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Reminder: Hypothesis tests

Bayesian:
= Posterior p(H, | j) gives probabillity for hypothesis to be true after considering the data

= Depends on prior p(H,), which may be hard to agree on precisely

= Likelihood ratio p(H, | c;’))/p(H1 |57) gives an objective value for how much data favours H,
compared to H;, but only if hypothesis is simple

= Easy to interpret, but not objective due to prior
Frequentist:
= No probabillity for hypothesis

= p-value gives probability of observing a test statistic at least this extreme assuming that H,, is
true with the alternative hypothesis H, defining the direction of “extremeness”

= Hard to interpret, but objective
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FPoint estimates and limits

A\

One often reports a point estimate and its standard deviation: @, 6

)

In some situation this is not adequate, e.g. when

» the p.d.f. of the estimator is not Gaussian

» The standard deviation strongly depends on the true value

» one has physical boundaries on the possible values of the parameter

—xample:
= Poisson distribution p(n | 1), we measure n = 0

= No good estimate for 6, = 4/

= But it feels like we should be able to exclude some ranges, like u > 100

= Can we make some statement about what a reasonable range for u should be”

= \We can in the Bayesian framework

= For the frequentist approach we again have to modity the question
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Bayesian credible intervals

1.0 - —— Poisson(n=0) posterior

= Assume uniform prior mmm 68% credible interval

another 68% credible interval

= From posterior: Find region with a given total 0.8 -
orobabllity

0.6 -

= £.g. aregion corresponding to a total probability

of 68% is called the “68% credible interval” =
0.4 -
= [here is some freedom in choosing the interval
= Meaning: The true parameter is within this 0.2 -
oarticular interval with a probability of 68%.
0.0 -
0 1 é 3 -
[
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Bayesian [imits

—— Poisson(n=0) posterior

1.0
[ 90% lowest credible interval

= For upper (or lower) limits, simply put one edge
of the interval to O (or oo)

= |nterpretation: There is a 90% probabillity that
the true parameter is below 2.3.

p(u|n)
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Example:
Bayesian upper limits for a poisson variable n (2)

Special case: b =0

I S Uup
import numpy as np o
from scipy.stats import gamma
0 2.30
def ul (alpha, n, b): 1 3.89
Baysian Poisson upper limits z 2. 32
1 - alpha: confidence level 3 0.083
n: observed counts / 7 .90
b: background )
mirrn 5 9 ° 27
return gamma.ppf(l. - alpha, n + 1) - Db 6 10.53
'/ 1.7
print("n s up")
print(" _______ n) 8 __2 ° 99
for n in range(10) : 9 4 .21

print (£f"{n} {ul(0.1, n, 0):.2f}")

Can write this also in terms of the y? 1 B
distribution: sup = 5Fe [1 = 2(n+1)] (b= 0)
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Frequentist confidence intervals

Reminder: frequentist parameter estimation

= Make a rule to calculate a value é’(d) of the dimension of the parameter of interest from the data

= Require e.g. consistency, unbiasedness etc. and study the properties

Now: interval estimation

= Make a rule to calculate an interval (é’l, 92) of the dimension of the parameter of interest from the
data

= \We cannot give a probability that the parameter is in any particular interval

= |nstead: Require that when the measurement is repeated a large number of times, a particular
fraction a should contain the true (fixed) parameter

= |[f we find a rule such that this probabillity is the same independent of the true parameter, then the
Intervals are called confidence intervals and «a is called the confidence level
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Understanding the meaning of confidence intervals

= One could reasonably write:

» “A Bayesian 90% credible interval contains the true value with a probabillity of 90%.”
» “A frequentist 90% confidence interval contains the true value with a probability of 90%.”

= [his is not a good explanation but technically true.
= [he important part is:

» For credible intervals, this is a statement about the unknown parameter
» For confidence intervals, this Is a statement about the rule that makes the intervals

= A single confidence interval does not have a probability to contain the parameter!

