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Deconvolution

Finite resolution of the detector
smears the quantities we're
iINnterested In.

Goal:
smeared Information
— original information

This is called deconvolution or Tmago
unfolding e
PSF

‘Inverse problem”

Example:
Problem can be ill-posed in the sense Smearing of a telescope image
that E{nfdded result can belvery. https://en.wikipedia.org/wiki/Point_spread_function
sensitive to small perturbations in the
data
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Examples In particle physics

= Multiplicity distributions P(Ncn)
» Measured multiplicity differs from true charged particle multiplicity due to detector

effects (efficiency, fake hits, ...)
= O7 Spectra, e.qg., iV spectrum measured with a calorimeter

» finite energy resolution and shower overlaps in a calorimeter affect the pr of the
reconstructed shower

—xample: multiplicity distributions in pp collisions ArXiv-091 2 0023
gr I N o
- .:>§§S§§< — True - — True
: : R S I M 104 i e e
X Measured : X Measured

e

N e
= X > i i 5 5 5
H : X : : : : :
: : : P : : : : :
: . . . . . . 105—'></\/ -------- ‘ --------- ‘f
ll'll | I | l 1 1 1 1 l 1. 1 1 1 l FI | I | l 1. 1 1 1 l ] ] I/\I | I | l L 1 11 l 1 1 1 1 l 1 1 1 1 l L1 1 1 l
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Multiplicity Multiplicity
true N's contributing to measured N's for a true N = 30

measured N = 30 - . . . ) .
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The response function

Central object of the problem

Give distribution of measured value for a given true

value, e.g. for energy measurement:

R(Emeas | true) = p(E

meas ‘ tI'llﬁ)

In the simplest case a normal distribution

To include physical effects, use simulations

Usually contains a lot of physics

When plotting generated vs. reconstructed,
quantity, need to normalise for fixed generated

We’
N th

| assume that we know the response perfectly
e following

= This may not always be true in the real world

Counts
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Reconstructed multiplicity
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Testbeam Data

— Crystal Ball function fit

ALICE FoCal-H wo. FoCal-E, Prototype 2
CERN SPS H2, November 2022
Hadron beam: 300 GeV
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The response function

Suppose we deal with continues variables (e.g., transverse momentum)

f:(x¢) : distribution of true values (normalized to unity) 51007 I1
fm(Xm) : distribution of measured values (normalized to unity) o . :
fo(Xm) : distribution of background (normalized to unity) I e R 107
60— =
Response function R: 403_
I 1072
R(Xm|x:) = r(xm|x:) X (x¢) probability (density) to observe xm given xi _
/ 201~ ALICE simulation
\ I pp, \s =5.02 TeV, |n| < 0.8
||Smear|ngn "effICIeﬂCy" | 0.15 GeV/c < ’OT <10 GeV/c
ol 1l 1y
0 20 40 60 80 100
N

accC

By construction, one has

Comparison of created and accepted charged particles

/ r(Xml|x:) dxm = 1
Q,
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Typical case: Jet energy reconstruction

anti-k,, R=1

Jets are usually supposed to represent partons

But not all particles belonging to the Parton
shower may be found

The momentum of the reconstructed particles
also has an uncertainty

Particles from other processes may be added as
well

Much care needs to be taken to ask the tht The anti-kt jet clustering algorithm, Cacciari, Salam
guestion and define the response function

-t
o

& ek meoapcos 1§ [k Rsosngcos L
Which parts of the event actually belong to the 8107 4= P =20 GGV:++3 8 8] 5w backoround fluctutions inciuded .
: : 110 Em-2 PPN g -0 % e 20< P <25GeVic
jet and which don’t” 2 s . 3 of o mamimo . :
. . o -4 _O_-.- 9 - < p;(r:t fet < eV/c u
Much time and effort usually taken to define the 5%, - e & BT P Pramse % ;
simulations which yield the response function S0tk o - 1 dr _.
. o 107 F —=— DeIt,e?tor response [ » ]
Much harder for heavy ion collisions due to large | e combined unfoiding marix OM k-
baCkgrOund 10-QOI - I1I0I - I2I0I - I3I0I - 4I0 - I5I0I - I6I0I - 7I0 ~ -1 ~ I-0I.8I | I-OI.GI | -0I4 | I-OI.2I ~ (I) — IO{ZI | I0!4I
P '(I"?::h jet (P '(Ii'?::h jet-p "I)'?::th jet)/p :’?::th jet
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fx)

