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Reminder: Hypothesis tests

Bayesian: 

■ Posterior  gives probability for hypothesis to be true after considering the data 

■ Depends on prior , which may be hard to agree on precisely 

■ Likelihood ratio  gives an objective value for how much data favours  
compared to , but only if hypothesis is simple 

■ Easy to interpret, but not objective due to prior 
Frequentist: 
■ No probability for hypothesis 

■ p-value gives probability of observing a test statistic at least this extreme assuming that  is 
true with the alternative hypothesis  defining the direction of “extremeness” 

■ Hard to interpret, but objective

p(H0 | ⃗d)

p(H0)

p(H0 | ⃗d)/p(H1 | ⃗d) H0
H1

H0
H1
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Point estimates and limits

3

One often reports a point estimate and its standard deviation:     ̂θ, ̂σ ̂θ

In some situation this is not adequate, e.g. when  
‣ the p.d.f. of the estimator is not Gaussian 
‣ The standard deviation strongly depends on the true value 
‣ one has physical boundaries on the possible values of the parameter

Example: 
■ Poisson distribution , we measure  

■ No good estimate for  

■ But it feels like we should be able to exclude some ranges, like  

■ Can we make some statement about what a reasonable range for  should be? 
■ We can in the Bayesian framework 
■ For the frequentist approach we again have to modify the question

p(n |μ) n = 0
σn = μ

μ > 100
μ
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Bayesian credible intervals

■ Assume uniform prior 
■ From posterior: Find region with a given total 

probability 
■ E.g. a region corresponding to a total probability 

of 68% is called the “68% credible interval” 
■ There is some freedom in choosing the interval 
■ Meaning: The true parameter is within this 

particular interval with a probability of 68%.

4
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Bayesian limits

■ For upper (or lower) limits, simply put one edge 
of the interval to  (or ) 

■ Interpretation: There is a 90% probability that 
the true parameter is below .

0 ∞

2.3
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Example:  
Bayesian upper limits for a poisson variable n  (2)

6

Special case: b = 0Baysian Poisson upper limits
In [4]: import numpy as np 

from scipy.stats import gamma 

In [10]: def ul(alpha, n, b): 
    """ 
    Baysian Poisson upper limits 
    1 ­ alpha: confidence level 
    n: observed counts 
    b: background 
    """ 
    return gamma.ppf(1. ­ alpha, n + 1) ­ b 

In [15]: print("n  s_up") 
print("­­­­­­­") 
for n in range(10): 
    print(f"{n}  {ul(0.1, n, 0):.2f}") 

In [ ]:   

n  s_up 
­­­­­­­ 
0  2.30 
1  3.89 
2  5.32 
3  6.68 
4  7.99 
5  9.27 
6  10.53 
7  11.77 
8  12.99 
9  14.21 

Baysian Poisson upper limits
In [4]: import numpy as np 

from scipy.stats import gamma 

In [10]: def ul(alpha, n, b): 
    """ 
    Baysian Poisson upper limits 
    1 ­ alpha: confidence level 
    n: observed counts 
    b: background 
    """ 
    return gamma.ppf(1. ­ alpha, n + 1) ­ b 

In [15]: print("n  s_up") 
print("­­­­­­­") 
for n in range(10): 
    print(f"{n}  {ul(0.1, n, 0):.2f}") 

In [ ]:   

n  s_up 
­­­­­­­ 
0  2.30 
1  3.89 
2  5.32 
3  6.68 
4  7.99 
5  9.27 
6  10.53 
7  11.77 
8  12.99 
9  14.21 

Can write this also in terms of the  
distribution:

χ2
sup =

1

2
F�1
�2 [1� ↵, 2(n + 1)] (b = 0)
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Frequentist confidence intervals

7

Reminder: frequentist parameter estimation  

■ Make a rule to calculate a value  of the dimension of the parameter of interest from the data 
■ Require e.g. consistency, unbiasedness etc. and study the properties

̂θ( ⃗d)

Now: interval estimation  

■ Make a rule to calculate an interval  of the dimension of the parameter of interest from the 
data 

■ We cannot give a probability that the parameter is in any particular interval 
■ Instead: Require that when the measurement is repeated a large number of times, a particular 

fraction  should contain the true (fixed) parameter 
■ If we find a rule such that this probability is the same independent of the true parameter, then the 

intervals are called confidence intervals and  is called the confidence level

( ̂θ1, ̂θ2)

α

α
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Understanding the meaning of confidence intervals

■ One could reasonably write: 
‣ “A Bayesian 90% credible interval contains the true value with a probability of 90%.” 
‣ “A frequentist 90% confidence interval contains the true value with a probability of 90%.” 

■ This is not a good explanation but technically true. 
■ The important part is: 
‣ For credible intervals, this is a statement about the unknown parameter 
‣ For confidence intervals, this is a statement about the rule that makes the intervals 

■ A single confidence interval does not have a probability to contain the parameter! 

