Properties near T_c are determined by quantities that go to zero like the order parameter and quantities that diverge like susceptibilities

Landau theory of continuous phase transitions (1937, 1965)

SS 2024

MVCMP-1

- \blacktriangleright idea: expansion of free energy in T in terms of the order parameter
- near $T_{\rm c}$ one should find the following laws with the reduced temperature $t = (T T_{\rm c})/T_{\rm c}$

2.7 Critical Behaviour of He-II at T_{λ}

Quantity	Power Law	Critical Exponent
speci <mark>fic</mark> heat	$C_V \propto t ^{lpha}$	lpha=0
order parameter	$arPhi \propto t ^eta$	eta=1/2
suscep <mark>tibi</mark> lity	$\chi \propto t ^{-\gamma}$	$\gamma = 1$
correlation length	$\xi \propto t ^{- u}$	u = 1/2

Landau type theories: - van der Waals theory for liquid - gas transition

- Curie-Weiss theory of ferromagnetism
- Ginzburg-Landau theory of superconductivity

Problem: fluctuations are not included, but they are increasingly important towards T_c every Landau-type theory breaks down near T_c

Ginzburg criterion

SS 2024

MVCMP-1

The condition under which a Landau-type theory holds is that fluctuations of the order parameter are small in comparison of the mean value of the order parameter

for He-II: coherence length is very small ----- Ginzburg criterion is "always" violated

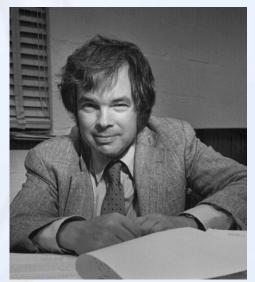
Renormalization group

Despite of the short-comings of the Landau universal theory of phase transitions, it was realized that it is possible to assign different physical systems to universality classes, characterized by a set of critical exponents

The larger framework is: renormalization group and quantum field theory

different classes are defined by:

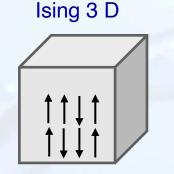
dimension of system d, degrees of freedom of order parameter n, interaction length compared to coherence length



Kenneth G. Wilson

SS 2024 MVCMP-1

a few examples:



d = 3 n = 1

in this universality class liquid-solid transition fall as well

d = 2 *n* = 3

> at each lattice point each spin can point in 3 direction

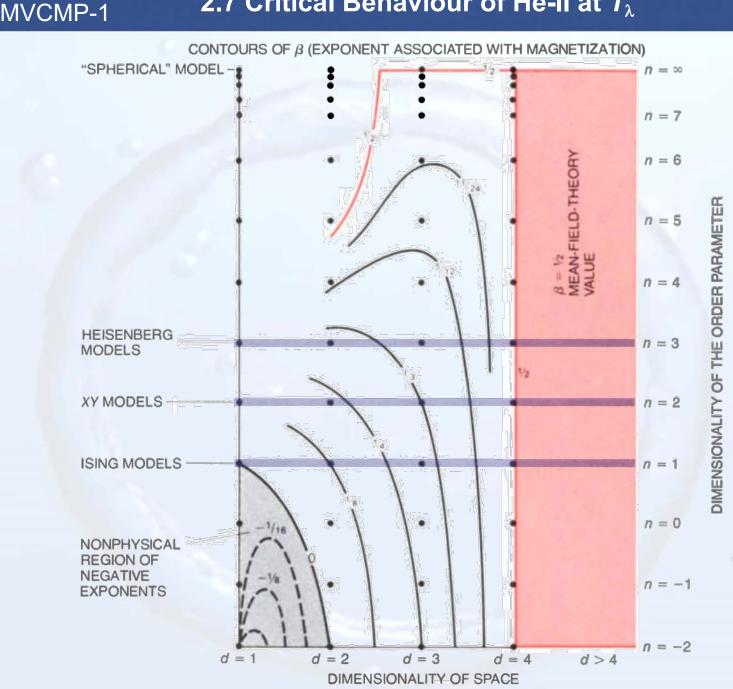
x-y 3 D He-II superconductors d = 3 n = 2

magnitude and phase of wave function

each universality class is described by a set of critical exponents and are connected by sum rules like $\alpha + 2\beta + \gamma = 2$

