

(i) First sound

with (i) and (iii)

$$v = v_1 = \sqrt{\left(\frac{\partial p}{\partial \varrho}\right)_S}$$

$$\left(\frac{v}{v_1}\right)^2 - 1 = 0 \qquad e$$

$$f \neq 0$$
 $S' = 0$
 \downarrow $grad T = 0$
 \uparrow
as usual for ordinary (first) sound

insert (4) into (6)

$$\varrho_{n} \frac{\partial}{\partial t} (\mathbf{v}_{n} - \mathbf{v}_{s}) = \varrho S \operatorname{grad} T = 0$$

$$\mathbf{v}_{n} = \mathbf{v}_{s} \longrightarrow \operatorname{superfluid} \operatorname{and} \operatorname{normalfluid} \operatorname{component} \operatorname{are} \operatorname{in} \operatorname{phase}$$

$$(4) in (6)$$

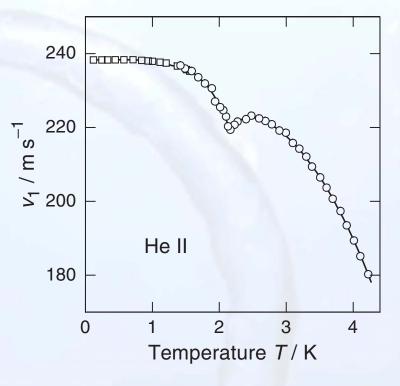
$$\frac{\partial \overline{v_s}}{\partial t} = S \operatorname{grad} T + \frac{1}{S} \frac{\partial \overline{J}}{\partial t}$$
insert (2) ×S
$$\frac{\partial (\overline{\partial v_s})}{\partial t} = SS \operatorname{grad} T + S_n \frac{\partial \overline{v_n}}{\partial t} + S_s \frac{\partial \overline{v_s}}{\partial t}$$

$$\frac{\partial (\overline{\partial v_s})}{\partial t} = SS \operatorname{grad} T + S_n \frac{\partial \overline{v_n}}{\partial t} + S_s \frac{\partial \overline{v_s}}{\partial t}$$

(i) First sound

SS 2024

MVCMP-1



▶ for
$$T \rightarrow 0$$
: $v_1 \approx 238 \,\mathrm{m \, s^{-1}}$.

only density variation \implies almost ordinary sound

▶ for $T \to T_{\lambda}$: corrections become important

(ii) Second sound

SS 2024

MVCMP-1

 $\sqrt{2}$

with (ii) and (iii) we find

$$v = v_2 = \sqrt{\frac{\varrho_{\rm s}}{\varrho_{\rm n}}} S^2 \left(\frac{\partial T}{\partial S}\right)_{\varrho}$$

$$\left(\frac{v}{v_2}\right) - 1 = 0$$
 $S' \neq 0$, $\varrho' = 0$
 \downarrow grad $p = 0$

with (4)

$$\frac{\partial \boldsymbol{j}}{\partial t} = -\operatorname{grad} p \stackrel{!}{=} 0 \quad \longrightarrow \quad \frac{\partial \varrho_{\mathrm{n}} \boldsymbol{v}_{\mathrm{n}}}{\partial t} + \frac{\partial \varrho_{\mathrm{s}} \boldsymbol{v}_{\mathrm{s}}}{\partial t} = 0$$

 $\varrho_{\rm n}\boldsymbol{v}_{\rm n}+\varrho_{\rm s}\boldsymbol{v}_{\rm s}=0$

no mass flow in closed vessel

 $\bigcap \ \varrho_n \uparrow$, $\varrho_s \downarrow$ counter flow and no density variation

temperature wave

$$v_{2} = \sqrt{\frac{\varrho_{s}}{\varrho_{n}}} S^{2} \left(\frac{\partial T}{\partial S}\right)_{\varrho} = \sqrt{\frac{\varrho_{s}}{\varrho_{n}}} \frac{T S^{2}}{C_{p}}$$

density variation in phonon gas
possibility to
determine ϱ_{s}/ϱ_{n}

ultra-low temperatures:

excitations at $T \rightarrow 0$ are only longitudinal phonons Landau

 $A = 2\pi^2 k_{\rm B}^4 / (45\hbar^3 v_1^3 \varrho)$

. 0.