= [he "optimal” rule for confidence intervals produces the shortest possible intervals, but this is not
always what we want
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p(x)

The simplest example: Gaussian with fixed variance

1.2
0.40 - —— True distribution — True distribution
I interval with 68% probability 0 68% confidence interval 0
0.35 - -9 _ truevalue 1.0 - 68% confidence interval 1
" 68% confidence interval 2
0.30 - 0 68% confidence interval 3
0.8 - ~ 68% confidence interval 4
0.25 - 0 68% confidence interval 5
_® _ truevalue
0.20 - X 06 -
= 0.6
0.15 -
0.4
0.10 -
0.05 - 0.2 -
0.00 -
| | | 1 | | 0.0 - ‘
10 12 14 16 18 20 10 12 14 16 18 20

The measurements are symmetric around the true value with fixed variance
Choose symmetric interval around measured values
Now 68% of these intervals will cover the true value

Here we get the same result as before, where we asked how the estimate varies
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Confidence interval for a Gaussian distributed estimator

— 1

0.2

Consider a parameter 8 whose ot 0
estimator is distributed as 0.85 1 obs
Q0.7F
A 0.6
) L 1 (0 —0)° 055
g(0:0) = =XP ( > ) 0.4F
V2o, 2 o3 03k

o 0.1F
sampling distribution 0 )
0
Determine lower bound 61 of the
confidence interval for 6 by solving = E
CDHO'QE_ eobs 62
o A A ©0.8F
X1 = / g(6’; (91)d(9 =1 G(‘gobs, (91) mggé_
é\o S CE
’ 0.5F
| 0.4
Analogously for the upper bound B2: 035
Oobs 0.2F
A A ~A 0.1F
o = / g(@, (92) df = G(90b51 (92) OE' L |
P 0 6
cumulative distribution function @
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Confidence interval for a Gaussian distributed estimator

With the aid of the CDF of the standard Gaussian @ we can write this as:

N 905—6’
CvllG(Qobs,@l)lq)( b 1)

94

o, — G(éobs,(gz) _ & (Hobs —6’2)

94

This gives:

Here @1 is the inverse function of @, i.e., the quantile function of the standard
Gaussian.
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The possibility of unphysical intervals

magine measuring signal+background with
arge statistics 1.2

True distribution
90% confidence interval 0
90% confidence interval 1

P0ISSON can be approximated by normal

P - - 1.0 -

distribution, with mean close to O 00% confidence interval 2
: : : 90% confidence interval 3

:)raW 90% COnﬂdence |nterva|8 fOr dlﬁerent 0.8 - 90% confidence interval 4

90% confidence interval 5
true value

J100000

measurements

Some intervals can be partially in the negative 3 06-
values

The green Clis (—3.735, — 0.47) and thus
completely unphysical

0.4

0.2

Nothing went wrong here, the 90% simply does
not refer to a particular interval 0.0 -

Nevertheless, the single interval is what would
be published, which can lead to confusion
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Neyman construction (1)

The Neyman construction for constructing frequentist confidence intervals involves
the following steps:

1. Given a true value of the parameter 8, determine a p.d.f. f(x; 6) for the outcome
of the experiment. Often x is an estimator for the 6.

2. Using some procedure, define an interval in x that has a specified probability
(say, 90%) of occurring

3. Do this for all possible true values of 6, and build a confidence belt of these
Intervals.

In practice, the p.d.f. of step 1 might come from Monte Carlo simulations.
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Neyman Construction (2)

confldence

-l ey ey o Sy e

|
)
(
|
l
’
I
)
)
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Coverage of the Neyman interval

@A 9*‘_% @Z. Q

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Vo6lkl | 8. Confidence Limits and Intervals 15



Classical confidence intervals for the mean of the
Poisson distribution (1)

f(nv)= eV

nl

-quations for the confidence interval limits 81 and 62:

a1 = P(n > ngps; 01)  As nis aninteger there is often no exact solution.
_ This leads to slight overcoverage.
iy — P(n < Nobs (92) J J

This gives:
Nobs — nobs—l
041—Zf(n@l)—l—ané’l)_]__Zn_lle—91
N=—Nops n=0
Nobs Nobs  Nn
Qp = Z f(n;6y) = Z n—2|e_92
n=0 n=0
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Classical confidence intervals for the mean of the
Poisson distribution (2)