■ The "optimal” rule for confidence intervals produces the shortest possible intervals, but this is not 
always what we want

8
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The simplest example: Gaussian with fixed variance

■ The measurements are symmetric around the true value with fixed variance 
■ Choose symmetric interval around measured values 
■ Now 68% of these intervals will cover the true value 
■ Here we get the same result as before, where we asked how the estimate varies

9
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Confidence interval for a Gaussian distributed estimator

10

Consider a parameter θ whose 
estimator is distributed as

"sampling distribution"

↵1 =

Z 1

✓̂obs

g(✓̂; ✓1) d✓̂ ⌘ 1� G (✓̂obs, ✓1)

Determine lower bound θ1 of the 
confidence interval for θ by solving

α1

Analogously for the upper bound θ2:

↵2 =

Z ✓̂obs

�1
g(✓̂; ✓2) d✓̂ ⌘ G (✓̂obs, ✓2)

cumulative distribution function

α2

g(✓̂; ✓) =
1p
2⇡�✓̂

exp

 
�1

2

(✓̂ � ✓)2

�2
✓̂

!
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Confidence interval for a Gaussian distributed estimator

11

With the aid of the CDF of the standard Gaussian Φ we can write this as:

This gives:

Here Φ–1 is the inverse function of Φ, i.e., the quantile function of the standard 
Gaussian.

↵1 = 1� G (✓̂obs, ✓1) = 1� �

 
✓̂obs � ✓1

�✓̂

!

↵2 = G (✓̂obs, ✓2) = �

✓
✓obs � ✓2

�✓̂

◆

✓1 = ✓obs � �✓̂�
�1(1� ↵1)

✓2 = ✓obs + �✓̂�
�1(1� ↵2)

���1(y) = ��1(1� y)
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The possibility of unphysical intervals

■ Imagine measuring signal+background with 
large statistics 

■ Poisson can be approximated by normal 
distribution, with mean close to 0 

■ Draw 90% confidence intervals for different 
measurements 

■ Some intervals can be partially in the negative 
values 

■ The green CI is  and thus 
completely unphysical 

■ Nothing went wrong here, the 90% simply does 
not refer to a particular interval 

■ Nevertheless, the single interval is what would 
be published, which can lead to confusion

(−3.75, − 0.47)

12



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 8. Confidence Limits and Intervals

Neyman construction (1)

1. Given a true value of the parameter θ, determine a p.d.f. f(x; θ) for the outcome 
of the experiment. Often x is an estimator for the θ. 

2. Using some procedure, define an interval in x that has a specified probability 
(say, 90%) of occurring  

3. Do this for all possible true values of θ, and build a confidence belt of these 
intervals.

13

The Neyman construction for constructing frequentist confidence intervals involves 
the following steps:

In practice, the p.d.f. of step 1 might come from Monte Carlo simulations.
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Coverage of the Neyman interval

15
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Classical confidence intervals for the mean of the  
Poisson distribution (1)

16

f (n; ⌫) =
⌫n

n!
e�⌫

Equations for the confidence interval limits θ1 and θ2:

This gives:

↵1 =
1X

n=nobs

f (n; ✓1) = 1�
nobs�1X

n=0

f (n; ✓1) = 1�
nobs�1X

n=0

✓n1
n!

e�✓1

↵2 =
nobsX

n=0

f (n; ✓2) =
nobsX

n=0

✓n2
n!

e�✓2

↵1 = P(n � nobs; ✓1)

↵2 = P(n  nobs; ✓2)

As  is an integer there is often no exact solution. 
This leads to slight overcoverage.

n
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Classical confidence intervals for the mean of the  
Poisson distribution (2)

17

Using the the following relation between the Poisson distribution and the χ2 
distribution

nobsX

n=0

⌫n

n!
e�⌫ =

Z 1

2⌫
f�2(z ; ndf = 2(nobs + 1)) dz

= 1� F�2(2⌫; 2(nobs + 1)))

we obtain
F�2 : CFD of the �2 distribution

[identical to Bayesian upper limits (b = 0)]

✓1 =
1

2
F�1
�2 [↵1; 2nobs]

✓2 =
1

2
F�1
�2 [1� ↵2; 2(nobs + 1)]
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Classical confidence intervals for the mean of the  
Poisson distribution (3)

18

Statistical Methods, Lecture 11, January 7, 2013         26

Confidence interval for mean of Poisson distr

An important case: n
obs

 = 0

Calculate an upper limit at confidence level (1-β) = 95%

Useful table:

 = ∑
n=0

0
bn e−b

n !
= e−b  b = − log

b = − log0.05 = 2.996 ≈ 3

↵1 ↵1 ↵1 ↵2 ↵2 ↵2

✓1 ✓2

cf. slide 6 (Bayesian 
upper limits, b = 0)

If e.g. , then probability of coverage  is higher than θtrue = 0.54 = p(0) + p(1) + p(2) ≈ 0.98 90 %
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Classical Gaussian upper limits with physical limit

19

Suppose the estimator of a parameter 
θ follows a Gaussian with known 
standard deviation σ = 1:

g(✓̂; ✓) =
1p
2⇡

exp
⇣
�(✓̂ � ✓)2/2

⌘

Physically allowed region: 
An example would be the 
measurement of the neutrino mass: 
m ≥ 0

Let's construct the 95% CL upper 
limit confidence belt (1.64σ)

✓̂ = 2 sup = 3.64 @ 95%CL
2− 1− 0 1 2 3 4 5

θ

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

tru
e

θ
But what if we measured –2?: ✓̂ = �2 sup = �0.36 @ 95%CL

A negative upper limit? Has anything gone wrong? 

✓ � 0
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Classical Gaussian Upper Limits with Physical Limit

20

✓̂ = �2 sup = �0.36 @ 95%CL

We stipulated θ ≥ 0, i.e. the confidence interval is an empty set …

If we measured –1.63 the confidence interval would be [0, 0.01]. Does this really mean 
that in this case there is a 95% chance that the true value of θ is between 0 and 0.01?

