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Some difficult topics
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Errors in independent variables

■ What happens if we have errors in  and ? 
■ Actually quite complex question 
■ What happens if we repeat the measurement? Do we: 

A. Draw a new true -value from some distribution? 
B. Measure the same unknown -value again? 

■ “A” leads to structural models, while “B” leads to 
functional models 

■ When repetition of measurement is fixed, and the x- and 
y- variances are known, we can calculate a likelihood 

■ Many models deal with unknown variances, not usual in 
physics

x y

x
x
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Example from ALICE performance report, 
The measured particle  fluctuates when the 
experiment is repeated.

βγ
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Errors in independent variables (2)

■ Example 1: We put the setting on the machine to 
some x-value (e.g. the voltage), but the true x-value 
fluctuates around this, giving an uncertainty

4

■ Example 2: There is some true constant x-value, 
which is unknown. The measurements fluctuate 
around it.

Since the fluctuations depend on the formulation of the problem, so must the best fit.
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Errors in independent variables (3)

■ Typical case in particle physics 
■ binned distribution 
■ Measurement uncertainty leads to entries 

landing in the wrong bin 
■ Mostly, when uncertainty is larger than the bin 

width 
■ Methods for inverting process via “unfolding” 
■ Discussed later in the lecture
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Asymmetric errors

■ Sometimes results are given with asymmetric uncertainties 
 

■ This is not consistent with the definition of the error as a 
standard deviation - which does not have a direction

■ There are several ways in which an asymmetric error can 
come about: 

■ From the  rule of maximum likelihood yielding 
asymmetric points 

■ From using a confidence interval for the edges of the 
 interval 

■ From some other ad hoc rule, which many or may not be 
explained 

■ Usually we need some way to combine (average) 
measurements and to propagate these uncertainties 

■ The treatment of the results depends on what the 
asymmetric uncertainties are supposed to represent

xσ+

σ−

log Lmax − 1/2

[x − σ−, x + σ+]
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Asymmetric errors (2)
■ Sometimes the question arises: Are the errors Gaussian? 
■ It is unclear what that means 
■ Assuming: Is the distribution of the estimator Gaussian? 
■ Then asymmetry could mean: Sum of two half-Gaussian 

distributions 
 

■ Mean at  but median below 
■ Taking the mean of several measurements means 

convolution 
■ But convolution must lead closer to symmetric distribution 
■ Therefore: Whatever the reason for asymmetric error bars, 

it is never justified to add the upper and lower errors in 
quadrature separately! 

■ Impossible to calculate  for goodness-of-fit without 
specifying what the errors mean 

■ Similar for weighted mean

[x > 0] ⋅ G1(x, σ+)/σ+ + [x < 0] ⋅ G2(x, σ−)/σ−

0

χ2
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Asymmetric errors (3)

■ Recommendation for asymmetric uncertainties: 
Avoid! 

■ If you have to calculate with other people’s errors: 
Find out precisely what they mean and how they are 
defined 

■ R. Barlow looked at two problems: 

■ How to combine the  estimates from 
two measurements 

■ How to combine uncertainties with asymmetries 
from a nonlinear function (arXiv:0306138) 

■ If no clear definition, then you must use some ad-hoc 
mechanism, e.g. symmetrising the uncertainties, 
using the larger of the two … (but don’t add them 
separately)

Lmax − 1/2
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R. Barlow, PHYSTAT (2005) proceedings 
arXiv:0406120
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The Guide to Uncertainty in Measurement

■ There is a document giving an international standard 
for evaluating and expressing uncertainty 

■ Published by the International Bureau of Weights and 
Measures, Joint Committee for Guides in Metrology 

■ Separates errors into “Type A” and Type B” 
■ Type A is estimated via repeated measurements 