Using the the following relation between the Poisson distribution and the 2
distribution

Nobs Vn . o0
Z me = /2 fv2(Z; nas = 2(Nops + 1)) dz

=1 — FX2 (2V; 2(nobs + 1)))

AN

F,» : CFD of the v distribution

we obtain
0, = ~FHay; 2
1 — 5 22 [0411 nobs]
1 __
02 = 5 F i [1 = 02;2(nops + 1)]
\

[identical to Bayesian upper limits (b = O)]
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Classical confidence intervals for the mean of the
Poisson distribution (3)

. lower limit 6, upper limit 6
P la1=0.1 a1 =0.05 a1=0.01 [e2=0.1 @2 = 0.05 a2 = 0.01
0 — — — 2.30 3.00 4.61

0.105  0.051  0.010 | 3.89  4.74 6.64
0532 0355 0149 | 532  6.30 3.41
110 0818 0436 | 668 775  10.04
174 137 0823 | 799 915  11.60
243 197 128 | 927 1051  13.11

cf. slide 6 (Bayesian
upper limits, b = 0)

Ot &= W N =

fe.g. 0, = 0.54, then probability of coverage = p(0) + p(1) + p(2) = 0.98 is higher than 90 %

rue
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Classical Gaussian upper limits with physical limit

Suppose the estimator of a parameter
O follows a Gaussian with known
standard deviation o = 1:

1
\/ 27T

Physically allowed region: 6 >0

g(0:0) = ——exp (—(0 - 0)2/2)

An example would be the
measurement of the neutrino mass:
m >0

et's construct the 95% CL upper
imit confidence belt (1.640)

A =2~ s,, =3.64 @95%CL

A negative upper limit”? Has anything gone wrong?
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Classical Gaussian Upper Limits with Physical Limit
l=—2~ s, =—0.36 @ 95%CL
We stipulated 6 = O, i.e. the confidence interval is an empty set ...

If we measured —1.63 the confidence interval would be [0, 0.01]. Does this really mean
that in this case there is a 95% chance that the true value of 6 is between O and 0.017

No, It jJust means that we have observed a downward fluctuation
»  Suppose the true value is zero (6 = 0) = acceptance region @ 95% CL is [0, 1.64]
» We expect a negative result in 50% of the cases

» We expect a measurement less than —1.64 in 5% of the cases

» We expect a measurement less than -2 in 2.3% of the cases

Sometimes a negative result is shifted to zero, i.e., O + 1.64 ¢ is reported as upper limit.

That's not helpful. Always report the observed value even if it is in the unphysical regime.
Otherwise the result cannot be combined with other results in meta analyses.
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Interpretation of Frequentist Confidence Intervals

S0 has anything gone wrong with the construction of the confidence
interval”

Actually no, nothing has gone wrong,.

= Even though one should not, there is a tendency to interpret frequentist
confidence intervals as Bayesian objects. That is, if one constructs the
confidence interval in our example one tends to think that the true value lies In
this interval with 95% probability

= But that's not right. We have to think in terms of repeated experiments. The
obtained interval covers the true value in 95% of the experiments.

= [his does not mean that the interval obtained in a single experiment contains
the true value with 95% probability.
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The "ﬂip—ﬂOp" pr()b‘em Feldman, Cousins, physics/9711021v2

Let us suppose that physicist X takes the following attitude in an experiment
designed to measure a small quantity:

= [f the result x is less then 3o, | will state an upper limit

= |f the result is greater than 30, | will state a central confidence interval from the
standard tables

— S0 what is reported Iin this case is decided after the measurement

L et's take a look at the confidence band

[Variables in the paper by Feldman and Cousins: x = i) 1 = 6. Confidence band for 90%
CL. Otherwise same situation: Gaussian sampling distribution with o = 1 and physical
regime u = 0. In the following we'll use x and p.]
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The "flip-flop" problem: Confidence band

0+ 1.280
upper limit for
negative x)