109 -

1071

102

Convolution and Deconvolution

—— True distribution 0.8 - response
3 05
‘:EI(’ 0.3
0.2
= S — N
—— measured
?
= For fixed response the effect is a convolution '
= Can we undo the convolution somehow (“deconvolution”)?
= \What about the uncertainties” 02— : ; : : -

X
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Convolution and Deconvolution

= The detector response tends to “wash out” peaks | — Tue distrbution
and other detalls 100 -

= Steeper parts of the distribution become less steep

|t seems like some information iIs lost due to the
smearing

fl x)

= |ntuition: This should lead to larger uncertainties when 107" 1
inverting '

®» Detalls smaller than the detector resolution should be
nard to detect

102
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Response Matrix (1)

Further definitions:

Mot : total number of true events
Niot . total number of measured events

biot : total number of background events

Uiot — E[mtot]1 Viot — E[ntot]1 6tot — E[btot]

[t is practical to work with discrete bins. E.g., probability to find x, in bin:

Pj — / dx; ﬁr(Xt), i = Hiot X Pj
bin j

lgnoring backgrounds, the expected measured number of entries in bin 7 is:

V; = ,utot/ dx; Prob(x,, in i|true x;, detected)
€2

X Prob(detect x;) x Prob(produce x;)
— Mtot/ de/ dx; r(Xm‘Xt)g(Xt)ﬁf(Xt)
bin i Q2;
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Response Matrix (2)

Further definitions:

Jj=1

This may be written as

dx; = / dx
/Qt t Z bin J t

:i / - / gy, OO )
bin i bin j '

14 / oot

M
= > Ry
j=1

This Thesis

Ol:ru.lu.I...I...I...I...I...I...I...

02468101214p

PhD Thesis of M. VOlki

with the components of the response matrix R;; given by

R; =

fbini dXm

fbin

; dx; r(Xm|x¢)e(xe ) fe(X¢)

fbinj dXt f(Xt)

16

t,true

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

inbinlp

o
Nl

o
o))

30<p <4.0GeV/c
t,true

This Thesis

10 1 2 1 4
p (GeV/c)
asure
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Response matrix (3)

In other words:

R;; = Prob(observed in bin i|true in bin j)

Obviously, summing the response matrix over / gives the efficiency:

N
> Rij=c¢
=1

In compact matrix form (including background):
M
vi =Y Rjuj+ B 7=Ri+j
j=1

Response matrix depends on fi(xt) which we want to know. However, it we make
the bins small enough fi(xi) = const. within a bin and drops from the ratio:

dXxy [ dXe F( X X )e( X ) fe( X 1
R; — Jbin fbln_] e r(Xm|Xe)e(Xe ) fe () N / de/ e r(xm|x:)2(x,)
fbin_j dx: f (x:) AXtj Jbin i bin |

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. VoIkl | 9. Unfolding 11




Response matrix (4)

simulations

ne response matrix usually comes from

Draw true and reconstructed bins

It true distribution Is different from simulated, this

can give a bias

That is only a pro
strongly over a bi

olem, If the response varies

A

Smaller bins are better in this regard

Sut 1t is not the only consideration

We will ignore statistical fluctuations in the
response matrix here

part.
ch

Z

1 [ [ [ | [ [ [ | [ [ [ | [ [ [ | [ [ [

- ALICE simulation, ideal alignment
- pp, Vs =13.6 TeV
- Ch-particle jets, anti-k;, R=0.4 "

08 40 < pP <60 GeV/e N
— T, ch. jet L
| det.
I |77jee; | < 0.5 m I-l. . -
0.6 :r '|" B
— - H B