No, it just means that we have observed a downward fluctuation 
‣ Suppose the true value is zero (θ = 0) → acceptance region @ 95% CL is [–∞, 1.64] 
‣ We expect a negative result in 50% of the cases 
‣ We expect a measurement less than –1.64 in 5% of the cases 
‣ We expect a measurement less than –2 in 2.3% of the cases

Sometimes a negative result is shifted to zero, i.e., 0 + 1.64 σ is reported as upper limit.  
That's not helpful. Always report the observed value even if it is in the unphysical regime. 
Otherwise the result cannot be combined with other results in meta analyses.
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Interpretation of Frequentist Confidence Intervals

21

So has anything gone wrong with the construction of the confidence 
interval?

■ Even though one should not, there is a tendency to interpret frequentist 
confidence intervals as Bayesian objects. That is, if one constructs the 
confidence interval in our example one tends to think that the true value lies in 
this interval with 95% probability 

■ But that's not right. We have to think in terms of repeated experiments. The 
obtained interval covers the true value in 95% of the experiments. 

■ This does not mean that the interval obtained in a single experiment contains 
the true value with 95% probability.

Actually no, nothing has gone wrong.
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The "flip-flop" problem

22

Let us suppose that physicist X takes the following attitude in an experiment 
designed to measure a small quantity:

■ If the result x is less then 3σ, I will state an upper limit  
■ If the result is greater than 3σ, I will state a central confidence interval from the 

standard tables 

Feldman, Cousins, physics/9711021v2

→ So what is reported in this case is decided after the measurement

Let's take a look at the confidence band

[Variables in the paper by Feldman and Cousins:                      . Confidence band for 90% 
CL. Otherwise same situation: Gaussian sampling distribution with σ = 1 and physical 
regime μ ≥ 0. In the following we'll use x and μ.]

x ⌘ ✓̂, µ ⌘ ✓
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The "flip-flop" problem: Confidence band

23

Feldman, Cousins, 
physics/9711021v2

0 + 1.28σ 
upper limit for 
negative x)

0

1

2

3

4

5

6

-2 -1 0 1 2 3 4
Measured Mean x

M
ea

n 
µ

x + 1.28σ upper limit 
for positive x < 3σ)

lower and upper limit 
for positive x > 3σ)
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The "flip-flop" problem: Coverage

24

Feldman, Cousins, 
physics/9711021v2

0
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M
ea
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undercoverage

The coverage of the intervals is 
wrong 
‣ Small μ: overcoverage 
‣ Example: μ = 2 

acceptance region is 
x ∈ [2 – 1.28, 2 + 1.64] 
→ coverage is only 85%  

‣ More general: 
for 1.36 < μ < 4.28 the 
chance of finding a measured 
value x in acceptance region is 
only 85%, not the desired 90%

This is a serious problem of 
the flip-flopping approach
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Problems with classical confidence intervals

25

■ in some situations the confidence interval can be an empty set 
■ they do not elegantly handle unphysical cases 
■ they do not continuously vary between  
a) giving upper limits in case of a very small signal and 
b) giving upper and lower limits in case of a more significant signal

Feldman & Cousins proposed a solution in their paper 
→ Feldman-Cousins confidence intervals
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Feldman-Cousins ordering principle for the construction 
of confidence intervals

26

The Neyman construction does not specify how, for a fixed true value μ, to 
define the interval that covers a fraction 1 – α (e.g. 95%) of the observed 
outcomes x.

x

�

�0

�1

�2

f(x|�)

x
Feldman & Cousins introduced an ordering principle based on the likelihood ratio:

R =
P(x |µ)

P(x |µbest)

μbest is the best fit obtained from data (maximum likelihood), taking the physically 
allowed region into account.

Order procedure for fixed μ: add values of x to the interval from highest R to lower 
R until the desired value 1 – α is reached.
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Application of Feldman-Cousins to Gaussian upper limits 
with physical limit (1)

27

g(x ;µ) =
1p
2⇡

exp
�
�(x � µ)2/2

�Sampling distribution in our example with 
physical limit μ ≥ 0 (σx ≡ 1):

µbest =

(
0, x < 0

x , x � 0

In this case the best estimate is given by

So R is given by

R =
P(x |µ)

P(x |µbest)
=

8
>>>><

>>>>:

exp
�
� 1

2 (x � µ)2
�

exp
�
� 1

2x
2
� , x < 0

exp
�
� 1

2 (x � µ)2
�

1
, x � 0

In practice, for each μ find interval limits x1 and x2 by solving numerically:

R(x1) = R(x2) and

Z x2

x1

g(x |µ) dx = 1� ↵
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Application of Feldman-Cousins to Gaussian upper limits 
with physical limit (2)

28

0
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Some nice features: 
■ Confidence interval is never empty 
■ Smooth transition from giving upper 

limit to two-sided interval 
■ Correct coverage 
■ No empty intervals

90% CL confidence belt
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Feldman-Cousins confidence intervals for the mean of 
the Poisson Distribution (1)

29

Let's go back to the counting experiment with signal s and known average 
number of background counts b:

P(n|s) = (s + b)n

n!
e�(s+b)

Classical method sometimes gives negative upper limit when nobs < b.

This problem is addressed by the Feldman-Cousins method.