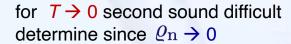
Debye model

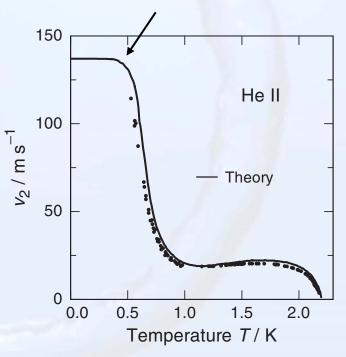
$$C_p = 3AT^3$$
$$S = AT^3$$

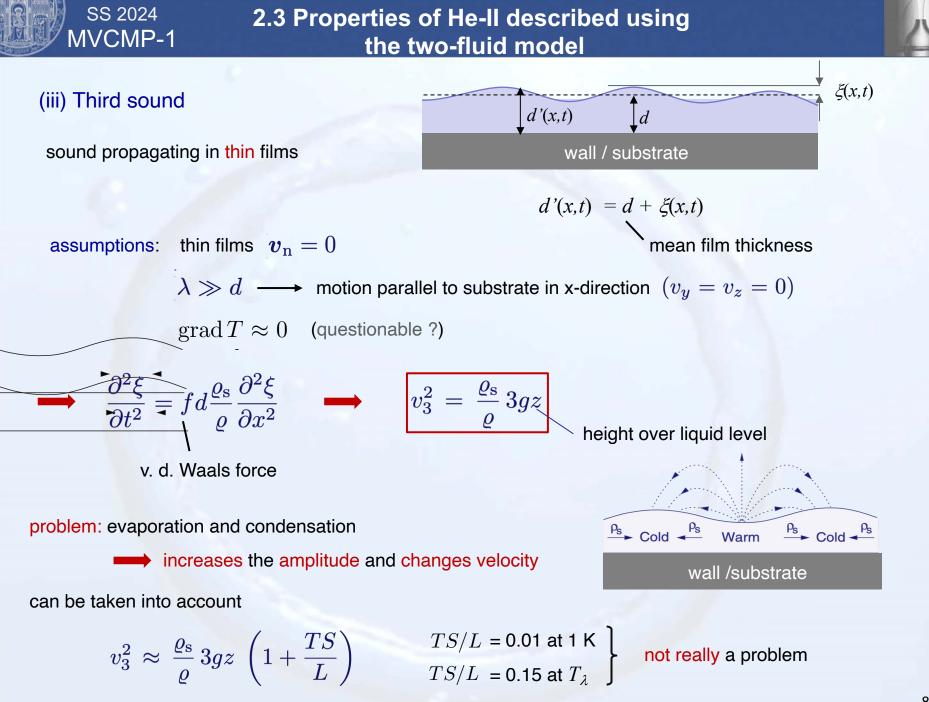
in addition

$$\varrho_{\rm s} \approx \varrho \varrho_{\rm n} = A \varrho T^4 / v_1^2$$
 in $r \to 0.$
$$v_2 \to v_1 / \sqrt{3} \approx 137 \,\mathrm{m \, s^{-1}}$$

 \mathbf{T}



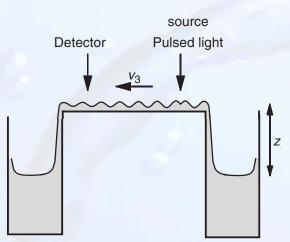




3rd sound experiment

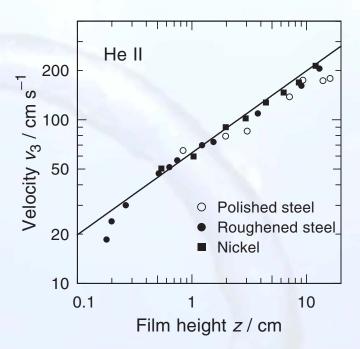
SS 2024

MVCMP-1



Procedure

- periodic local heating
- $\triangleright Q_s$ flows to warm location \implies thickness changes
- ► surface wave \triangleq 3rd sound
- optical detection of thickness



Measurement and results

- ► 3rd sound velocity vs. *z* (log/log plot)
- different surfaces: v_3 almost independent
- line \triangleq theory $v_3 \propto \sqrt{z}$
- good agreement except for very thick films

2.3 Properties of He-II described using the two-fluid model

3rd sound experiment: temperature dependence

SS 2024

MVCMP-1



Measurement and results

- 3rd sound velocity vs T
- points at T = 1.25 K normalized to (•)
- v_3 is rising with decreasing T
- ▶ $T \rightarrow 0$: $v_3 = 1.5 \text{ m/s}$ (very slow)
- dashed line m riangle theory $v_3 \propto \sqrt{arrho_{
 m s}}$
- systematic deviations: origin unknow, but likely due to generation process