0.4

0.2

ALI-SIMUL-550541

OO 0.2 0.4 0.6 0.8 1

o

det.
4 ch
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Unfolding by inverting the response matrix (1)

We have
7=Ri+j3

Replace v by nto obtain and obvious estimator for the true distribution:
i = R - )
This solution minimizes
(i) = () — i)' V- H(#(f@) — i) where Vi = cov[n;, )]
't can be shown that the covariance matrix of the solution is given by
U=R1'VRH'
This is the unigue solution to the original problem!
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3 —— True Distribution
—— After response - large binning
25 —— Measurement

T

1.5

=<

=<

%

0.5
N .
O | I | | I | | L 1 1 1 | I | | I | | | I I | | I | | I | | I | | ] N O
0 01 02 03 04 05 06 07 08 09 1 0O 010203 04 05 0.6 0.7 0.8 0.92(
X true

= Response is Gaussian, but with a width less than

one bin

= Measurement fluctuates
distribution

around the convoluted
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Example - continued

Covariance matrix

B w+ 10
3 o F
- o = 9F
| True Distribution n
25 o . 8
g = —— Unfolded distribution w/ large binning :
_ U
2 ! 6f-
1.5:— 55—
- 4
1:— 3f
_ 2:
0.5
B 1
O_IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII O lllllllllllllllllllIlllllllllllllllllll
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 o 1 2 3 4 5 o6 7 8 9 10

X bins #

= Unfolded distribution agrees with true distribution - convolution is undone
= Covariance matrix shows anticorrelation between adjacent bins

» All counts can come from current or adjacent bin
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Unfolding by inverting the response matrix (2)

It can also be shown that matrix inversion is unbiased an has minimal variance.

This sounds good ... let's try it.

400

200

Cowan, http://inspirehep.net/record/599644

|

(a)

AAAAAAAAAAAAAAAA

true distribution i

his looks like a disaster ...

1102
10000 ¢~ S— I
400 } (b) ©)
5000 | 1
o ks | LT »H—»—
200 } -|-
_5000,
0 2 -1ooooo 025 05  0.75 1
X
solid line: 7 = Rji estimate ;= R 17
dashed line: |
from Poisson(n;, v;)
-
sampled data n

unfolded distribution very different from the true one
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Unfolding by inverting the response matrix (3)

Another example: 075 025 O

025 050 025 0
r_| 0 025 050 025
0 025 050

Entries

PSSR SRR O S 0 R S S

Entries

PSR SRR O S S N TN S S S

2000 E- bbb 20005+ b L

1500[- 1500[-

1000f- 1000f-

5000

5000

-500—i--l-;-I--i--l--l-;-i-I--I--I”i-;-l--l--i--I-;-I--i--l--l-;-:I-I--I--I”i-;-I--I--i--l-;-l--i--l--l- -500—i--l-;-l--:r-l--l-liI-I--I“i-;-l--l--i--I-;-I--:r-l--l--I-i-l--l--l-.i-;-l--lil--l-l--:r-l--l-
0O 2 4 6 8 10 12 14 16 18 O 2 4 6 8 10 12 14 16 18
m t

= Same conclusion: we don't get the desired (smooth) answer - what is going on here?

= |mportant: Don’t confuse symptom and cause — the large fluctuations show that we forgot
something
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“Unphysical” solutions

400 | (a)

200

= |n the literature these are often called “unphysical”, “unacceptable”,

similar

400 ¢

200 ¢t

X 102
10000 — —
(b) (c)
- '—\q 5000 F
) | r
- 0_[ + l .le ++-b—
_5000.
f".
L e —10000
0 0295 0B 075 1 0 025 05 0.75 1
X X
" “useless” or

Usually in papers that propose a new type of regularisation
The phrasing also suggests that they usually appear
Have to be a bit careful about the language
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Binning and resolution

The response function represents the detector
resolution for the quantity on the horizontal axis

—.g. for astronomy, the point spread function tells
US something about the smallest resolvable angles

When untolding, we are asking: “How many true
counts are in this bin®?”