The paper contains look-up tables for upper limits and confidence intervals.
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Feldman-Cousins confidence intervals for the 
mean of the Poisson Distribution (2)

30

TABLE IV. 90% C.L. intervals for the Poisson signal mean µ, for total events observed n0, for

known mean background b ranging from 0 to 5.

n0\b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0
0 0.00, 2.44 0.00, 1.94 0.00, 1.61 0.00, 1.33 0.00, 1.26 0.00, 1.18 0.00, 1.08 0.00, 1.06 0.00, 1.01 0.00, 0.98

1 0.11, 4.36 0.00, 3.86 0.00, 3.36 0.00, 2.91 0.00, 2.53 0.00, 2.19 0.00, 1.88 0.00, 1.59 0.00, 1.39 0.00, 1.22
2 0.53, 5.91 0.03, 5.41 0.00, 4.91 0.00, 4.41 0.00, 3.91 0.00, 3.45 0.00, 3.04 0.00, 2.67 0.00, 2.33 0.00, 1.73
3 1.10, 7.42 0.60, 6.92 0.10, 6.42 0.00, 5.92 0.00, 5.42 0.00, 4.92 0.00, 4.42 0.00, 3.95 0.00, 3.53 0.00, 2.78
4 1.47, 8.60 1.17, 8.10 0.74, 7.60 0.24, 7.10 0.00, 6.60 0.00, 6.10 0.00, 5.60 0.00, 5.10 0.00, 4.60 0.00, 3.60
5 1.84, 9.99 1.53, 9.49 1.25, 8.99 0.93, 8.49 0.43, 7.99 0.00, 7.49 0.00, 6.99 0.00, 6.49 0.00, 5.99 0.00, 4.99
6 2.21,11.47 1.90,10.97 1.61,10.47 1.33, 9.97 1.08, 9.47 0.65, 8.97 0.15, 8.47 0.00, 7.97 0.00, 7.47 0.00, 6.47
7 3.56,12.53 3.06,12.03 2.56,11.53 2.09,11.03 1.59,10.53 1.18,10.03 0.89, 9.53 0.39, 9.03 0.00, 8.53 0.00, 7.53
8 3.96,13.99 3.46,13.49 2.96,12.99 2.51,12.49 2.14,11.99 1.81,11.49 1.51,10.99 1.06,10.49 0.66, 9.99 0.00, 8.99
9 4.36,15.30 3.86,14.80 3.36,14.30 2.91,13.80 2.53,13.30 2.19,12.80 1.88,12.30 1.59,11.80 1.33,11.30 0.43,10.30

10 5.50,16.50 5.00,16.00 4.50,15.50 4.00,15.00 3.50,14.50 3.04,14.00 2.63,13.50 2.27,13.00 1.94,12.50 1.19,11.50
11 5.91,17.81 5.41,17.31 4.91,16.81 4.41,16.31 3.91,15.81 3.45,15.31 3.04,14.81 2.67,14.31 2.33,13.81 1.73,12.81
12 7.01,19.00 6.51,18.50 6.01,18.00 5.51,17.50 5.01,17.00 4.51,16.50 4.01,16.00 3.54,15.50 3.12,15.00 2.38,14.00
13 7.42,20.05 6.92,19.55 6.42,19.05 5.92,18.55 5.42,18.05 4.92,17.55 4.42,17.05 3.95,16.55 3.53,16.05 2.78,15.05
14 8.50,21.50 8.00,21.00 7.50,20.50 7.00,20.00 6.50,19.50 6.00,19.00 5.50,18.50 5.00,18.00 4.50,17.50 3.59,16.50
15 9.48,22.52 8.98,22.02 8.48,21.52 7.98,21.02 7.48,20.52 6.98,20.02 6.48,19.52 5.98,19.02 5.48,18.52 4.48,17.52
16 9.99,23.99 9.49,23.49 8.99,22.99 8.49,22.49 7.99,21.99 7.49,21.49 6.99,20.99 6.49,20.49 5.99,19.99 4.99,18.99
17 11.04,25.02 10.54,24.52 10.04,24.02 9.54,23.52 9.04,23.02 8.54,22.52 8.04,22.02 7.54,21.52 7.04,21.02 6.04,20.02
18 11.47,26.16 10.97,25.66 10.47,25.16 9.97,24.66 9.47,24.16 8.97,23.66 8.47,23.16 7.97,22.66 7.47,22.16 6.47,21.16
19 12.51,27.51 12.01,27.01 11.51,26.51 11.01,26.01 10.51,25.51 10.01,25.01 9.51,24.51 9.01,24.01 8.51,23.51 7.51,22.51
20 13.55,28.52 13.05,28.02 12.55,27.52 12.05,27.02 11.55,26.52 11.05,26.02 10.55,25.52 10.05,25.02 9.55,24.52 8.55,23.52

TABLE V. 90% C.L. intervals for the Poisson signal mean µ, for total events observed n0, for
known mean background b ranging from 6 to 15.

n0\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
0 0.00, 0.97 0.00, 0.95 0.00, 0.94 0.00, 0.94 0.00, 0.93 0.00, 0.93 0.00, 0.92 0.00, 0.92 0.00, 0.92 0.00, 0.92

1 0.00, 1.14 0.00, 1.10 0.00, 1.07 0.00, 1.05 0.00, 1.03 0.00, 1.01 0.00, 1.00 0.00, 0.99 0.00, 0.99 0.00, 0.98