(e.g. from variance of outputs) 
■ Type B is everything else 

■ Essentially adopts a mix of Frequentist and Bayesian 
methods 
■ Type A analysed via unbiased variance estimator 
■ "Flat prior” nuisance parameters get  

errors - corresponding to marginal 
■ It is not clear how much it helps in fundamental 

physics 

|a − b | / 12
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GUM, 2008

https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6
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Hypothesis testing
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Reminder: Bayesian and Frequentist diagnosis example

Bayesian: 
■ Frequency of disease in population is 

prior 
■ Probability for this patient to have 

disease is valid concept 
‣  is the probability 

for this patient to have the disease, 
this encodes the uncertainty 

p(D | + ) = 0.032

Frequentist: 
■ Probability for this patient to have disease is not 

a valid concept - there is no random process 
■ Probability for a patient randomly drawn from the 

population to have disease is a valid concept 
■ Two possible statements: 
‣ “If we randomly select a person from the 

population, then the people testing positive 
have a probability of  of having the 
disease.” 

‣ “If a patient is healthy, we would get a positive 
test with a probability of ” 

■ Neither are probabilities for this particular person 
to have the disease

0.032

0.03

Can we generalise this approach?
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Hypotheses and tests
Hypothesis test 
‣ Statement about the validity of a model 
‣ Tells you which of two competing models is more consistent with the data 

Simple hypothesis: a hypothesis with no free parameters 
‣ Examples: the detected particle is a pion; data follow Poissonian with mean 5 

Composite hypothesis: contains unspecified parameter(s) 
‣ Example: data follow Poissonian with mean > 5 

Null hypothesis H0 and alternative hypothesis H1  
‣ H0 often the background-only hypothesis  

(e.g. the Standard Model in searches for new physics) 
‣ H1 often signal or signal + background hypothesis 

Question: Can null hypothesis be rejected by the data?

12
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Example: Dream speedrunning controversy

■ In October 2020, Dream reached 5th place in the 
“glitchless 1.16” Minecraft speedrunning category 

■ Two main random processes necessary for 
completing the game: Ender pearls from trading and 
blaze rods from blazes 

■ Number of successes should be distributed by a 
binomial distribution with ,  

■ Did he cheat? How to assess from frequentist view? 
■ Asking: How likely is the result? Does not work 
■  is 

small 
■ But so is the most likely value 

 
■ Need another way to quantify

θpearls = 0.05 θrods = 0.5

pbinom(k = 211 |N = 305, θ = 0.5) ≈ 4.9 ⋅ 10−12

pbinom(k = 152 |N = 305, θ = 0.5) ≈ 0.046

13

Dream Investigation Results

https://mcspeedrun.com/dream.pdf
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Example 2: Goodness-of-fit

■ Want to know if a model ( ) is consistent with 
the data 

■  looks “okay”, but how to quantify? 

■ Probability for any particular  is always  
(density) 

■ If e.g.  were the true model, we would likely 
have a large  (wrt. the blue line), but this is a 
qualitative statement

H0

χ2

χ2 0

H1
χ2

14
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Test statistics
■ A test statistic  is a function of the data  
■ It should be chosen, such that for the hypothesis we are 

testing, , the alternatives  ( ) typically 
have larger or smaller values (we will assume larger in the 
following) 

■ For the “Dream” (binomial) case, we can just use the 
observer number  - a modification to a higher drop 
probability yields a higher average  

■ For the model comparison, we can use the  as it will 
be on average higher if another hypothesis is true 

■ We thus use  and  as the test statistics here 
■ The choice of the test statistic determines how well we 

can distinguish between hypotheses 
■ We can now decide to reject or accept a hypothesis 

based on the test statistic

t( ⃗d) ⃗d

H0 H1 H2, H3, …

k
k

χ2

k χ2

15
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Critical region

16

The probability for H0 to be 
rejected while H0 is true:

124 7 Hypothesis Tests

t

f(t)
signal

background

tcut

Fig. 7.1 Probability distribution functions for a discriminating variable t.x/ D x which has two
different PDFs for the signal (red) and background (yellow) hypotheses under test

One simple example is to use a single variable x which has discriminating power
between two hypotheses, say signal = “muon” versus background = “pion”, as
shown in Fig. 7.1. A good “separation” of the two cases can be achieved if the
PDFs of x under the hypotheses H1 = signal and H0 = background are appreciably
different.