6 IIIIIIIIIIIIIIIIIIIIIIIIIIIII

X + 1.280 upper limit lower and upper limit
for positive x < 30) for positive x > 30)

oV
IIIIIIIIIIIIIIIIIIIII

Feldman, Cousins,
physics/9711021v2 0 TENE RN PN N IR Y

-2 -1 0 1 2 3 4
Measured Mean x
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The "flip-flop" problem: Coverage

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

IIIIIIIIIIIIIIII|]IIIIIIIIIIIIIIIIIIII||JIIIIIIIIIIIIIIIIIIIIll:IIIIIIIIIIIIII IllchIIIIIIIIIIIIIIIIIIIll IIIIIIIIIIIIIIIIII

undercoverage

IIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIIIIIII:IIIIIIIIIIIIIII IIIII:IIIIIIIIIIIIIIIIIIIIIEIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIII

IIlIIIlIIIIIIII

IIIIIIlIII

2

-1 0 1 2 3
Measured Mean x

N

The coverage of the intervals is

Wrong

» Small y: overcoverage

» Example: p=2
acceptance region Is
xel[2-1.28,2 + 1.64]

— coverage is only 85%

» More general:
for 1.36 < u < 4.28 the
chance of finding a measured
value x In acceptance region Is
only 85%, not the desired 90%

This Is a serious problem of
the flip-flopping approach

Feldman, Cousins,
pohysics/9711021v2
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Problems with classical confidence intervals

= [N some situations the confidence interval can be an empty set

= they do not elegantly handle unphysical cases

= they do not continuously vary between

a) giving upper limits in case of a very small signal and

b) giving upper and lower limits in case of a more significant signal

Feldman & Cousins proposec
— Feldman-Cousins confider
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Feldman-Cousins ordering principle for the construction
of confidence Intervals

The Neyman construction does not specity how, for a fixed true value y, to
define the interval that covers a fraction 1 — a (e.g. 95%) of the observed

outcomes x.
A X

X
Feldman & Cousins introduced an ordering principle based on the likelihood ratio:

P(x|u)

R =
P(X‘:U“best)

Uoest IS the best fit obtained from data (maximum likelihood), taking the physically
allowed region into account.

Order procedure for fixed p: add values of x to the interval from highest R to lower
R until the desired value 1 — a is reached.
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Application of Feldman-Cousins to Gaussian upper limits
with physical [imit (1)

Sampling distribution in our example with oy 1 Y.
physical limit i = O (ox = 1): glxip) = o= exp (=(x = 1)"/2)

In this case the best estimate is given by

B 0, x<0
HUbest — X XEO

SO R is given by

exp (—35(x — p)?)
P(xlp) | (=2

B 'D(X‘Mbest) B

x <0

R

exp (—3(x — p)?) 0
1 x>

In practice, for each p find interval limits x1 and x2 by solving numerically:

X2

R(x1) = R(x) and / gxlp)dx=1—-«

1
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Application of Feldman-Cousins to Gaussian upper limits
with physical [imit (2)

6

_ 90% CL Conﬂdence belt

Measured Mean x

IlllillllillllilIlillllillll_
-2 -1 0 1 2 3 4

Some nice features:
= Confidence interval is never empty

= Smooth transition from giving upper
imit to two-sided interval

= Correct coverage

= No empty intervals
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Feldman-Cousins confidence intervals for the mean of
the Poisson Distribution (1)

_et's go back to the counting experiment with signal s and known average
number of background counts b:

(s+b)"
P(n|s) = € (s+b)

Classical method sometimes gives negative upper limit when nops < b.

This problem is addressed by the Feldman-Cousins method.

The paper contains look-up tables for upper limits and confidence intervals.
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Feldman-Cousins confidence intervals for the

mean of the Poisson Distribution (2)

TABLE IV. 90% C.L. intervals for the Poisson signal mean pu, for total events observed ng, for

known mean background b ranging from 0 to 5.