2 0.00, 1.57 0.00, 1.38 0.00, 1.27 0.00, 1.21 0.00, 1.15 0.00, 1.11 0.00, 1.09 0.00, 1.08 0.00, 1.06 0.00, 1.05

3 0.00, 2.14 0.00, 1.75 0.00, 1.49 0.00, 1.37 0.00, 1.29 0.00, 1.24 0.00, 1.21 0.00, 1.18 0.00, 1.15 0.00, 1.14

4 0.00, 2.83 0.00, 2.56 0.00, 1.98 0.00, 1.82 0.00, 1.57 0.00, 1.45 0.00, 1.37 0.00, 1.31 0.00, 1.27 0.00, 1.24

5 0.00, 4.07 0.00, 3.28 0.00, 2.60 0.00, 2.38 0.00, 1.85 0.00, 1.70 0.00, 1.58 0.00, 1.48 0.00, 1.39 0.00, 1.32

6 0.00, 5.47 0.00, 4.54 0.00, 3.73 0.00, 3.02 0.00, 2.40 0.00, 2.21 0.00, 1.86 0.00, 1.67 0.00, 1.55 0.00, 1.47

7 0.00, 6.53 0.00, 5.53 0.00, 4.58 0.00, 3.77 0.00, 3.26 0.00, 2.81 0.00, 2.23 0.00, 2.07 0.00, 1.86 0.00, 1.69
8 0.00, 7.99 0.00, 6.99 0.00, 5.99 0.00, 5.05 0.00, 4.22 0.00, 3.49 0.00, 2.83 0.00, 2.62 0.00, 2.11 0.00, 1.95
9 0.00, 9.30 0.00, 8.30 0.00, 7.30 0.00, 6.30 0.00, 5.30 0.00, 4.30 0.00, 3.93 0.00, 3.25 0.00, 2.64 0.00, 2.45

10 0.22,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.50 0.00, 5.56 0.00, 4.71 0.00, 3.95 0.00, 3.27 0.00, 3.00
11 1.01,11.81 0.02,10.81 0.00, 9.81 0.00, 8.81 0.00, 7.81 0.00, 6.81 0.00, 5.81 0.00, 4.81 0.00, 4.39 0.00, 3.69
12 1.57,13.00 0.83,12.00 0.00,11.00 0.00,10.00 0.00, 9.00 0.00, 8.00 0.00, 7.00 0.00, 6.05 0.00, 5.19 0.00, 4.42
13 2.14,14.05 1.50,13.05 0.65,12.05 0.00,11.05 0.00,10.05 0.00, 9.05 0.00, 8.05 0.00, 7.05 0.00, 6.08 0.00, 5.22
14 2.83,15.50 2.13,14.50 1.39,13.50 0.47,12.50 0.00,11.50 0.00,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.55
15 3.48,16.52 2.56,15.52 1.98,14.52 1.26,13.52 0.30,12.52 0.00,11.52 0.00,10.52 0.00, 9.52 0.00, 8.52 0.00, 7.52
16 4.07,17.99 3.28,16.99 2.60,15.99 1.82,14.99 1.13,13.99 0.14,12.99 0.00,11.99 0.00,10.99 0.00, 9.99 0.00, 8.99
17 5.04,19.02 4.11,18.02 3.32,17.02 2.38,16.02 1.81,15.02 0.98,14.02 0.00,13.02 0.00,12.02 0.00,11.02 0.00,10.02
18 5.47,20.16 4.54,19.16 3.73,18.16 3.02,17.16 2.40,16.16 1.70,15.16 0.82,14.16 0.00,13.16 0.00,12.16 0.00,11.16
19 6.51,21.51 5.51,20.51 4.58,19.51 3.77,18.51 3.05,17.51 2.21,16.51 1.58,15.51 0.67,14.51 0.00,13.51 0.00,12.51
20 7.55,22.52 6.55,21.52 5.55,20.52 4.55,19.52 3.55,18.52 2.81,17.52 2.23,16.52 1.48,15.52 0.53,14.52 0.00,13.52
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Feldman, Cousins, physics/9711021v2
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Feldman-Cousins method: Discussion

+State-of-the art for frequentist confidence intervals 
+Avoids flip-flop problem, correct coverage 
+Handles interval estimates at physical boundaries

31

– Construction of F-C confidence intervals is complicated, usually has to be done 
numerically 

– Systematic uncertainties not easily included 
– Counter-intuitive result in case of counting experiments with different 

background (see next slide)

Drawbacks:

Nice features:
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Feldman-Cousins method: The paradox of fewer than 
expected background events

32

Consider two counting experiments 
‣ Experiment A: expects background b = 0 ("carefully designed experiment") 
‣ Experiment B: expects background b = 5

Suppose now both experiments measure n = 0 counts.  
Feldman-Cousins upper limits at 90% CL:  
‣ Experiment A: sup = 2.44 
‣ Experiment B: sup = 0.98

Weird: The FC method says that the experiment B in which a larger background 
is expected gives the better (more stringent) upper limit.

Experiment B must have observed a downward fluctuation of the background. 
How can a fluctuation result in a better upper limit?
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Suggestion in the Feldman-Cousins paper
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"Our suggestion for doing this is that in cases in which the measurement is less 
than the estimated background, the experiment report both the upper limit and 
the “sensitivity” of the experiment, where the “sensitivity” is defined as the 
average upper limit that would be obtained by an ensemble of experiments with 
the expected background and no true signal. […] 
Thus, an experiment that measures 2 events and has an expected background 
of 3.5 events would report a 90% C.L. upper limit of 2.7 events (from Tab. IV), 
but a sensitivity of 4.6 events (from Tab. XII)."