It the bin size I1s smaller than the resolution, we
would expect this to lead to problems

» We are asking for an answer at a smaller scale than
the resolution

There Is a variety of possible distributions that lead
to a similar smeared out result

N genera
resolution

, we can measure things smaller than the
, but It requires a lot of statistics

— binned data
—  response

40 A

30 -

25 A

fx)

20

15 - —

10 +

The bins are much smaller than the resolution here
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Example for comparison of bin width and resolution

Same example as before 3

—— True Distribution

Response Is based on normal distribution with

— After response - large binning

o = 0055 2_53_ —— After response - small binning
Binning is 0.1 and 0.05 .

We would expect that the second turns out to be . ———

a kind of ill-posed question : —=

However: Binning represents loss of information - (= =

so the smaller binning actually contains more - *{%

: : 0.5

iInformation - \\T
The actual effect requires a more subtle Op b e b o Ll

understanding . S
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Response matrices for example

sured

30.9
£

>

1

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

OO 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Xtrue

1

sured

30.9
£
X

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

OO 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Xtrue
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arge and small binning comparison

unfolded results

—~~
~
Q

31 o
As expected - large uncertainties for the small 25F e
biNnNing result 23} ‘
But how is this possible? The smaller binning F \\\\
: : : T N
should contain more information! : \\\
1
: - N
The plotted error bars are only the diagonal I N
: : 0.5
elements of the covariance matrix : \R
0'....I....I....I....I....I....I....I....I....I....
We can refold to get back the measured data - ° 01 02 03 04 05 06 07 08 09
no information is lost in matrix inversion covarance matrices
method 10 Efg's « 20p
5 9 5 18f
How can we use the information in the 3 04 tep
covariance” : I
5 0 10;—
;‘ 02
2 ~0.4 4;—
e R o S e S .
bins # bins #
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Fit to unfolded results

L = i

We learned how to fit with correlated = 3 —— True Distribution

C = Unfolded distribution w/ large binning
UﬂCertaIﬂtleS B —— Fit of Large Binning
o | | | 2_5_— —-—U.nfolded distribu.tion w/ small binning
-itting with use of the entire covariance - } | Tt of Smell Binning
matrix gives almost identical results 2 *
For model comparison, the large diagonal b \\\\
elements in the covariance matrix do not : \\\
matter! 1 \\
Thus, the problem exits only for visual - \\
presentation - the answer is fine in both s N\
Cases O_IIIIIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|I\I\

0 0.1 02 03 04 05 06 0.7 038 0.9 1
X
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What's wrong with the matrix inversion method?

Unbiased, minimum variance, actually also a ML estimator ... all very nice!

The result is not wrong, it Is just not nice for plotting

» Does not really look like the original distribution

» Large correlation between bins - not visible in the error bars

"Applying the response matrix R smears out fine structure
— applying R-1 creates (usually unwanted) structure”

More desira
However, th

nle so

s will

ution by adding (smoothness) constraints.

oroduce a blas.

Depending on use case, find an acceptable balance between bias and
smoothness.
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[C. Pruneau,

TO UnfO‘d or nOt J[O UnfO‘d? Data Analysis Technigues for Physical Scientists]

From S. Oser's lecture:

he most important advice | can give about deconvolution is “Don't”.

It's a lot of work, and often produces biased or otherwise unsatistactory
results. Moreover it's often unnecessary.

