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Deconvolution

2

Finite resolution of the detector 
smears the quantities we're 
interested in. 

https://en.wikipedia.org/wiki/Point_spread_function

Example: 
Smearing of a telescope image

Goal: 
smeared information  
→ original information

This is called deconvolution or 
unfolding

"Inverse problem"

Problem can be ill-posed in the sense 
that unfolded result can be very 
sensitive to small perturbations in the 
data
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Examples in particle physics
■ Multiplicity distributions P(Nch) 
‣ Measured multiplicity differs from true charged particle multiplicity due to detector 

effects (efficiency, fake hits, …) 
■ pT spectra, e.g., π0 spectrum measured with a calorimeter 
‣ finite energy resolution and shower overlaps in a calorimeter affect the pT of the 

reconstructed shower
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The response function

■ Central object of the problem 
■ Give distribution of measured value for a given true 

value, e.g. for energy measurement: 

 
■ In the simplest case a normal distribution 
■ To include physical effects, use simulations 
■ Usually contains a lot of physics 
■ When plotting generated vs. reconstructed, 

quantity, need to normalise for fixed generated 
■ We’ll assume that we know the response perfectly 

in the following 
■ This may not always be true in the real world

R(Emeas |Etrue) = p(Emeas |Etrue)
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The response function

5

Z

⌦m

r(xm|xt) dxm = 1

Suppose we deal with continues variables (e.g., transverse momentum) 

ft(xt) :  distribution of true values (normalized to unity)

:  distribution of measured values (normalized to unity)fm(xm)

fb(xm) :  distribution of background (normalized to unity)

Response function R:

probability (density) to observe xm given xtR(xm|xt) = r(xm|xt)⇥ "(xt)

"smearing" "efficiency"

By construction, one has accN
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Typical case: Jet energy reconstruction

■ Jets are usually supposed to represent partons 
■ But not all particles belonging to the Parton 

shower may be found 
■ The momentum of the reconstructed particles 

also has an uncertainty 
■ Particles from other processes may be added as 

well 
■ Much care needs to be taken to ask the right 

question and define the response function 
■ Which parts of the event actually belong to the 

jet and which don’t? 
■ Much time and effort usually taken to define the 

simulations which yield the response function 
■ Much harder for heavy ion collisions due to large 

background
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Convolution and Deconvolution

■ For fixed response the effect is a convolution 
■ Can we undo the convolution somehow (“deconvolution”)? 
■ What about the uncertainties?
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Convolution and Deconvolution

■ The detector response tends to “wash out” peaks 
and other details 

■ Steeper parts of the distribution become less steep 
■ It seems like some information is lost due to the 

smearing 
■ Intuition: This should lead to larger uncertainties when 

inverting 
■ Details smaller than the detector resolution should be 

hard to detect

8
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Response Matrix (1)
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pj =

Z

bin j
dxt ft(xt), µj = µtot ⇥ pj

Further definitions:
:  total number of true events

ntot

mtot

:  total number of measured events

:  total number of background eventsbtot

µtot = E [mtot], ⌫tot = E [ntot], �tot = E [btot]

It is practical to work with discrete bins. E.g., probability to find  in bin j:xt

Ignoring backgrounds, the expected measured number of entries in bin i is:

⌫i = µtot

Z

⌦t

dxt Prob(xm in i |true xt , detected)

⇥ Prob(detect xt)⇥ Prob(produce xt)

= µtot

Z

bin i
dxm

Z

⌦t

dxt r(xm|xt)"(xt)ft(xt)
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Response Matrix (2)
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⌫i = µtot
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Further definitions:

This may be written as

with the components of the response matrix  given byRij
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Response matrix (3)
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NX

i=1

Rij = "j

⌫i =
MX

j=1

Rijµj + �i ~⌫ = R~µ+ ~�

Rij = Prob(observed in bin i |true in bin j)

In other words:

Obviously, summing the response matrix over i gives the efficiency:

In compact matrix form (including background):

Response matrix depends on ft(xt) which we want to know. However, if we make 
the bins small enough ft(xt) ≈ const. within a bin and drops from the ratio:

Rij =

R
bin i dxm

R
bin j dxt r(xm|xt)"(xt)ft(xt)R

bin j dxt f (xt)
⇡ 1

�xt,j

Z

bin i
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Z
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Response matrix (4)