Feldman, Cousins, physics/9711021v2
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CLs method: Motivation
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Consider an experiment with low sensitivity  
("background dominated experiment"). 
‣ By construction, one rejects a true hypothesis with a certain probability (e.g. 5%) 
‣ Problem: exclusion of parameter values to which one has no sensitivity  
‣ Example Higgs search: mH = 1000 TeV rejected with a chance of 5% 
‣ "Spurious exclusion"

This problem was addressed for the LEP Higgs searches in the late 1990'ies and 
led to the CLs method 
‣ Explicitly consider experimental sensitivity in limit setting  
‣ Reduce spurious exclusion by a particular choice of the critical region 
‣ Frequentist-motivated approach, but NOT frequentist (“modified frequentist method”)  
‣ Name a bit misleading, as the CLs exclusion region is not a confidence interval  
‣ Overcoverage by construction: conscious choice to give up frequentist coverage to take 

sensitivity into account 
‣ "Despite its shaky foundations in statistical theory, it has been producing sensible results for 

over a decade" (http://cds.cern.ch/record/2203243)

A. Read, J. Phys. G 28, 2693 (2002), T. Junk, NIM A, 434, 435 (1999)

http://cds.cern.ch/record/2203243
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CLs procedure (1)

35

Test statistic:

G. Cowan  Statistical Data Analysis / Stat 4 68 

The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ > 0 (µs+b) hypotheses with the same statistic Q = �2ln Ls+b/Lb: 

Q = �2 ln
L(x |s + b)

L(x |b)

G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

background-likesignal-like



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 8. Confidence Limits and Intervals

CLs procedure (2)
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Low sensitivity: the distributions under s and s+b are very close

G. Cowan  Statistical Data Analysis / Stat 4 69 

The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     

f (Q|s+b)     

ps+b pb 

G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html
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CLs Procedure (3)
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Standard p-value test:

Reject s+b hypothesis if

G. Cowan  Statistical Data Analysis / Stat 4 70 

The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(~ one minus the p-value of the b-only hypothesis), i.e., 

Define: 

Reject s+b  
hypothesis if: Increases “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (Q|b)     f (Q|s+b)     

CLs+b  
= ps+b 

1�CLb 
 = pb 

The CLs procedure (3) 

ps+b  ↵

Increases “effective” p-value when the two distributions become close (prevents exclusion if sensitivity is low)

Reject s+b hypothesis if

CLs method:

more stringent than standard p-
value test as 1 – pb ≤ 1

G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

CLs :=
ps+b

1� pb
⌘ CLs+b

CLb
 ↵
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Upper Limits on μ = σ/σSM in Higgs searches
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G. Cowan, https://www.pp.rhul.ac.uk/~cowan/stat_course.html

Signal for Higgs hypothesis: s(mH) = Lint · �SM

Signal strength μ: 

Carry out CLs procedure for all values 
of μ = σ/σSM. Reject μ if 

n = µ · s(mH) + b, µ =
Lint · �(mH)

Lint · �SM(mH)
=

�(mH)

�SM(mH)

This defines upper limit μup at 95% CL 
(smallest value of μ that can be 
rejected by the CLs criterion)

At a given value of mH, we have an 
observed value of μup, and we can also 
find the distribution f(μup|0)

G. Cowan  Statistical Data Analysis / Stat 4 71 

Setting upper limits on µ = σ/σSM 
Carry out the CLs procedure for the parameter µ = σ/σSM,  
resulting in an upper limit µup. 

In, e.g., a Higgs search, this is done for each value of mH.   

At a given value of mH, we have an observed value of µup, and 
we can also find the distribution f(µup|0): 

±1σ (green) and ±2σ (yellow) 
bands from toy MC; 

Vertical lines from asymptotic 
formulae. 

f(μup|0)

green: 
±1σ

yellow: 
±2σ

background only 
hypothesis

μ = 1: SM w/ Higgs, μ = 0: SM w/o Higgs (background only model)

CLs :=
pµ

1� pb
 0.05
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Upper limits on μ = σ/σSM in Higgs searches
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Figure 7: Combined search results: (a) The observed (solid) 95% CL
limits on the signal strength as a function of mH and the expec-
tation (dashed) under the background-only hypothesis. The dark
and light shaded bands show the ±1σ and ±2σ uncertainties on the
background-only expectation. (b) The observed (solid) local p0 as a
function of mH and the expectation (dashed) for a SM Higgs boson
signal hypothesis (µ = 1) at the given mass. (c) The best-fit signal
strength µ̂ as a function of mH . The band indicates the approximate
68% CL interval around the fitted value.

are excluded at 99% CL, 113–114, 117–121 and 132–
527GeV, while the expected exclusion range at 99%CL
is 113–532GeV.