S
-
_—

S

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.0

O JO Ol W KHFHO

N = = = = = e e e e
SO O 0 JO Ut W~ OO

0.00, 2.44
0.11, 4.36
0.53, 5.91
1.10, 7.42
1.47, 8.60
1.84, 9.99
2.21,11.47
3.56,12.53
3.96,13.99
4.36,15.30
5.50,16.50
5.91,17.81
7.01,19.00
7.42.20.05
8.50,21.50
9.48,22.52
9.99,23.99

11.04,25.02 10.54,24.52 10.04,24.02
11.47,26.16 10.97,25.66 10.47,25.16

0.00, 1.94
0.00, 3.86
0.03, 5.41
0.60, 6.92
1.17, 8.10
1.53, 9.49
1.90,10.97
3.06,12.03
3.46,13.49
3.86,14.80
5.00,16.00
5.41,17.31
6.51,18.50
6.92,19.55
8.00,21.00
8.98.22.02
9.49,23.49

0.00, 1.61
0.00, 3.36
0.00, 4.91
0.10, 6.42
0.74, 7.60
1.25, 8.99
1.61,10.47
2.56,11.53
2.96,12.99
3.36,14.30
4.50,15.50
4.91,16.81
6.01,18.00
6.42,19.05
7.50,20.50
8.48.,21.52
8.99,22.99

0.00, 1.33
0.00, 2.91
0.00, 4.41
0.00, 5.92
0.24, 7.10
0.93, 8.49
1.33, 9.97
2.09,11.03
2.51,12.49
2.91,13.80
4.00,15.00
4.41,16.31
5.51,17.50
5.92.18.55
7.00,20.00
7.98,21.02
8.49,22.49
9.54,23.52
9.97,24.66

0.00, 1.26
0.00, 2.53
0.00, 3.91
0.00, 5.42
0.00, 6.60
0.43, 7.99
1.08, 9.47
1.59,10.53
2.14,11.99
2.53,13.30
3.50,14.50
3.91,15.81
5.01,17.00
5.42.18.05
6.50,19.50
7.48,20.52
7.99.21.99
9.04,23.02
9.47.24.16

0.00, 1.18
0.00, 2.19
0.00, 3.45
0.00, 4.92
0.00, 6.10
0.00, 7.49
0.65, 8.97
1.18,10.03
1.81,11.49
2.19,12.80
3.04,14.00
3.45,15.31
4.51,16.50
4.92.17.55
6.00,19.00
6.98,20.02
7.49,21.49
8.54,22.52
8.97,23.66

0.00, 1.08
0.00, 1.88
0.00, 3.04
0.00, 4.42
0.00, 5.60
0.00, 6.99
0.15, 8.47
0.89, 9.53
1.51,10.99
1.88,12.30
2.63,13.50
3.04,14.81
4.01,16.00
4.42.17.05
5.50,18.50
6.48,19.52
6.99,20.99
8.04,22.02
8.47,23.16

12.51,27.51 12.01,27.01 11.51,26.51 11.01,26.01 10.51,25.51 10.01,25.01 9.51,24.51
13.55,28.52 13.05,28.02 12.55,27.52 12.05,27.02 11.55,26.52 11.05,26.02 10.55,25.52 10.05,25.02 9.55,24.52

0.00, 1.06
0.00, 1.59
0.00, 2.67
0.00, 3.95
0.00, 5.10
0.00, 6.49
0.00, 7.97
0.39, 9.03
1.06,10.49
1.59.11.80
2.27.13.00
2.67,14.31
3.54,15.50
3.95,16.55
5.00,18.00
5.98,19.02
6.49,20.49
7.54,21.52
7.97.22.66
9.01,24.01

0.00, 1.01
0.00, 1.39
0.00, 2.33
0.00, 3.53
0.00, 4.60
0.00, 5.99
0.00, 7.47
0.00, 8.53
0.66, 9.99
1.33,11.30
1.94,12.50
2.33,13.81
3.12,15.00
3.53,16.05
4.50,17.50
5.48,18.52
5.99,19.99
7.04,21.02
7.47.22.16
8.51,23.51