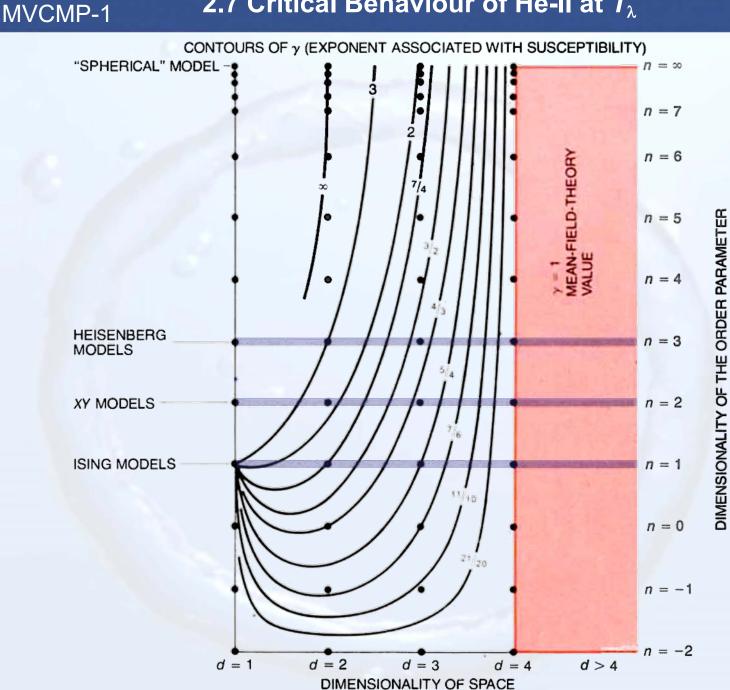
UNIVERSAL	LITY CLASS	THEORETICAL MODEL	PHYSICAL SYSTEM	ORDER PARAMETER
<i>d</i> = 2	<i>n</i> = 1	lsing model in two dimensions	Adsorbed films	Surface density
	n = 2	XY model in two dimensions	Helium-4 films	Amplitude of superfluid phase
	n = 3	Heisenberg model in two dimensions		Magnetization
d > 2	<i>n</i> = ∞	"Spherical" model	None	
d = 3 n = 0 n = 1 n = 2 n = 2 ŋ = 3	Self-avoiding random walk	Conformation of long- chain polymers	Density of chain ends	
	Ising model in three dimensions	Uniaxial ferromagnet	Magnetization	
		Fluid near a critical point	Density difference between phases	
		Mixture of liquids near consolute point	Concentration difference	
		Alloy near order- disorder transition	Concentration difference	
	XY model in three dimensions	Planar ferromagnet	Magnetization	
		Helium 4 near super- fluid transition	Amplitude of superfluid phase	
	<i>n</i> ₂ = 3	Heisenberg model in three dimensions	Isotropic ferromagnet	Magnetization
	n = -2		None	
	n = 32	Quantum chromo- dynamics	Quarks bound in protons, neutrons, etc.	

SS 2024



141

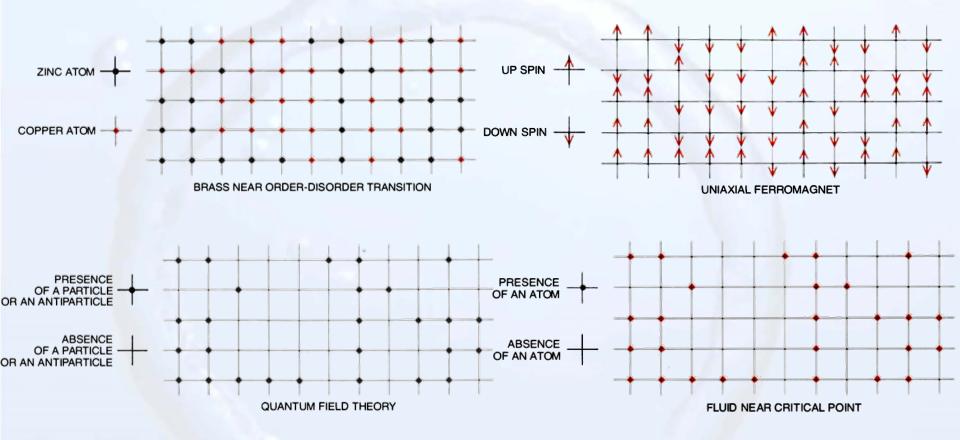
SS 2024



142

SS 2024

MVCMP-1



critical exponents expected for X-Y 3D model:

 $\alpha = -0.0146(8)$ \leftarrow $\beta = 0.3485(2)$ \leftarrow $\gamma = 1.3177(5)$

SS 2024

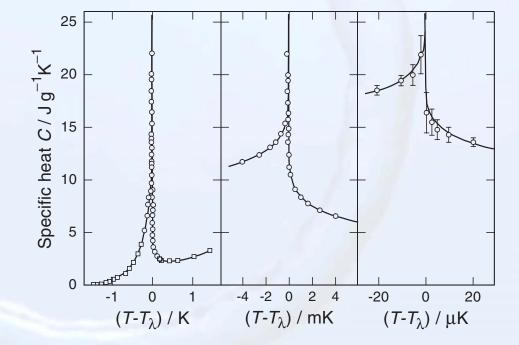
MVCMP-1

 $\delta = 4.780(2)$ $\nu = 0.67155(27)$ \leftarrow $\eta = 0.0380(4)$

Experiments near T_{λ}

a) specific heat

scale going from K to μ K



power law in the vicinity of T_{λ} ?

data plotted a C_V vs $\log t = \log |T/T_\lambda - 1|$ data can be approximated by $C_V \propto \log t$

logarithmic divergences?

comparison with RGT

expected scaling for He-II

$$C = B + \frac{A}{\alpha} \frac{t^{-\alpha}}{\alpha} \left(1 - D\sqrt{t} \right)$$

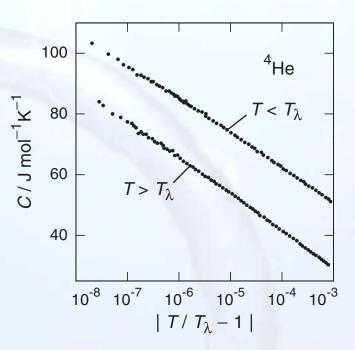
A, B and D are constants

with critical exponent expected $\alpha = -0.0146(8)$

expansion in lpha $t^{-lpha} = \mathrm{e}^{-lpha \ln t} pprox 1 - lpha \ln t$

expansion justified because of small α

experimental result $\alpha \approx -0.013 \pm 0.003$



Higher precision experiments near T_{λ} are needed

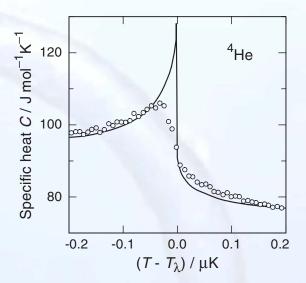
measurement on earth

SS 2024

MVCMP-1

Problems:

- gravitation level height dependence
- walls of vessel \longrightarrow first layer solid and healing length diverges with diverges near T_{λ} with $\xi = \xi_0 t^{-\nu}$ with $\nu = 0.67155(27)$

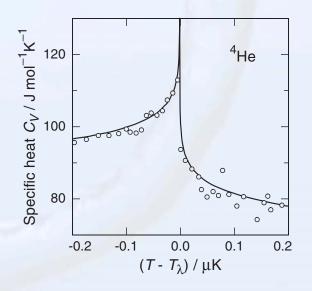


measurement on space shuttle

Problems:

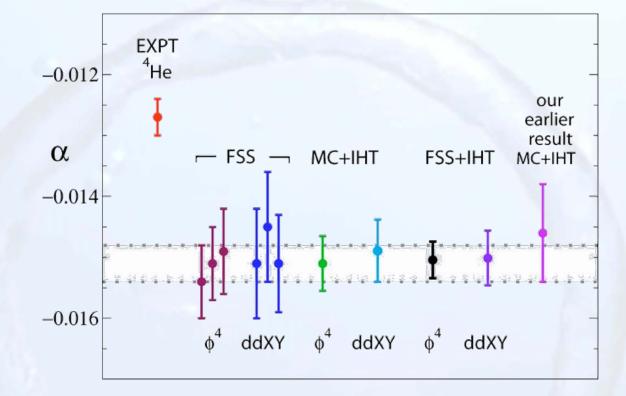
Data shown, after sophisticated analysis