"Forward fitting" Is much easier
» Take theory prediction
» Convolve it with the response of the detector

» Compare smeared theory directly with the data
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Approaching unfolding

1. Easiest case: No unfolding at all

= Publish result on level of reconstructed quantities
= Also publish response function
= Comparison to models then by applying the response to them

2. Unfold using matrix inversion/least squares

= Unbiased result, good for comparison to models

= Need to publish covariance matrix

= Good idea to consider binning to avoid making bins smaller than the resolution
= Useful if applying response is not feasible for users (e.g very complex)

3. Regularised unfolding

= Accept a bias in the result in exchange for smoothening the fluctuations
= |f this decreases correlations, the result is easier to understand by eye
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Edge of the measured region

Often times, measurements are only done in
SOME range

=.9. P, £, pje, Often have a minimum given by

815 ~0.8[F
what the detector can measure, and a N =
. . . EAr — 0.7
maximum because statistics run out > | 5 o<p  <40GeVIe
121 <€ 0.6F O<Py e =%
However, the response connects regions 1of bl
outside the measured range 8l 05  Sodf
' - [ —0.4 -
This needs to be considered! °F DU
4 ' 0.2F This Thesis
In many cases, the contribution is small, e.g.: i Y : [
- This Thesis —10. '
» Measure these regions with large uncertainties T "'g"'1'o"'1'2"'1'4;"1'6—0 % 21”4WG

» Treat as systematic - assume probabillity

t,true

t,measured

distribution for content and marginalise

The propagated uncertainty contribution will
often be small in the measured region

The red region is the main one of the result. The adjacent bins were still
measured, the contribution of the ones after that was treated as a systematic
by checking the result of wildly varying contributions. (beauty hadron decay
electron measurement)
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Unfolding software: RooUnfold
(ROOT Unfolding framework)

https://qitlab.cern.ch/RooUnfold/RooUnfold

RooUnfold is a framework for unfolding (AKA "deconvolution” or "unsmearing"). It currently
Implements six methods:

- iterative ("Bayesian"; as proposed by D'Agostini);

- singular value decomposition (SVD, as proposed by Hocker and Kartvelishvili and
implemented in TSVDUnfold);

 bin-by-bin (simple correction factors);

- an interface to the TUnfold method developed by Stefan Schmitt;

- simple inversion of the response matrix without regularisation; and

- iterative dynamically stabilized unfolding (IDS) by Bogdan Malaescu, implemented by
Chris Meyer.

It can be used from the ROOT prompt, from C++ (Cling) or Python (PyROQOT) scripts, or

linked against the ROQOT libraries.
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https://arxiv.org/abs/1010.0632
https://arxiv.org/abs/hep-ph/9509307
https://root.cern.ch/doc/master/classTSVDUnfold.html
https://root.cern.ch/doc/master/classTUnfold.html
https://arxiv.org/abs/1205.6201
https://arxiv.org/abs/0907.3791
https://root.cern.ch/
https://gitlab.cern.ch/RooUnfold/RooUnfold

Bin-by-bin method (1)

Used very often, but has issues ...

Assume shape of true spectrum and determine correction factor for each bin
(usually determined from Monte Carlo simulation):

MC
M

MG

ni = CGi(ni — B;) Ci

Works if smearing (bin-to-bin sharing) is negligible, only loss due to finite
efficiency:

Rij = djj;

Obviously works, too, if MC = nature.

—Xpectation value for corrected data:

Elii] = GE|ni — Bi] = Gi(vi — Bi) = C,-yfig
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Bin-by-bin method (2)

Inserting the C;'s one can determine the bias:

MC MC . .
Elp,] = Hi— sig [ Fi i ) sie_ no bias only if
Hil = omc? pyMC o sig | Hi MC = nature
I I i
N —— ——
bias

Covariance matrix of the corrected data (smearing fluctuations independent
between bins)

U = covl|fii, i;] = G C cov[nfig, nj.’ig] — C,-2Var[nfig]5,-j

N——— ————
0 for i#j

lterative bin-by-by method

»  Start with plausible guess of true spectrum

» Apply correction to measurement
» (Generate new correction factors from corrected spectrum of previous iteration

» And so on ... usually a few iterations sufficient
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Regularized unfolding

Matrix inversion is the maximum likelihood solution:

ndependent M 5 — 7
Poisson In L(1) = Z (niInv; — v;) ML estimator: " 1. =
luctuations: — — =R *(n—p)

|dea: accept solutions that are close to maximum likelihood estimate:

Define a smoothness function S that gets bigger when the unfolded solution
Decomes smoother.