0.00, 0.98
0.00, 1.22
0.00, 1.73
0.00, 2.78
0.00, 3.60
0.00, 4.99
0.00, 6.47
0.00, 7.53
0.00, 8.99
0.43,10.30
1.19,11.50
1.73,12.81
2.38,14.00
2.78.15.05
3.59,16.50
4.48,17.52
4.99,18.99
6.04,20.02
6.47,21.16
7.51,22.51
8.55,23.52

Feldman, Cousins, physics/9711021v2
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Feldman-Cousins method: Discussion

Nice features:

+ State-of-the art for frequentist confidence intervals

+ Avoids flip-flop problem, correct coverage
+ Handles interval estimates at physical boundaries

Drawbacks:

- Construction of F-C confidence intervals is complicated, usually has to be done
numerically

- Systematic uncertainties not easily included

- Counter-intuitive result in case of counting experiments with different
background (see next slide)
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Feldman-Cousins method: The paradox of fewer than
expected background events

Consider two counting experiments
» Experiment A: expects background b = O ("carefully designed experiment")

» Experiment B: expects background b =5

Suppose now both experiments measure n = O counts.
Feldman-Cousins upper limits at 90% CL.:

» EXxperiment A: syp = 2.44

» Experiment B: syp = 0.98

Weird: The FC method says that the experiment B in which a larger background
IS expected gives the better (more stringent) upper limit.

=Xperiment B must have observed a downward fluctuation of the background.
How can a fluctuation result in a better upper limit*?
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Suggestion in the Feldman-Cousins paper

"Our suggestion for doing this is that in cases in which the measurement is less
than the estimated lbackground, the experiment report both the upper limit and
the “sensitivity” of the experiment, where the “sensitivity” is defined as the

average upper limit that would be obtained by an ensemble of experiments with
the expected background and no true signal. |...

Thus, an experiment that measures 2 events and has an expected background

of 3.5 events would report a 90% C.L. upper limit of 2.7 events (from Tab. V),
but a sensitivity of 4.6 events (from Tab. XlI)."

Feldman, Cousins, physics/9711021v2
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ClLs method: Motivation

Consider an experiment with low sensitivity
("background dominated experiment”).

» By construction, one rejects a true hypothesis with a certain probability (e.g. 5%)
» Problem: exclusion of parameter values to which one has no sensitivity
» Example Higgs search: my = 1000 TeV rejected with a chance of 5%

» "Spurious exclusion”

This problem was addressed for the LEP Higgs searches in the late 1990'ies and
led to the CLs methoc A. Read, J. Phys. G 28, 2693 (2002), T. Junk, NIM A, 434, 435 (1999)

» EXxplicitly consider experimental sensitivity in limit setting

» Reduce spurious exclusion by a particular choice of the critical region
» Frequentist-motivated approach, but NOT frequentist (“modified frequentist method”)
» Name a bit misleading, as the CLs exclusion region is not a confidence interval

» Overcoverage by construction: conscious choice to give up frequentist coverage to take
sensitivity into account

» "Despite its shaky foundations in statistical theory, it has been producing sensible results for
over a decade” (http://cds.cern.ch/record/2203243)
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http://cds.cern.ch/record/2203243

G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

CLs procedure (1)

Test statistic;. Q@ = —2In L(f(‘ift:)b)
5 01
0.08 — a
: - /()
0.06 |-

J (9 s+b)

e ps—l—b

-20 0
Q
signal-like <@ = background-like
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G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

CLs procedure (2)

Low sensitivity: the distributions under s and s+b are very close

J(QIb)

§ 0.5_
L (Qls+b)
N \ Qoo
|
0.2 E— LU;
R Ps+b
Py o P >

0: L g | !

