
$$\overline{S} = S_{4,0} - \frac{k_B}{m_4} \left[c_3 + \ln(1 - c_3) \right] + \frac{k_B}{m_3} c_3$$

5.4 Transport Properties

Thermal transport (rather complex)

high Temp.: Qn flow leads to ³He concentration gradient

- → ³He atoms diffuse back
- \rightarrow ³He form scattering centers for ρ_n
 - → reduction of heat transport

low Temp.: ³He atoms form FG

$$\begin{split} \Lambda &= \frac{1}{3} C \, v_{\rm F} \, \ell \propto \frac{c_3}{T} \\ \ell &= v_{\rm F} \tau \propto (T_{\rm F}/T)^2 \\ v_{\rm F} &= (\hbar/m_3^*) (3\pi^2 n_3)^{1/3}, \\ C \propto T/T_{\rm F} \\ m_3^* &= (1 + F_1/3)m_3 \end{split}$$

4

very interesting: 3 superfluid phases in the same container \longrightarrow ⁴He, ³He, and dilute ³He

Problem: ³He/⁴He mixtures are hard to cool to below 200 µK because of Kapitza resistance

new initiative:

acoustic mismatch hinders cooling

- → cooling by melting of ⁴He crystal
- \longrightarrow lowest temperature so far 90 μ K

