Experimental Studies of the Quark Guon Plasma*)

Studied in Heavy Ion Collision		$\sqrt{s_{NN}}$	
Facility	Location	System	Energy (CMS)
AGS	BNL, New York	Au+Au	2.6-4.3 GeV
SPS	CERN, Geneva	Pb+Pb	8.6-17.2 GeV
RHIC	BNL, New York	Au+Au	200 GeV
LHC	CERN, Geneva	Pb+Pb	5.5 TeV

Excellent lecture on QGP:

https://www.physi.uni-heidelberg.de/~reygers/lectures/2019/qgp/

*) Quark Gluon Soup (see Colloquium by Prof. Krishna Rajagopal)

A few basics

Heavy Ion Collision = ideal way to get conditions of extremely high T and ρ .

Lorentz contration: 100 (RHIC), 2700 (LHC)

Formation time $\tau_0 = 0.1$ fm/c = 3,3*10⁻²⁵s (fee quarks and gluons)

Rapid thermalization of quarks and gluons, after about 1 fm/c at QGP temperature order O(500 MeV)

Expansion: lifetime of few fm/c

Expansion \rightarrow cool-down Hadronization when Tc =156.5 MeV reached

(inelastic processes stop) Chemical freeze-out at T_{ch} (hadron species) Kinematic freeze-out defines momenta

Pb+Pb collisions in ALICE

Geometry of AA collisions – Impact parameter

Centrality measurement

Discussed observables sensitive to QGP

- J/ψ suppression
- Jet quenching / suppression
- Elliptical flow

J/ψ suppression

qq-potential for different T:

Idea: J/ψ are formed early in AA collision and feel the effect of the hot medium.

for T>Tc confining part disappears and short range Coulomb part is Debyescreened to give Yukawa type potential.

bound states can disappear (predicted for J/ψ at T \approx 160 MeV)

 J/ψ suppression as signature for QGP

$$R_{AA} = \frac{dN_{AA}/p_{\rm T}}{dN_{pp}/p_{\rm T}} \frac{1}{\langle N_{coll} \rangle}$$

Observation by NA50 (CERN 2000): \rightarrow "controversial" discovery of QGP

... but

J/ψ "suppression" at LHC energies

At LHC J/ $\psi\,$ is less strongly suppressed compared than at RHIC

 J/ψ production in PbPb collisions at LHC is consistent with deconfinement and subsequent statistical hadronization within present uncertainties

Jet quenching in heavy ion collisions

Hard scattering:

 \rightarrow 2 jets which have to pass the medium (QGP)

Inelastic scattering of leading parton w/ medium \rightarrow energy loss in QGP (depends where the parton started)

Suppression of "high-pt" hadrons (from primary parton collision).

Hard photons are not suppressed – don't interact w/ QGP

π / D suppression at LHC

Suppression of complete "hard-pt" jets:

Large dijet energy asymmetries in Pb-Pb

Jet quenching

Strongest suppression at most central collision, nearly independent of pt.

Elliptical flow – properties of the QGP

Anisotropy and elliptical flow:

Pressure gradients of almond-shape will lead to preferential expansion in the reactions plane.

Hydrodynamic models to relate the observed anisotropy to the properties of the QGP.

E.g.: shear viscosity η acts against buildup of flow anisotropies.

<u>Hydrodynamic models:</u> -EoS from lattice QCD -viscous hydrodynamics **-f**luctuating initial conditions -hydrodynamic evolution + hadronic cascade

Anisotropy in Heavy Ion Collisions

Example: AuAu collision in STAR

Fourier coefficients

elliptic flow

Observed anisotropy and QGP properties

Measured elliptical flow reproduced by viscous hydro models with $\eta/s = 0.2$

Anisotropies also reproduced by viscous models with $\eta/s = 0.2$

QGP is a strongly coupled liquid, with (η/s) — the dimensionless characterization of how much dissipation occurs as a liquid flows — much smaller than that of all other known liquids (but one).