-10 -8 -6 -4 -2 0

Q
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G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

CLs Procedure (3)

Standard p-value test: 5 [
| o f(Q]s+b)
Reject s+b hypothesis if tosl Q.. f (Q‘ b)
Ps-+b < o i \ /
0.04 — é
CLs method: : '
Reject s+b hypothesis if l_CLb 000 B CLs+b
CL. = Ps+b _ Clsyis <a b _ DPeit
1 — Pp CLb 0

o
S

more stringent than standard p-
value testas 1 —pp < 1

Increases “effective” p-value when the two distributions become close (prevents exclusion if sensitivity is low)
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Signal for Higgs hypothesis:

G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Upper Limits on py = o/osm In HIggs searches

s(my) = Lint - o0sm

: Li y nm m
Signal strength pi: n=yu-s(my)+b, u= USAG) = 7 (M)
/ Lint - osm(mu)  osm(mp)
u=1:5SM w/ Higgs, u = 0: SM w/o Higgs (background only model)
Carry out CLs procedure for all values 350 —— ————
of y = o/osm. Reject p if 3005_ f(Hup|0)
_ Pu , green:
CLs := T~ o < 0.05 2505- 1o
his defines upper limit pup at 95% CL 2 HOE
(smallest value of p that can be “
rejected by the CLs criterion) 100 :
S0f
At a given value of mn, we have an |
observed value of pup, and we can also 5T 0 L 2 3 4
find the distribution f(Liyp|O) n”

~_ background only
nhypothesis
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Upper limits on y = o/osm In Higgs searches

95% CL limitonpy < 1 = Standard model with mn rejected

ATLAS, Phys.Lett. B716 (2012) 1-29 (arXiv:1207.7214)

=. 10 —
c E ATLAS 2011-2012 @3- -
€ F \s=7TeV:[Ldt=4.6-481b" 250 d -
- — — _ _ B ] -1 — serve y
— [ s=8TeV; JLdt=58-59f" L ected -
O
32 TR - f-Y-mmmmmmmmmmmmmmm e e
LO
@)
)/
= (a) CLS Limits —
110 150 200 300 400 500
Consistency within 20 everywhere rnH [GeV]

except for mn = 125 GeV
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Higgs discovery (from ATLAS paper)

local p-value

Q_O =1 [ 1T 1 | L | L | L | L | L | L [ N
= ATLAS 2011-2012  __
S \s=7TeV: [Ldt=4.6-4.8 b ExXp.
\s=8TeV: [Ldt=5.8-5.9 fb +10
1 O - - - o A - - - mm e e mmmmmmmmmmmmmmmemEEmm e e e e - = Oo
2 0 L == ottt W~ i e 1o
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107"°
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11 115 120 125 130 135 140 145 150

m, [GeV]

—  discovery!ll

Reject also background only hypothesis at my = 125 GeV
and check consistency with p = 1

signal strength

| | | | |
ATLAS 2011 - 2012

W,ZH — bb

| |
i m, =126.0 GeV

Vs =7 TeV: [Ldt = 4.7 fb’
H— 1t

Vs =7 TeV: [Ldt=4.6-4.7 fb”

H—WW" = viv
Vs =7 TeV: [Ldt =4.7 fb’*
Vs=8TeV: [Ldt=5.8fb"

H—y
\s=7TeV: |Ldt=4.8fb"
Vs=8TeV: [Ldt=5.9 fb

H—zz" - al
Vs=7TeV: [Ldt=4.8 b
Vs=8TeV: [Ldt=5.8fb"

Combined

\s=7TeV: [Ldt=4.6-4.8fb" u = 14 +0.3
\s=8TeV: [Ldt=5.8-591fb"

: —@—
| |

-1

ATLAS, Phys.Lett. B716 (2012) 1-29 (arXiv:1207.7214)

0 1
Signal strength (u)
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HIggs discovery

CERN Seminar on 4. July 2012

83" , 18:00h

“\r 3
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HIggs discovery

‘| think we have it!”

(Rolf Heuer,
CERN director general in 2012
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Summary

s Confidence intervals are based on the idea of

coverage: a certain fraction of

repeatedly measured intervals would cover the true value

= [his leads to properties, that seem strange w
the true parameter likely is (unphysical interva
interval to limit)

= [he Feldman Cousins approach removes the

nen interpreted as a region where

S, N0 good way to switch from

strange properties, but does not

change the basic definition — just because the interval is possible, it is not

necessarily where you should expect the true

parameter

= Compared to credible intervals a trade-off: Get objective results but lose the

interpretation

= The CLs method is a compromise, giving intervals that are neither confidence

Nntervals not credible intervals
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