■ The response matrix usually comes from 
simulations 

■ Draw true and reconstructed bins 
■ If true distribution is different from simulated, this 

can give a bias 
■ That is only a problem, if the response varies 

strongly over a bin 
■ Smaller bins are better in this regard 
■ But it is not the only consideration 
■ We will ignore statistical fluctuations in the 

response matrix here
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Unfolding by inverting the response matrix (1)
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Replace     by     to  obtain and obvious estimator for the true distribution:

~̂µ = R�1(~n � ~�)

~⌫ = R~µ+ ~�

We have 

~⌫ ~n

This solution minimizes

�2(~µ) = (~⌫(~µ)� ~n)TV�1(~⌫(~µ)� ~n)

It can be shown that the covariance matrix of the solution is given by

Vi ,j = cov[ni , nj ]where

U = R�1V (R�1)T

This is the unique solution to the original problem!
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Example

■ Response is Gaussian, but with a width less than 
one bin 

■ Measurement fluctuates around the convoluted 
distribution
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Example - continued

■ Unfolded distribution agrees with true distribution - convolution is undone 
■ Covariance matrix shows anticorrelation between adjacent bins 
‣ All counts can come from current or adjacent bin
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Unfolding by inverting the response matrix (2)

16

It can also be shown that matrix inversion is unbiased an has minimal variance.

true distribution solid line: ~µ

dashed line: 
sampled data 

estimate

~n

This sounds good … let's try it.

This looks like a disaster … unfolded distribution very different from the true one

Cowan, http://inspirehep.net/record/599644

from Poisson(ni , ⌫i )

~⌫ = R~µ ~̂µ = R�1~n
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Unfolding by inverting the response matrix (3)

17

Another example:
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■ Same conclusion: we don't get the desired (smooth) answer - what is going on here? 

■ Important: Don’t confuse symptom and cause  the large fluctuations show that we forgot 
something

→
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“Unphysical” solutions

■ In the literature these are often called “unphysical”, “unacceptable”, “useless” or 
similar 

■ Usually in papers that propose a new type of regularisation 
■ The phrasing also suggests that they usually appear 
■ Have to be a bit careful about the language

18
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Binning and resolution

■ The response function represents the detector 
resolution for the quantity on the horizontal axis 

■ E.g. for astronomy, the point spread function tells 
us something about the smallest resolvable angles 

■ When unfolding, we are asking: “How many true 
counts are in this bin?” 

■ If the bin size is smaller than the resolution, we 
would expect this to lead to problems 
‣ We are asking for an answer at a smaller scale than 

the resolution 
■ There is a variety of possible distributions that lead 

to a similar smeared out result 
■ In general, we can measure things smaller than the 

resolution, but it requires a lot of statistics

19

The bins are much smaller than the resolution here
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Example for comparison of bin width and resolution

■ Same example as before 
■ Response is based on normal distribution with 

 

■ Binning is  and  
■ We would expect that the second turns out to be 

a kind of ill-posed question 
■ However: Binning represents loss of information - 

so the smaller binning actually contains more 
information 

■ The actual effect requires a more subtle 
understanding

σ = 0.055
0.1 0.05
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Response matrices for example

21
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Large and small binning comparison

■ As expected - large uncertainties for the small 
binning result 

■ But how is this possible? The smaller binning 
should contain more information! 

■ The plotted error bars are only the diagonal 
elements of the covariance matrix 

■ We can refold to get back the measured data - 
no information is lost in matrix inversion 
method 

■ How can we use the information in the 
covariance?
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Fit to unfolded results

■ We learned how to fit with correlated 
uncertainties 

■ Fitting with use of the entire covariance 
matrix gives almost identical results 

■ For model comparison, the large diagonal 
elements in the covariance matrix do not 
matter! 

■ Thus, the problem exits only for visual 
presentation - the answer is fine in both 
cases
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What's wrong with the matrix inversion method? 

24

Unbiased, minimum variance, actually also a ML estimator … all very nice!

The result is not wrong, it is just not nice for plotting  
‣ Does not really look like the original distribution 
‣ Large correlation between bins - not visible in the error bars

"Applying the response matrix R smears out fine structure  
→ applying R–1 creates (usually unwanted) structure"

More desirable solution by adding (smoothness) constraints.  
However, this will produce a bias.

Depending on use case, find an acceptable balance between bias and 
smoothness.
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To unfold or not to unfold?