The task then Is to maximize

o(p) = In L(fz) + 75(n)

/N

parameter that controls the smoothness function
strength go the regularization
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Tikhonov regularization

Smoothness measure for the deconvoluted function f:

d<f :

/

Minus sign makes S small when k-th derivative is large

numerical estimate of the
/ second derivative:

Tikhonov for k = 2;
M—2

o) = InL(E) +75(n).  S(B) == 3 _ (=i +2pis1 = piz2)’

Implementation by A. Hocker, V. Kartvelishvili: Singular Vvalue Decomposition
(NIM A372 (1996) 469, hep-ph/9509307, TSVDUnNfold in ROOT)

Minimizes (7)) + 7 Z [(ptie1 — i) — (i — pio1)]

= |ntroduces a penalty term for changes in the slope

= Possible interpretation: Prior information about the smoothness of the result
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RooUnfold with SVD algorithm

k=30
800 — — PDF
— | Gaussian smearing, -+- — truth
700 = | systematic translation, and / :measutredt d
— | variable inefficiency SofS o
600 —
o \ — -
200 — |__|
120F
= | Residuals | Correlatior
80} ° _
matrix

60

'II|III|

40

20

¢
®
i

@
e
®
®
®
®
:
®
®
+
+
_—¢—
pre

0_ | '
o0 ' Y 4 T ?
20" T +T e |® o + +
-40(—
m 4 4
-60—
80—
[ 1 1 1 I 1 1 1 1 I | | | | I 1 | | | I 1 1 1 1 I 1 1 | | | | | | 1 I | | | | I 1 1 1 1 I 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html
Tim Adye, Unfolding in HEP, https://indico.cern.ch/event/671301/contributions/2745801
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Regularisation strength

= Varying the refactor of the penalty term changes the

regularisation strength 3 3 — True Distribution
- o = 0, unfolded
= Structure in true distribution will be washed out ol —a =0, Fi
e +0L=1O4, u_nfolded
» Dangerous for distributions with a lot of structure (e.qg. o ;22186: E:folded
Oeaks) 2: — O = 106, Fit
= Due to the additional introduced information, 15[~
fluctuations can be smaller than \/N [
= [hink about what the actual prior information is 05k
= The penalty term for each bin should depend on the S A T N RN I A
\ \ \ \ O I T | I I | I I I I I I T | L1 1 1 I T | I I
distance to the adjacent bins - consider for unequal 0 01 02 03 04 05 06 07 08 09 1

bins

= Bias depends on the true distribution
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Another example

3 B — True Distribution
- o = 0, unfolded
B —a =0, Fit
2.9 e o = 10*, unfolded
B — o = 10*, Fit
5 B DY =0 =" 06, unfolded
B \ — o = 10°, Fit
1.5
1t ’;
0.5F e
O_IIII|IIII|IIII|IIII|IIII|IIII|IIII|'III|IIII|IIII
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 l

Here the regularisation increases the bias more quickly
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Regularised unfolding algorithms

= Maximum likelihood with Tychonov regularisation

» Real number for regularisation strength
» Include prior information about smoothness this way

= Singular Value Decomposition

» Used as a way to implement the previous for Gaussian uncertainties
= Bin-pby-bin unfolding

» Simplest; assumes that the simulated distribution is similar to the true one

= [terative (“Bayesian”) unfolding

» Uses an iterative method, starting at smooth distribution, converging to
unregularised

» Regularisation by stopping before convergence - unclear what prior information
this would correspond to

» Computationally efficient (compared to inverting large matrices)
» Sometimes additional smoothing is done within the steps
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Regularization based on entropy

Shannon entropy of a discrete probably distribution:

M .
all pi equal = maximum entropy (max. smoothness)
H=— Z pi In p;
=1

pi =1, all others 0 = minimum entropy

Use entropy as regularization function:

S(A)=H(@) =Y~ In

1 HUtot HUiot

This gives the distribution with the maximum entropy consistent within the
selected tolerance with the ML solution

—ntropy related to number of different ways ot objects can be distributed to
obtains histogram u” = (uy, ..., Hy)