3rd sound in very thin films:

3rd sound propagation can be observed down to 2.1 monolayers

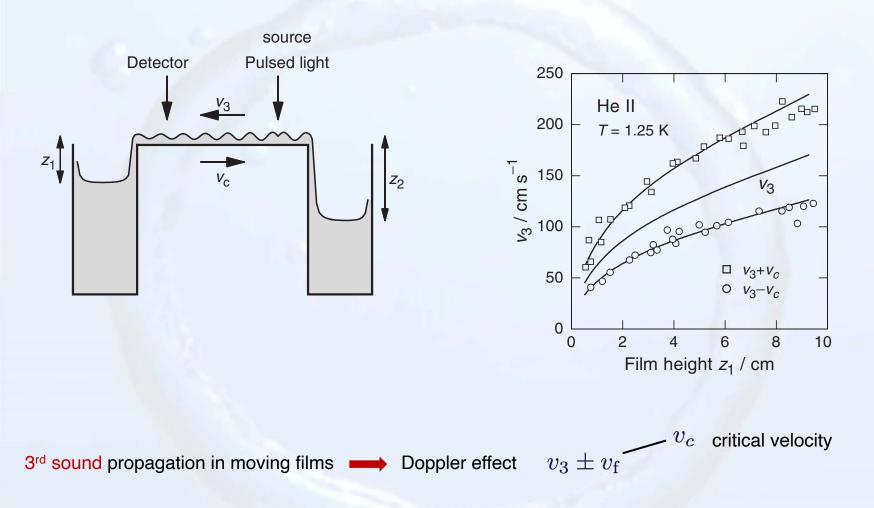
onset of superfluidity

2.3 Properties of He-II described using the two-fluid model

3rd sound in moving films:

SS 2024

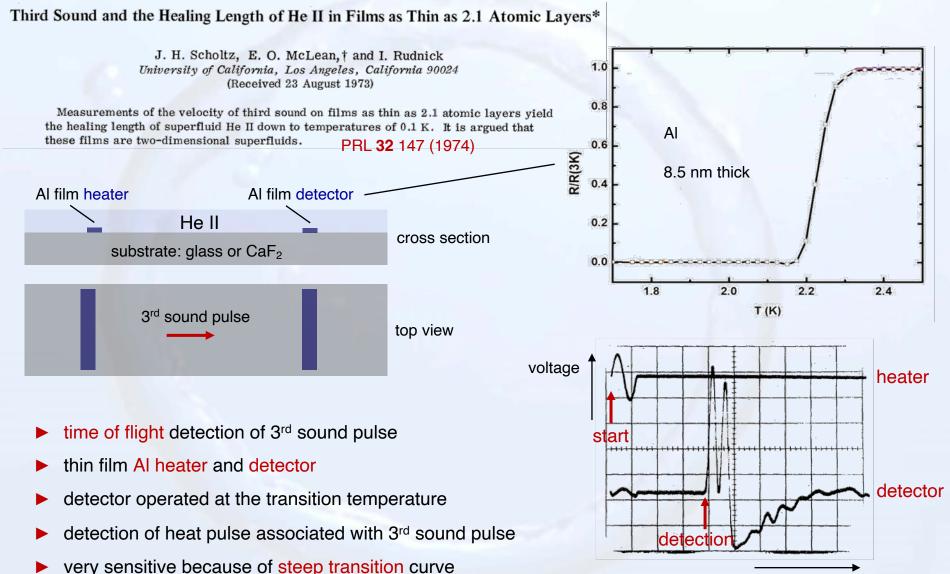
MVCMP-1



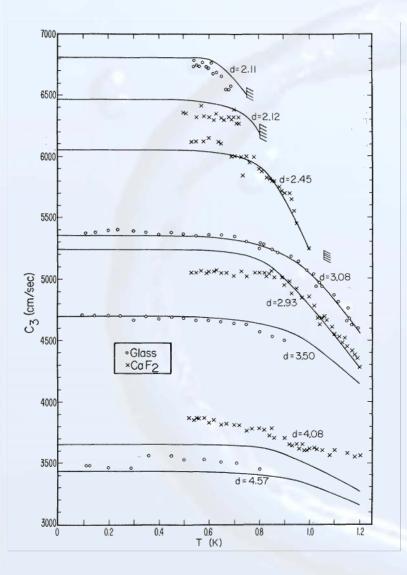
Detection of 3rd sound experiment in ultralow films:

SS 2024

MVCMP-1



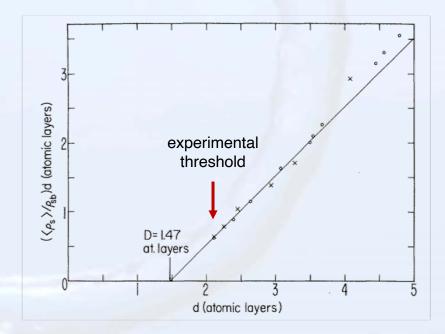
Experimental results:



for ultrathin films:

$$v_3^2 = \frac{\overline{\rho_{\rm s}}}{\rho_{\rm s,bulk}} \frac{3RT}{m} \ln \frac{p_0}{p}$$

- experimental threshold of 2.1 monolayers independent of substrate
- film thickness determine by amount of helium and surface area
- extrapolation suggests that 1.47 monolayers might be the onset threshold



(iv) Fourth sound

sound propagation in fine powders / slits $m{v}_{
m n}pprox 0$

oscillations in total density, in ratio of superfluid to normalfluid density, in pressure, in temperature, in entropy

$$v_4^2 = \frac{\varrho_{\rm s}}{\varrho} v_1^2 \left[1 + \frac{2ST}{\varrho C_p} \left(\frac{\partial \varrho}{\partial T} \right)_p \right] + \frac{\varrho_{\rm n}}{\varrho} v_2^2$$

$$\ll 1$$

$$v_{4} \approx \sqrt{\frac{\varrho_{s}}{\varrho}} v_{1}^{2} + \underbrace{\frac{\varrho_{n}}{\varrho}}_{2} v_{2}^{2} \approx \sqrt{\frac{\varrho_{s}}{\varrho}} v_{1}^{2}$$
5th sound

4th sound generation like for 1st sound, but $\,m v_{
m n}pprox 0$

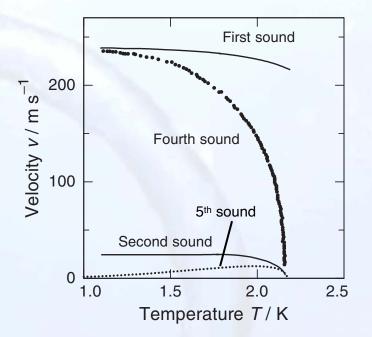
4th sound experiments

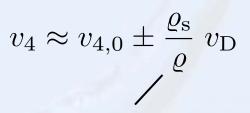
4th sound generation like for 1st sound, but $v_n \approx 0$ $T \rightarrow 0$ $v_4 = v_1 \approx 238 \text{ m/s}$, since $\varrho_s = \varrho$ $T = T_\lambda$ $v_4 = 0$

$$v_4 \approx \sqrt{\frac{\varrho_{\rm s}}{\varrho} v_1^2 + \frac{\varrho_{\rm n}}{\varrho} v_2^2}$$

 $v_{\rm D}$

persistent flow velocity





coupling of a compression wave to second sound

Einstein 1924 Bose 1925 London 1938

Basic idea of Fritz London:

dissipation-less motion

macroscopic wave function

a) Ideal Bose gas

SS 2024

MVCMP-1

non-interacting Bose gas (rough approximation for liquid He)

let's consider: 1 cm³ cube of liquid ⁴He $\triangleq 10^{22}$ atoms with mass m

eigenstates for free particles in a cube:

$$E_n = \frac{\hbar^2}{2m} \left(\frac{\pi}{L}\right)^2 n^2 \qquad \text{with} \qquad n^2 = n_x^2 + n_y^2 + n_z^2$$

 $T = 0 \longrightarrow$ all atoms are in the ground state E_{111} trivial!

But at finite temperatures?

consider energy difference between ground state and first excited state

$$\Delta E/k_{\rm B} = (E_{211} - E_{111})/k_{\rm B} \approx 2 \times 10^{-14} \,\mathrm{K}$$

if Boltzmann statistics would hold model of condensate at 1 K!!!

however, Bose-Einstein distribution is relevant here

$$f(E,T) = \frac{1}{e^{(E-\mu)/k_{\rm B}T} - 1}$$

chemical potential $\mu = \frac{\partial F}{\partial N}$

what we know:

SS 2024

MVCMP-1

ow:
$$\mu < E_{111} \longrightarrow$$
 otherwise, negative occupation $\mu \neq 0 \longrightarrow$ since particle number conserved