25

[C. Pruneau,  
Data Analysis Techniques for Physical Scientists]

From S. Oser's lecture:

The most important advice I can give about deconvolution is “Don't”.  
 
It's a lot of work, and often produces biased or otherwise unsatisfactory 
results. Moreover it's often unnecessary. 

"Forward fitting" is much easier 
‣ Take theory prediction 
‣ Convolve it with the response of the detector 
‣ Compare smeared theory directly with the data
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Approaching unfolding

26

1. Easiest case: No unfolding at all 
■ Publish result on level of reconstructed quantities 
■ Also publish response function 
■ Comparison to models then by applying the response to them 

2. Unfold using matrix inversion/least squares 
■ Unbiased result, good for comparison to models 
■ Need to publish covariance matrix 
■ Good idea to consider binning to avoid making bins smaller than the resolution 
■ Useful if applying response is not feasible for users (e.g very complex) 

3. Regularised unfolding 
■ Accept a bias in the result in exchange for smoothening the fluctuations 
■ If this decreases correlations, the result is easier to understand by eye



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 9. Unfolding

Edge of the measured region

■ Often times, measurements are only done in 
some range 

■ E.g. , ,  often have a minimum given by 
what the detector can measure, and a 
maximum because statistics run out 

■ However, the response connects regions 
outside the measured range 

■ This needs to be considered! 
■ In many cases, the contribution is small, e.g.: 
‣ Measure these regions with large uncertainties 
‣ Treat as systematic - assume probability 

distribution for content and marginalise 
■ The propagated uncertainty contribution will 

often be small in the measured region

pT E pjet
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The red region is the main one of the result. The adjacent bins were still 
measured, the contribution of the ones after that was treated as a systematic 
by checking the result of wildly varying contributions. (beauty hadron decay 
electron measurement) 
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Unfolding software: RooUnfold 
(ROOT Unfolding framework)

28

RooUnfold is a framework for unfolding (AKA "deconvolution" or "unsmearing"). It currently 
implements six methods:

• iterative ("Bayesian"; as proposed by D'Agostini);

• singular value decomposition (SVD, as proposed by Höcker and Kartvelishvili and 

implemented in TSVDUnfold);

• bin-by-bin (simple correction factors);

• an interface to the TUnfold method developed by Stefan Schmitt;

• simple inversion of the response matrix without regularisation; and

• iterative dynamically stabilized unfolding (IDS) by Bogdan Malaescu, implemented by 

Chris Meyer.

It can be used from the ROOT prompt, from C++ (Cling) or Python (PyROOT) scripts, or 
linked against the ROOT libraries.

https://gitlab.cern.ch/RooUnfold/RooUnfold

https://arxiv.org/abs/1010.0632
https://arxiv.org/abs/hep-ph/9509307
https://root.cern.ch/doc/master/classTSVDUnfold.html
https://root.cern.ch/doc/master/classTUnfold.html
https://arxiv.org/abs/1205.6201
https://arxiv.org/abs/0907.3791
https://root.cern.ch/
https://gitlab.cern.ch/RooUnfold/RooUnfold
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Bin-by-bin method (1)

29

Assume shape of true spectrum and determine correction factor for each bin 
(usually determined from Monte Carlo simulation):

µi = Ci (ni � �i ) Ci =
µMC
i

⌫MC
i

Works if smearing (bin-to-bin sharing) is negligible, only loss due to finite 
efficiency:

Rij ⇡ �ij"j

Obviously works, too, if MC = nature.

Used very often, but has issues …

Expectation value for corrected data:

E [µ̂i ] = CiE [ni � �i ] = Ci (⌫i � �i ) ⌘ Ci⌫
sig
i
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Bin-by-bin method (2)

30

Inserting the Ci's one can determine the bias:

E [µ̂i ] =
µMC
i

⌫MC
i

⌫sigi =

 
µMC
i

⌫MC
i

� µi

⌫sigi

!
⌫sigi

| {z }
bias

+µi
no bias only if  
MC = nature

Covariance matrix of the corrected data (smearing fluctuations independent 
between bins)

Uij = cov[µ̂i, µ̂j] = CiCj cov[n
sig
i , nsigj ]

| {z }
0 for i 6=j

= C 2
i Var[n

sig
i ]�ij

Iterative bin-by-by method 
‣ Start with plausible guess of true spectrum 
‣ Apply correction to measurement 
‣ Generate new correction factors from corrected spectrum of previous iteration 
‣ And so on … usually a few iterations sufficient
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Regularized unfolding

31

Matrix inversion is the maximum likelihood solution:

Idea: accept solutions that are close to maximum likelihood estimate:

ln L(~µ) � ln L(~µmax)�� ln L(~µ)

Define a smoothness function S that gets bigger when the unfolded solution 
becomes smoother. 