Lot ! Stirling’s approximation

Qi) = w In Qi) ~ por H(jE
(1) il (1) =~ ot H(fD)

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. VoIkl | 9. Unfolding 37



terative unfolding (1) [a.k.a. “Bayesian” unfolding]

Causal network:

|

@ M causes
/4
XY

@ @ N eftects

\

trash bin for
undetected events

@\

S

@

X
X0

\

0,

Response matrix: [: prior knowledge about
/ probabilities of the causes C;

Rji = P(E;|Gi 1)
Elnilpil = P(Ej|Gi 1) - pi = Rji - i
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terative unfolding (2)

Sayes theorem:

P(E;|Ci, 1) - P(Ci|I)
S P(Ej|Cii, 1) - P(Cill)

P(CE;, 1) =

We can write this as

Rii - P(Cill)
S ery Ri - P(Cill)

0y i= P(GIE;. 1) =

—stimate for number of true events in bin / given that we measure n;
events in bin J:

_ P(GIE;, 1) -nj  0i-n;

Hilny = Ei B Ei
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terative unfolding (3)

Summing over all observed bins:

N

1
pils =— ) 05 n;
Ei
Jj=1

By definition we can write the efficiency as

N N
si= ) P(E|C,1) =) R;
j=1 J=1

Response matrix usually from Monte Carlo simulation
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terative unfolding (4)

This procedure is applied iteratively:

= Choose prior distribution P(C;,/)

= Often prior = measured distribution

= Update prior according to measured values
= terate

= Converges to unregularised case

= Limited number of iterations provides implicit
regularization

Shepp/Vardi 1982, Multhei/Schorr 1986

G. D'Agostini, A Multidimensional unfolding method based on Bayes'
theorem'', Nucl. Instrum. Meth. A 362 (1995) 487 (see also
arxiv:1010.0632)

V. Blobel, Unfolding methods in high-energy physics experiments,
https://cds.cern.ch/record/157405
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From talk by Gunter Zech 2011

6 X

chi2=35.71
p=980
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https://indico.cern.ch/event/107747/contributions/32646/attachments/24318/35001/unfoldzech1.pdf

RooUnfold with iterative Bayesian algorithm

3 iterations
800 — —— PDF
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http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html
Tim Adye, Unfolding in HEP, https://indico.cern.ch/event/671301/contributions/2745801
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Summary

Measurement “folds” true distribution with response matrix

Unfolding inverts this step

Sometimes easier to skip and publish only measured distribution + response

f response Is WIC
strong correlations

For nicer plots:

» Essentially imp

» Tychonov regu
vague

Unbiased result from finding minimum )(2 solution to folding equation; equivalent to
inverting response matrix

e compared to binning, individual bins have large uncertainties and

Regularisation methods

ement prior

arisation ma

Knowledge about smoothness, but may also be ad hoc

Kes this explicit, while e.g. iterative unfolding leaves this very

Reqgularisation makes the result easier to interpret, but introduces a bias

» Make sure the added information about smoothness is information you actually have
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= Some
» Whic

4

Some more

ow do we combine the ¢

oractical tips

oroblems are phrased as statistics problems, but are actually about physics

N Mmodel should we use to describe the detector/Is the background linear or exponential”

ifferent models into an uncertainty/what is their relative status”

» Which systematics do we

= For

Sayesians:

need to check?

» Some frequentist methods are quite useful e.qg. )(2/ ndOftests for quickly reject a model or to find

systematic uncertainties

» Much of particle physics is done within the frequentist paradigm, so knowing the methods is not optional
= For Frequentists:

» For many systematic uncertainties, it is very natural to think of them in a Bayesian way (e.g. theory

uncertainties) - even if you do the rest of the analysis in a frequentist approach

= \Whenever someone proposes an (ad hoc) approach to a problem, it can often be useful to ask, which
fundamental approach it is supposed to approximate - this helps avoid bad ideas
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Goodbye

martin.andreas.volkl@cern.ch
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