On the basis of the observed value Ox of the discriminating variable x, a simple
test statistics can be defined as the measured value itself:

Ot D t.Ox/ D Ox : (7.1)

A selection requirement (in physics jargon sometimes called cut) can be defined
by identifying a particle as a muon if Ot ! tcut or as a pion if Ot > tcut, where the value
tcut is chosen a priori.

Not all real muons will be correctly identified as a muon according to this
criterion, as well as not all real pions will be correctly identified as pions. The
expected fraction of selected signal particles (muons) is usually called signal
selection efficiency and the expected fraction of selected background particles
(pions) is called misidentification probability.

Misidentified particles constitute a background to positively identified signal
particles. Applying the required selection (cut), in this case t ! tcut, on a data
sample made of different detected particles, each providing a measurements of
x, the selected data sample will be enriched of signal, reducing the fraction of
background in the selected data sample with respect to the original unselected
sample. The sample will be actually enriched if the selection efficiency is larger
than the misidentification probability, which is the case considering the shapes of
the PDFs in Fig. 7.1 and the chosen selection cut.

critical region 
(reject H0)

f (t|H0)

f (t|H1)

α:  
"size" or "significance level" of 
the test 
1– β:  
"power of the test”, 
prob. to reject H0 if H1 is true

Probability to reject H1  
even though it is true:

test statistic
Z 1

tcut

f (t|H0) dt = ↵

Z tcut

�1
f (t|H1) dt = �

β α

accept H0



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 7. Hypothesis Testing

Type I and type II errors

17

Type I and type II errors and their probabilities:

Type I error: 
Null hypothesis is rejected while it is actually true

Type II error: 
Test fails to reject null hypothesis while it is actually false 

H0 is true H0 is false (i.e., H1 is true)

H0 is rejected Type I error (↵) Correct decision (1� �)

H0 is not rejected Correct decision (1� ↵) Type II error (�)
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What does such a test mean?

■ Remember the two statements from diagnosis: 
‣ “If we randomly select a person from the population, then the people testing 

positive have a probability of  of having the disease.” 

‣ “If a patient is healthy, we would get a positive test with a probability of ” 
■ We now define the significance by the second one 
■ Here, a positive diagnosis would mostly be wrong! 
■ The Bayesian solution to this would be to use a prior 
■ The frequentist solution is to require more strict significances, e.g. for particle 

discoveries  also called .

0.032
0.03

α = 2.9 ⋅ 10−7 5σ

18
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The p-value - test of significance

■ Often one wants to quantify the level of agreement between the data and a 
hypothesis without explicit reference to alternative hypotheses  

■ Define test statistic t that reflects level of agreement with the data 

■ Larger values should reflect possible alternative hypotheses, but we no not 
need to specify them 

■ Determine distribution f(t|H0) under hypothesis H0

19

p-value = ∫
∞

tobs

p(t |H0)dt

The p-value is the probability of obtaining a test statistic t at least as extreme as 
the results actually observed, under the assumption that the null hypothesis is 
correct. 

■ This means, that the alternative hypothesis is only needed to define what “more 
extreme” means.
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The p-value - example 1

■ For the possible cheating: higher numbers of successes 
 means “more extreme” 

■ So we need to sum up all cases at least as extreme as 
the measured one: 

 

■ Even though this result does not depend on any , we 
are implicitly comparing to all hypotheses with 

k

p-value =
305

∑
k=211

pbinom(k |N = 305,θ = 0.5) = 8.8 ⋅ 10−12

H1
θ > 0.5

20

■ p-value should not be confused with significance level 
‣ significance level is a pre-specified constant 
‣ p-value is a function of the data, and is therefore itself a random variable  

■ p-value is not the probability for the hypothesis; in frequentist statistics, this is 
not defined 
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The p-value: example 2

■ For the measured , the more 
extreme deviation would be towards higher 
values 

 

■ Last point gives large contribution to  

■ But it actually disfavours  even more 

■ This shows, that the  is not the best 
possible test statistic here 

■ When someone quotes a significance, 
always ask: With respect to which test 
statistic?