The task then is to maximize

parameter that controls the 
strength go the regularization

smoothness function

Independent 
Poisson 
fluctuations:

ML estimator:ln L(~µ) =
MX

i=1

(ni ln ⌫i � ⌫i )
~̂⌫ = ~n

! ~̂µ = R�1(~n � ~�)

�(~µ) = ln L(~µ) + ⌧S(µ)
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Tikhonov regularization

32

Smoothness measure for the deconvoluted function f:

Minus sign makes S small when k-th derivative is large

Tikhonov for k = 2: 

Implementation by A. Höcker, V. Kartvelishvili: Singular Value Decomposition 
(NIM A372 (1996) 469, hep-ph/9509307, TSVDUnfold in ROOT)

Minimizes      

S [f ] = �
Z

dx

✓
dk f

dkx

◆2

k = 1, 2, 3, ...

S(~µ) = �
M�2X

i=1

(�µi + 2µi+1 � µi+2)
2

numerical estimate of the 
second derivative:

�(~µ) = ln L(~µ) + ⌧S(µ),

�2(~µ) + ⌧
X

i

[(µi+1 � µi )� (µi � µi�1)]
2

■ Introduces a penalty term for changes in the slope 
■ Possible interpretation: Prior information about the smoothness of the result
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RooUnfold with SVD algorithm

33

Gaussian smearing, 
systematic translation, and 
variable inefficiency

Residuals Correlation 
matrix

RooUnfold with SVD algorithm

χ2
bin=42

χ2
cov=535

k = 30

Tim Adye - RAL RooUnfold 22

Tim Adye, Unfolding in HEP, https://indico.cern.ch/event/671301/contributions/2745801
http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html
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Regularisation strength

■ Varying the refactor of the penalty term changes the 
regularisation strength 

■ Structure in true distribution will be washed out 
‣ Dangerous for distributions with a lot of structure (e.g. 

peaks) 
■ Due to the additional introduced information, 

fluctuations can be smaller than  

■ Think about what the actual prior information is 
■ The penalty term for each bin should depend on the 

distance to the adjacent bins - consider for unequal 
bins 

■ Bias depends on the true distribution

N

34

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(x
)

ρ

0

0.5

1

1.5

2

2.5

3
 

True Distribution
 = 0, unfoldedα
 = 0, Fitα

, unfolded4 = 10α
, Fit4 = 10α
, unfolded6 = 10α
, Fit6 = 10α
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Another example

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.5

1

1.5

2

2.5

3(x
)

ρ

 
True Distribution

 = 0, unfoldedα
 = 0, Fitα

, unfolded4 = 10α
, Fit4 = 10α
, unfolded6 = 10α
, Fit6 = 10α

Here the regularisation increases the bias more quickly
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Regularised unfolding algorithms

■ Maximum likelihood with Tychonov regularisation 
‣ Real number for regularisation strength 
‣ Include prior information about smoothness this way 

■ Singular Value Decomposition 
‣ Used as a way to implement the previous for Gaussian uncertainties 

■ Bin-by-bin unfolding 
‣ Simplest; assumes that the simulated distribution is similar to the true one 

■ Iterative (“Bayesian”) unfolding 
‣ Uses an iterative method, starting at smooth distribution, converging to 

unregularised 
‣ Regularisation by stopping before convergence - unclear what prior information 

this would correspond to 
‣ Computationally efficient (compared to inverting large matrices) 
‣ Sometimes additional smoothing is done within the steps

36
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Regularization based on entropy

37

Shannon entropy of a discrete probably distribution:

all pi equal → maximum entropy (max. smoothness)
pi = 1, all others 0 → minimum entropy

Use entropy as regularization function:

This gives the distribution with the maximum entropy consistent within the 
selected tolerance with the ML solution

Entropy related to number of different ways μtot objects can be distributed to 
obtains histogram ⃗μ = (μ1, . . . , μM)

⌦(~µ) =
µtot!