9.2. Observation of an excess of events

An excess of events is observed nearmH=126GeV in
the H→ ZZ(∗)→ 4ℓ and H→ γγ channels, both of which
provide fully reconstructed candidates with high reso-
lution in invariant mass, as shown in Figures 8(a) and
8(b). These excesses are confirmed by the highly sen-
sitive but low-resolution H→WW (∗)→ ℓνℓν channel, as
shown in Fig. 8(c).
The observed local p0 values from the combination

of channels, using the asymptotic approximation, are
shown as a function of mH in Fig. 7(b) for the full mass
range and in Fig. 9 for the low mass range.
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Figure 8: The observed local p0 as a function of the hypothesised
Higgs boson mass for the (a) H→ZZ(∗)→ 4ℓ, (b) H→ γγ and (c)
H→WW(∗)→ ℓνℓν channels. The dashed curves show the expected
local p0 under the hypothesis of a SMHiggs boson signal at that mass.
Results are shown separately for the

√
s = 7TeV data (dark, blue), the√

s = 8TeV data (light, red), and their combination (black).

The largest local significance for the combination of
the 7 and 8 TeV data is found for a SM Higgs boson
mass hypothesis of mH=126.5GeV, where it reaches
6.0σ, with an expected value in the presence of a SM
Higgs boson signal at that mass of 4.9σ (see also Ta-
ble 7). For the 2012 data alone, the maximum lo-
cal significance for the H→ ZZ(∗)→ 4ℓ, H→ γγ and
H→WW (∗)→ eνµν channels combined is 4.9σ, and oc-
curs at mH = 126.5GeV (3.8σ expected).
The significance of the excess is mildly sensitive to

uncertainties in the energy resolutions and energy scale
systematic uncertainties for photons and electrons; the
effect of the muon energy scale systematic uncertain-
ties is negligible. The presence of these uncertainties,
evaluated as described in Ref. [138], reduces the local
significance to 5.9σ.
The global significance of a local 5.9σ excess any-

where in the mass range 110–600GeV is estimated to
be approximately 5.1σ, increasing to 5.3σ in the range
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Figure 7: Combined search results: (a) The observed (solid) 95% CL
limits on the signal strength as a function of mH and the expec-
tation (dashed) under the background-only hypothesis. The dark
and light shaded bands show the ±1σ and ±2σ uncertainties on the
background-only expectation. (b) The observed (solid) local p0 as a
function of mH and the expectation (dashed) for a SM Higgs boson
signal hypothesis (µ = 1) at the given mass. (c) The best-fit signal
strength µ̂ as a function of mH . The band indicates the approximate
68% CL interval around the fitted value.

are excluded at 99% CL, 113–114, 117–121 and 132–
527GeV, while the expected exclusion range at 99%CL
is 113–532GeV.

9.2. Observation of an excess of events

An excess of events is observed nearmH=126GeV in
the H→ ZZ(∗)→ 4ℓ and H→ γγ channels, both of which
provide fully reconstructed candidates with high reso-
lution in invariant mass, as shown in Figures 8(a) and
8(b). These excesses are confirmed by the highly sen-
sitive but low-resolution H→WW (∗)→ ℓνℓν channel, as
shown in Fig. 8(c).
The observed local p0 values from the combination

of channels, using the asymptotic approximation, are
shown as a function of mH in Fig. 7(b) for the full mass
range and in Fig. 9 for the low mass range.
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Figure 8: The observed local p0 as a function of the hypothesised
Higgs boson mass for the (a) H→ZZ(∗)→ 4ℓ, (b) H→ γγ and (c)
H→WW(∗)→ ℓνℓν channels. The dashed curves show the expected
local p0 under the hypothesis of a SMHiggs boson signal at that mass.
Results are shown separately for the

√
s = 7TeV data (dark, blue), the√

s = 8TeV data (light, red), and their combination (black).

The largest local significance for the combination of
the 7 and 8 TeV data is found for a SM Higgs boson
mass hypothesis of mH=126.5GeV, where it reaches
6.0σ, with an expected value in the presence of a SM
Higgs boson signal at that mass of 4.9σ (see also Ta-
ble 7). For the 2012 data alone, the maximum lo-
cal significance for the H→ ZZ(∗)→ 4ℓ, H→ γγ and
H→WW (∗)→ eνµν channels combined is 4.9σ, and oc-
curs at mH = 126.5GeV (3.8σ expected).
The significance of the excess is mildly sensitive to

uncertainties in the energy resolutions and energy scale
systematic uncertainties for photons and electrons; the
effect of the muon energy scale systematic uncertain-
ties is negligible. The presence of these uncertainties,
evaluated as described in Ref. [138], reduces the local
significance to 5.9σ.
The global significance of a local 5.9σ excess any-

where in the mass range 110–600GeV is estimated to
be approximately 5.1σ, increasing to 5.3σ in the range

18

ATLAS, Phys.Lett. B716 (2012) 1-29 (arXiv:1207.7214)

95% CL limit on μ  <  1  ⇒  Standard model with mH rejected

Consistency within 2σ everywhere 
except for mH = 125 GeV
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Higgs discovery (from ATLAS paper)

40
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Figure 9: The observed (solid) local p0 as a function of mH in the
low mass range. The dashed curve shows the expected local p0 under
the hypothesis of a SM Higgs boson signal at that mass with its ±1σ
band. The horizontal dashed lines indicate the p-values corresponding
to significances of 1 to 6 σ.

110–150GeV, which is approximately the mass range
not excluded at the 99% CL by the LHC combined SM
Higgs boson search [139] and the indirect constraints
from the global fit to precision electroweak measure-
ments [12].

