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Discuss QCD tests in 
the following processes

Experimental Tests of QCD
1.Test of QCD in e+e- annihilation 
2.Running of the strong coupling constant
3.Study of QCD in deep inelastic scattering
4.Hadron-hadron collisions
5.Quark Gluon Plasma in Heavy Ion collisions



Historical Recap: Discovery of the Gluon and its Spin 
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e e qq+ − →
local parton
hadron duality

One of the first 2-jet events at PETRA

Remark: 

PETRA (1978 -) was e+e- circular accelerator at 
DESY: operated at √s between 13 and 46 GeV.

Earlier e+e- machines (e.g. SPEAR) with                
√smax ≈ 10 GeV: ee→qq events have been 
observed, however events much less jet-like 
(more spherical) due to the smaller boost. 
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Quantify the 2-jet-likeness

thrust axis = jet axis

Tn


Maximizes longitudinal 
momentum 

Thrust axis also defines the jet-axis

Jet axis follows (1+cos2θ)

Thrust distribution 

Expect T 
close to 1

Also single particle pT
distribution described 
by simple “string model” 
with single parameter.

“string tension”

pT = transverse 
w/r to jet axis

Quark spin



3-jet events:
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π
αs~

But: How to exclude that the observed 3-jet signatures are fluctuations?

Check transverse <pT
2> outside and inside 

event plane: fluctuations should be the 
same: Outside <pT

2> well described by 2-jet 
model. Inside:  “broadening” cannot be 
described, even not by higher string-tension.

π
αs~.

#
# 150

events jet2
events jet3

≈
−
−Exp:

planar



Spin of the Gluon:
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Ellis-Karlinger angle

Ordering of 3 jets: E1>E2>E3

Measure direction of jet-1 in the 
rest frame of jet-2 and jet-3: θEK

Gluon spin J=1

Angular distribution of jets depend on gluon spin:
Likely to 
be gluon



Theory Recap:  Couplings and Color Factors
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2 ~ sM α 2 ~ sM α 2 2~ sM α

couplings
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Color factor NC for simple cross section 



8

P. Z. Skands, Introduction to QCD 

(Gluon color 
charge)2

(quark color 
charge)2

(gluon 
splitting)2

Example:

Casimirs of SU(3) in standard 
convention of generators

Color factors 



Test of QCD in e+e- annihilation 
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e e q q+ − →



Theory Recap: Gluon radiation
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Gluon emission = infrared and collinear divergent

~

There are similar  divergencies arising from the 
interference with loop diagrams – they cancel each 
other for small energy and small angles.

Correction to the cross section (e.g. ee→qq(g)) from large energy gluons.

Soft gluons don’t matter for total cross section:
Time scale for gluon emission ~1/Eθ much longer than hard process.
Hadronization w/ time scale ~1/Λ can also not influence “hard” process

“good” 
perturbativ
e behavior

(coefficients determined at Z pole)



Soft collinear gluon emission – jet substructure
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for quark energies Q≈100 GeV

Surprisingly large for a perturbative result!  

Integrate emission probability to get the mean number of gluons with 
ET ≈ EΘ > Q0 cut-off scale emitted off a quark with energy Q>>Q0:

for cut-off scale Q0 ≈ΛQCD :

We need to consider next-orders.
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Possible to calculate the gluon multiplicity 
analytically, by summing all orders (n) of 
perturbation theory:

Compare to hadron multiplicity in ee →hadrons
(fit: overall normalization is free parameter):  

In general analytical calculation difficult: Instead use parton-shower Monte Carlos.

Not too bad.



13

Simulation of hadronic final states:

Hadronization models:
String (JETSET) and cluster 
(HERWIG) fragmentation.

Tricky: “Matching”



Infrared collinear safe (IRCS) observables
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An observable is infrared and collinear safe if, in the limit of a collinear 
splitting, or the emission of an infinitely soft particle, the observable 
remains unchanged. Tn



e.g; Thrust is IRCS

Jets and jet  algorithms  are not necessary IRCS

e.g. simple 
cone algorithms



How many jets – jet algorithms?

Need well defined algorithms which 
are also applicable to “theoretical 
calculations”,  i.e.  at  parton level.

In addition jet-algorithms should be 
“collinear” and “infra-red” safe: 

Problem:

There is no “natural” definition of jets. 
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Multi-jet event from OPAL



Jet Algorithms
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Iterative Jet algorithms (“Jade”-type, developed for e+ e-)

1) for all pairs of particles i, j calculate distance parameter 𝑦𝑦𝑖𝑖𝑗𝑗
2) find pair i, j with smallest 𝑦𝑦𝑖𝑖𝑗𝑗, min

3) add 4-momenta:   pi+ pj = pk replace pi, pj by pk

4) iterate till 𝑦𝑦𝑖𝑖𝑗𝑗 > 𝑦𝑦cut

Distance measures:

2 2 2 2min( , ) min( , )i j i jE E E E− −→

Jade algorithm:   IRCS but theoretically 
difficult; large higher order correction.

kT – algorithm:                                                     
better higher order behavior

anti-kT – algorithm:                                               
(→jets with only soft radiation are conical)

(relative transverse momentum squared)

often used nowadays

(invariant mass squared)



Adaptation for hadron colliders
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Due to kinematics the “jet cone” at hadron collider needs an adapted definition: 

1
2

,

,

ln i z i
i

i z i

E p
y

E p
+

=
−

Use rapidity and azimuthal angle φi: 

→ angular distance of 2 particles: 2 2 2( ) ( )ij i j i jR y y φ φ∆ = − − −

(anti)-kt algorithm:
2

2 2 2 2
2

/ /
, ,min( , ) ij

ij t i t i

R
d p p

R
− − ∆

= ⋅
Parameter to describe typ. 

jet opening: R=0.4…0.7              
(see below)

Often use  
pseudo rapidity η

2
ln tanθη  = −  

 



Cone algorithms
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Simplest cone algorithm: Iterative cone algorithms w/ progressive removal

1) Order particles according transverse momentum

2) Select particle i w/ largest pt as seed particle

3) Draw a cone with radius R (see above) around i:                                
consider all particles j with  ∆Rij < R w/r to i and calculate the 
sum of the momenta P

4) Check with seed direction – if it does not coincide, chose P  as 
new seed and repeat procedure.

5) If stable cone found: remove all particles from the list.

Easy procedure, but not infrared safe  (if seed particle loses energy…) –
true for many other cone algorithms as well.
There are Seedless Infrared Safe Cone Algorithms (SISCone) to 
overcome the problem.
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Cone algo: “nice jets” kt algo: “fuzzy jets”

“The” jet algorithm does not exist –
depends on what you want to do.

Meanwhile the most common 
algorithm is the anti-kt algorithm 
(fast, IRCS, nice jets)  

Anti-kt: “nice jets”



Multiple-jet events in e+e- annihilations: ee → hadrons @ √s≈91 GeV

i
j

ijy

Theory

yij ≥ ycut
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3 0 11( ....)s s
jet qqc c

α α
σ σ

π π− = + + ⋅
2

4 0 11( ....)s s
jet qqc c

α α
σ σ

π π− ′ ′= + + ⋅

Exclusive n-jet cross section:

Determination of αs

Acts as 
resolution 
parameter



4-jet events: Gluon self coupling and color factors

21

L3 Coll., Phys. Lett. B248 (1990)

4-jet observable that is sensitive to the ratios of 
Casimir factors: Bengtsson-Zerwas angle

Order and labels the four jets in an event in 
terms of their momenta (or energies) such that 
p1 > p2 > p3 > p4 can define the Bengtsson-
Zerwas angle: jet3 and jet4 probable gluon jets.

= angle between plane w/ 2 leading 
jets and plane w/ 2 non-leading jets.
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(w TR =1/2)

qqgg

qqqq

4-jet cross section

QCD (SU(3)): CF=4/3 CA=3A,B,C,D,E= angular dependent kinematic functions.

R



2.  “Running” of the strong coupling αs

“screening” “anti-screening”

Strong coupling αs(Q2)

Propagator corrections:

2
2

2
2

0 21

( )( )
( ) log

s
s

s

Q
Q

α µ
α

α µ β
µ

+
=

nf = active quark flavors
µ2 = renormalization scale

22
ZM=µconventionally

0 3 21
12

3( )fnβ
π

= −

)log(
1)( 22

0

2

QCD
s Q

Q
Λ

=
β

α 210MeVQCDΛ ≈with 
scale at which perturbation theory diverges 23

Recap:



Measurement of Q2 dependence of αs

a) αs from total hadronic cross section at Z pole

2

21 1 05 0 9
( ) ( )( ) ( ) . . ...QED s s

had had
s s

s s
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σ σ
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 
= + ⋅ + ⋅ + 

 

2
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ee
α ασ

σ µµ π π
 →
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αs measurements are done at given scale Q2: αs(Q2)

Final state 
gluon radiation.+)(gqqee →−+
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Example:
20 89 0 13
0 0461 0 0065

0 136 0 019

. .
. .

( ) . .

Z
had

QCD

s z

R

m
δ

α

= ±

= ±

= ±

1 QCDδ+
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3-jet rate: 
had

jetR
σ
σ −≡ 3

3 depends on αs

3-jet rate is measured as function of ycut

b) αs from hadronic event shape variables

QCD calculation provides a theoretical prediction 
for R3

theo(αs , ycut)

→ fit R3
theo(αs , ycut) to the data to determine αs

Other event shape variables (sphericity, thrust,…) 
can be used to obtain a prediction for αs

3-
Je

t-R
at

e 
[%

]

Tn


<1-Thrust>

also function of αs



c) αs from hadronic τ decays

)(~
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e
had f

e
HadronsR α

υντ
ντ

τ

ττ

+→Γ
+→Γ

=

d) αs from DIS (deep inelastic scattering):  DGLAP fits to PDFs 
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+

26
(see sect. 3)e) αs from number of jets in pp



Running of αs and asymptotic freedom
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Particle Data Group 2021

2 0 1175 0 0010( ) . .s ZMα = ±
Experimental determination.