µ1! · ... · µM !
ln⌦(~µ) ⇡ µtotH(~µ) 

S(~µ) = H(~µ) = �
MX

i=1

µi

µtot
ln

µi

µtot

H = �
MX

i=1

pi ln pi

Stirling’s approximation
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Iterative unfolding (1) [a.k.a. “Bayesian” unfolding]

38

C1 C2
… CMC3

…E1 E2 E3 TEN

M causes

N effects

trash bin for 
undetected events

Causal network:

Response matrix:

Rji = P(Ej |Ci , I )

E [nj |µi ] = P(Ej |Ci , I ) · µi = Rji · µi

I: prior knowledge about 
probabilities of the causes Ci
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Iterative unfolding (2)

39

Bayes theorem:

P(Ci |Ej , I ) =
P(Ej |Ci , I ) · P(Ci |I )PM

k=1 P(Ej |Ck , I ) · P(Ck |I )

We can write this as

✓ij := P(Ci |Ej , I ) =
Rji · P(Ci |I )PM

k=1 Rjk · P(Ck |I )

Estimate for number of true events in bin i given that we measure nj 
events in bin j:

µi |nj =
P(Ci |Ej , I ) · nj

"i
=

✓ij · nj
"i
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Iterative unfolding (3)

40

Summing over all observed bins:

µi |~n =
1

"i

NX

j=1

✓ij · nj

"i =
NX

j=1

P(Ej |Ci , I ) =
NX

j=1

Rji

By definition we can write the efficiency as

Response matrix usually from Monte Carlo simulation
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Iterative unfolding (4)

■ Choose prior distribution P(Ci,I) 
■ Often prior = measured distribution 
■ Update prior according to measured values 
■ iterate 
■ Converges to unregularised case 
■ Limited number of iterations provides implicit 

regularization

41

This procedure is applied iteratively:

Shepp/Vardi 1982, Mülthei/Schorr 1986  
G. D'Agostini, A Multidimensional unfolding method based on Bayes' 
theorem'', Nucl. Instrum. Meth. A 362 (1995) 487 (see also 
arXiv:1010.0632) 
V. Blobel, Unfolding methods in high-energy physics experiments,  
https://cds.cern.ch/record/157405

From talk by Günter Zech 2011

https://indico.cern.ch/event/107747/contributions/32646/attachments/24318/35001/unfoldzech1.pdf
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RooUnfold with iterative Bayesian algorithm

42

Tim Adye, Unfolding in HEP, https://indico.cern.ch/event/671301/contributions/2745801
http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html

RooUnfold with Bayes algorithm

Residuals Correlation 
matrix

Gaussian smearing, 
systematic translation, and 
variable inefficiency

χ2
bin=47

χ2
cov=9178

3 iterations

Tim Adye - RAL RooUnfold 21
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Summary

43

■ Measurement “folds” true distribution with response matrix 
■ Unfolding inverts this step 
■ Sometimes easier to skip and publish only measured distribution + response 

■ Unbiased result from finding minimum  solution to folding equation; equivalent to 
inverting response matrix 

■ If response is wide compared to binning, individual bins have large uncertainties and 
strong correlations 

■ For nicer plots: Regularisation methods 
‣ Essentially implement prior knowledge about smoothness, but may also be ad hoc 
‣ Tychonov regularisation makes this explicit, while e.g. iterative unfolding leaves this very 

vague 
■ Regularisation makes the result easier to interpret, but introduces a bias 
‣ Make sure the added information about smoothness is information you actually have

χ2
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Some more practical tips

■ Some problems are phrased as statistics problems, but are actually about physics 
‣ Which model should we use to describe the detector/Is the background linear or exponential? 
‣ How do we combine the different models into an uncertainty/what is their relative status? 
‣ Which systematics do we need to check? 

■ For Bayesians: 

‣ Some frequentist methods are quite useful e.g.  tests for quickly reject a model or to find 
systematic uncertainties 

‣ Much of particle physics is done within the frequentist paradigm, so knowing the methods is not optional 
■ For Frequentists: 
‣ For many systematic uncertainties, it is very natural to think of them in a Bayesian way (e.g. theory 

uncertainties) - even if you do the rest of the analysis in a frequentist approach 
■ Whenever someone proposes an (ad hoc) approach to a problem, it can often be useful to ask, which 

fundamental approach it is supposed to approximate - this helps avoid bad ideas

χ2/ndof

44



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 9. Unfolding

Goodbye

martin.andreas.volkl@cern.ch
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