9.3. Characterising the excess
The mass of the observed new particle is esti-

mated using the profile likelihood ratio λ(mH) for
H→ZZ(∗)→ 4ℓ and H→ γγ, the two channels with the
highest mass resolution. The signal strength is al-
lowed to vary independently in the two channels, al-
though the result is essentially unchanged when re-
stricted to the SM hypothesis µ = 1. The leading
sources of systematic uncertainty come from the elec-
tron and photon energy scales and resolutions. The re-
sulting estimate for the mass of the observed particle is
126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.
The best-fit signal strength µ̂ is shown in Fig. 7(c) as

a function of mH . The observed excess corresponds to
µ̂ = 1.4 ± 0.3 for mH = 126GeV, which is consistent
with the SM Higgs boson hypothesis µ = 1. A sum-
mary of the individual and combined best-fit values of
the strength parameter for a SM Higgs boson mass hy-
pothesis of 126GeV is shown in Fig. 10, while more
information about the three main channels is provided
in Table 7.
In order to test which values of the strength and

mass of a signal hypothesis are simultaneously consis-
tent with the data, the profile likelihood ratio λ(µ,mH) is
used. In the presence of a strong signal, it will produce
closed contours around the best-fit point (µ̂, m̂H), while
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Figure 10: Measurements of the signal strength parameter µ for
mH=126GeV for the individual channels and their combination.

in the absence of a signal the contours will be upper
limits on µ for all values of mH .
Asymptotically, the test statistic −2 lnλ(µ,mH) is dis-

tributed as a χ2 distribution with two degrees of free-
dom. The resulting 68% and 95% CL contours for the
H→ γγ and H→WW (∗)→ ℓνℓν channels are shown in
Fig. 11, where the asymptotic approximations have been
validated with ensembles of pseudo-experiments. Sim-
ilar contours for the H→ ZZ(∗)→ 4ℓ channel are also
shown in Fig. 11, although they are only approximate
confidence intervals due to the smaller number of can-
didates in this channel. These contours in the (µ,mH)
plane take into account uncertainties in the energy scale
and resolution.
The probability for a single Higgs boson-like particle

to produce resonant mass peaks in the H→ ZZ(∗)→ 4ℓ
and H→ γγ channels separated by more than the ob-
served mass difference, allowing the signal strengths to
vary independently, is about 8%.
The contributions from the different production

modes in the H→ γγ channel have been studied in order
to assess any tension between the data and the ratios of
the production cross sections predicted in the Standard
Model. A new signal strength parameter µi is introduced
for each production mode, defined by µi = σi/σi,SM. In
order to determine the values of (µi, µ j) that are simul-
taneously consistent with the data, the profile likelihood
ratio λ(µi, µ j) is used with the measured mass treated as
a nuisance parameter.
Since there are four Higgs boson productionmodes at

the LHC, two-dimensional contours require either some
µi to be fixed, or multiple µi to be related in some way.
Here, µggF and µtt̄H have been grouped together as they
scale with the tt̄H coupling in the SM, and are denoted
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to significances of 1 to 6 σ.
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not excluded at the 99% CL by the LHC combined SM
Higgs boson search [139] and the indirect constraints
from the global fit to precision electroweak measure-
ments [12].

9.3. Characterising the excess
The mass of the observed new particle is esti-

mated using the profile likelihood ratio λ(mH) for
H→ZZ(∗)→ 4ℓ and H→ γγ, the two channels with the
highest mass resolution. The signal strength is al-
lowed to vary independently in the two channels, al-
though the result is essentially unchanged when re-
stricted to the SM hypothesis µ = 1. The leading
sources of systematic uncertainty come from the elec-
tron and photon energy scales and resolutions. The re-
sulting estimate for the mass of the observed particle is
126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.
The best-fit signal strength µ̂ is shown in Fig. 7(c) as

a function of mH . The observed excess corresponds to
µ̂ = 1.4 ± 0.3 for mH = 126GeV, which is consistent
with the SM Higgs boson hypothesis µ = 1. A sum-
mary of the individual and combined best-fit values of
the strength parameter for a SM Higgs boson mass hy-
pothesis of 126GeV is shown in Fig. 10, while more
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didates in this channel. These contours in the (µ,mH)
plane take into account uncertainties in the energy scale
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and H→ γγ channels separated by more than the ob-
served mass difference, allowing the signal strengths to
vary independently, is about 8%.
The contributions from the different production

modes in the H→ γγ channel have been studied in order
to assess any tension between the data and the ratios of
the production cross sections predicted in the Standard
Model. A new signal strength parameter µi is introduced
for each production mode, defined by µi = σi/σi,SM. In
order to determine the values of (µi, µ j) that are simul-
taneously consistent with the data, the profile likelihood
ratio λ(µi, µ j) is used with the measured mass treated as
a nuisance parameter.
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Reject also background only hypothesis at mH = 125 GeV 
and check consistency with μ = 1   →    discovery!!!
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CERN Seminar on 4. July 2012
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Higgs discovery
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“I think we have it!” 
(Rolf Heuer,  
CERN director general in 2012
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Summary

■ Confidence intervals are based on the idea of coverage: a certain fraction of 
repeatedly measured intervals would cover the true value 

■ This leads to properties, that seem strange when interpreted as a region where 
the true parameter likely is (unphysical intervals, no good way to switch from 
interval to limit) 

■ The Feldman Cousins approach removes the strange properties, but does not 
change the basic definition  just because the interval is possible, it is not 
necessarily where you should expect the true parameter 

■ Compared to credible intervals a trade-off: Get objective results but lose the 
interpretation 

■ The CLs method is a compromise, giving intervals that are neither confidence 
intervals not credible intervals

→
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