2 0 1182 0 0008( ) . .s ZMα = ±
Alphas from the lattice:

Unweighted average w/ 
average uncertainty of the two:

2 0 1179 0 0009( ) . .s ZMα = ±



3. Study of QCD in deep inelastic scattering (DIS)

Courtesy: H.C. Schultz-Coulon 28



Recap: Deep-inelastic scattering - kinematics

)(ke± )(ke ′±

γ

Proton P

qp xP=

qp′

222 )( kkqQ ′−−=−=

)(pX ′

M

Mass
W

x = fractional momentum of struck quark

y = Pq/Pk = elasticity, fractional energy 
transfer in proton rest frame

ν = E - E′ = energy transfer in lab sxyQ =2 s = CMS energy

2 2

2 2
Q Qx
P q Mν

= =
⋅ (Bjorken x)

"(1−y)k"

kP
qPy

⋅
⋅

=

EE ′−=ν
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fixed target
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30Photon exchange ~ei
2 does not distinguish between quark and anti-quarks.

Cross section in parton model (QPM)

F2 = F2 (x)
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Deep inelastic electron-proton scattering:

• Free partons: F2=F2(x)  ⇔ “scaling” (F2 only function of x)

• Spin ½ partons:  2xF1(x) = F2(x) (Callan-Gross relation)

Kinematical relations
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31



Scaling & scaling violation (early measurements)

∑==
i

ii xqexQxFF )(),( 22
22

For larger Q2 and diff. x:

PDFs are functions of Q2 as 
expected when considering 
QCD correction.

Region of 1st SLAC 
measurement (1972):

Scaling:  F2 = F2 (x),  
PDFs are independent 
of Q2 (QPM). 

32

µ scattering



Experimental determination of  quark and gluon distributions
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Isoscalar Target:  #n=#p

Scattering at isoscalar target N with #n=#p and assuming isospin symmetry:

Use neutrino  (anti-neutrino)  scattering (w/ W exchange) 
to  distinguish between quark and anti-quark and to extract 
experimentally valence and sea quark distributions                     
(→ new structure functions F3 to account parity violation). 
For iso-scalar target one finds:

2 3[ ] [( ) ( )]N NF x u u d d xF x u d u dν ν= + + + = + − +

)]()([)]()([ 32 xQxQxxFxQxQxF NN −=+= νν

)(2
)(2

32

32

xQxxFF

xxQxFF
NN

NN

=−

=+
νν

ννMeasurement: Sea and valence quarks

Sea quarks



34

Neutrino iron (isoscalar target) scattering: Phys.Rev.D74:012008,2006
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2

3

[ ( ) ( )]
[ ( ) ( )]

N

N

F x Q x Q x

xF x Q x Q x

ν

ν

= +

= −

valence

sea

Taken from M. Thomson, based on Phys.Rev.D74:012008,2006

Determination of valence and sea quark distributions:



Recap: DGLAP and Scaling violation
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QCD evolution:

QCD predicts evolution of the PDF along  
the scale Q2.

QCD cannot predict the shape of PDF, 
PDF  must be measured!

“Symbolic”

z

z



Scaling violations for “pedestrians”
Large x: valence quark scattering Small x: sea quark scattering

Q2 ↑ ⇒ F2 ↓ for fixed (large) x Q2 ↑ ⇒ F2 ↑ for fixed (small) x

Scaling violation is one of the clearest manifestation of radiative 
effects predicted by QCD.  PDFs depend on Q2 (structure functions)

37



HERA
±e

GeV30

p

GeV900
25GeV104 ≈= peEEs

38

Measurement of PDFs at HERA
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H1 detector ZEUS detector
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2Qx
sy

=

CMS 
energy

Angular 
acceptance 
scattered e

statistics

Hadron detection limited in proton 
direction; for electron: energy 
resolution and bremsstrahlung

Accessible kinematic region
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x

Q2

Determination of PDFs relies on factorization
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Linear scale for illustration (it is not 
exactly the same pdf set, but nearly)

Eur.Phys.J.C75 (2015) 12, 580 

20
1
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20
1

20
1

Q2 evolution

https://www.desy.de/h1zeus/combined_results/

The most dramtic of these [experimental consequences], that 
the protons viewed at ever higher resolution would appear 
more and more as field energy (soft glue), was only clearly 
verified at HERA ...   F. Wilczek  [Nobel Prize 2004]



4. Hadron-hadron collisions

Factorization

Total cross section is factorized into a “hard part” and into a 
“normalization” from process independent parton distribution functions.

For all cross section estimation the knowledge of the PDF is necessary.

factorization scale

45
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