still somewhat noisy



SS 2024

MVCMP-1



comparison between space shuttle data and different calculations of α

discrepancy between data and theory outside error bars: reason unknown

b) Order parameter

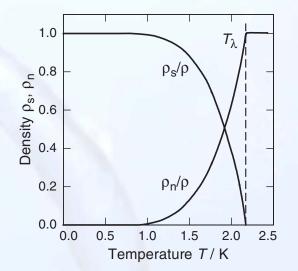
SS 2024

MVCMP-1

$$\psi(\boldsymbol{r}) = \psi_0 e^{\mathrm{i}\varphi(\boldsymbol{r})} \longrightarrow \Psi_0 = \sqrt{\varrho_{\mathrm{s}}}$$

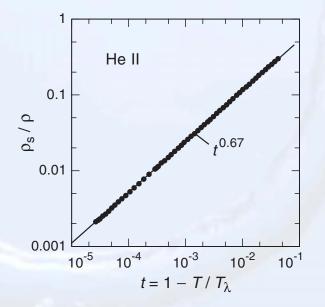
expected:

 $arrho_{
m s}=t^{2eta}$ with eta=0.3485(2)



determined with second sound $arrho_{
m s} = t^{0.67}$

excellent agreement



c) Healing length

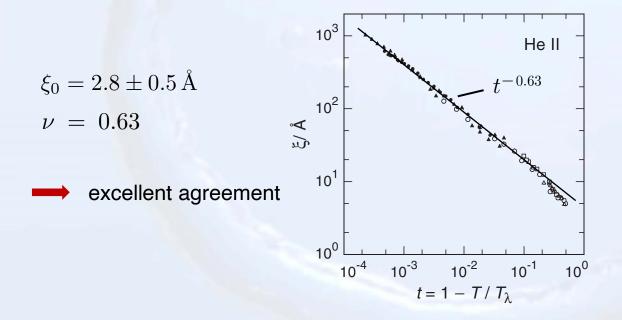
SS 2024

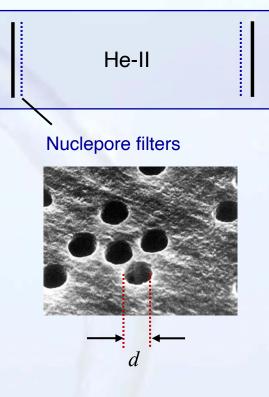
MVCMP-1

again, second sound measurements and measurements on thin films

expected:

$$\xi = \xi_0 t^{-\nu}$$
 with $\nu = 0.67155(27)$





second sound vanishes for $\xi > d$

Helmholtz resonator

First measurements 1949 (from natural abundance)

Landau theory of Fermi liquids 1956-1958

prediction of zero sound and collision-less spin waves

3.1 Ideal Fermi-Gas

Schrödinger equation

$$-rac{\hbar^2}{2m}
abla^2\psi(m{r})=E\psi(m{r})$$

ansatz: $\psi(\mathbf{r}) = \frac{1}{\sqrt{V}} e^{i\mathbf{k}\cdot\mathbf{r}}$ $\mathbf{L}_k = \frac{\hbar^2 k^2}{2m}$

periodic boundary conditions: $\psi = \psi(x + L, y, z) = \psi(x, y + L, z) = \psi(x, y, z + L)$

$$k_x = \frac{2\pi}{L} n_x$$
, $k_y = \frac{2\pi}{L} n_y$, $k_z = \frac{2\pi}{L} n_z$ with n_x, n_y, n_z integer values

density of states

$$\mathcal{D}(k)dk = \varrho_k 4\pi k^2 dk = \frac{V}{2\pi^2} k^2 dk$$
$$D(k) = \frac{2\mathcal{D}(k)}{V} = \frac{k^2}{\pi^2} \qquad \text{density } k \text{ space density per volume for 2 spin states}$$
$$D(E) = D(k)\frac{dk}{dE} = \frac{(2m)^{3/2}\sqrt{E}}{2\pi^2\hbar^3} \propto \sqrt{E}$$