χ2 = 15.6

p-value = ∫
∞

15.6
pχ2(χ2 |Ndof = 10) = 0.11

χ2

H1

χ2

21
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Neyman–Pearson lemma

To get the highest power (i.e. smallest possible value of β) of a test of H0 with 
respect to the alternative H1 for a given significance level, the critical region W 
should be chosen such that:

22

Neyman-Pearson lemma holds for simple hypotheses and states:

and

c is a constant chosen to give a test of the desired significance level.

Equivalent formulation: optimal scalar test statistic is the likelihood ratio

t(~x) :=
f (~x |H1)

f (~x |H0)
> c inside W

t(~x) =
f (~x |H1)

f (~x |H0)

t(~x)  c outside W
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The p-value: example 2

■ The  is the log-L of a multidimensional Gaussian 
■ Thus, the log of the likelihood ratio leads to a 

difference in  for the models with 

 

■ Models are much better separated 
■ However, we need to specify the alternative model

χ2

χ2 Δχ2 = − 48.5

p-value = ∫
∞

−48.5
p(Δχ2) dΔχ2 = 0.82

23
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Practical considerations

Problem: often one does not have explicit formulas for f(x|H0) and f(x|H1) 
One rather has Monte Carlo models for signal and background processes which 
allow one to generate instances of the data. 
In this case one can use multi-variate classifiers to separate different types of 
events 
‣ Fisher discriminants  
‣ Neural networks  
‣ Support vector machines 
‣ decision trees  
‣ … 

24
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Simple example:  
Counting experiment (Poisson statistics)

25

Expected background events: 
νb = 1.3

Expected signal events: 
νs = 2

Expected signal + bckgr. events: 
νs+b = 3.3

Test statistic t =  
number of observed events

Critical region tc ≧ 4 
‣ significance of the test α = 0.043 
‣ power of the test 1 – β = 0.42 Suppose we observe n = 5 events 

‣ Under H0, this correspond to a 
p-value = 0.01

H0: only background,  
H1: signal + background
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Kolmogorov–Smirnov test (1)

26

KS test is an unbinned goodness-of-fit test

Compare cumulative distribution function 

F (x) =

Z x

�1
f (x 0) dx 0

with the so-called Empirical Distribution 
Function (EDF)

S(x) =
number of observations with xi < x

total number of observations

The test statistic is the maximum difference 
between the two functions:

D = sup|F (x)� S(x)|

Q: Do data points come from a given 
distribution?

One can also test whether two one-dimensional sets of points 
are compatible with coming from the same parent distribution.

F(x) S(x)
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Kolmogorov–Smirnov Test (2)

27

10.3 Goodness-of-Fit Tests 265

Fig. 10.10. P-value as a function of the Kolmogorov test statistic D∗.

The Kolmogorov–Smirnov test emphasizes more the center of the distribution
than the tails because there the distribution function is tied to the values zero and
one and thus is little sensitive to deviations at the borders. Since it is based on
the distribution function, deviations are integrated over a certain range. Therefore
it is not very sensitive to deviations which are localized in a narrow region. In Fig.
10.8 the left hand and the right hand histograms have the same excess of entries in
the region left of the center. The Kolmogorov–Smirnov test produces in both cases
approximately the same value of the test statistic, even though we would think that
the distribution of the right hand histogram is harder to explain by a statistical
fluctuation of a uniform distribution. This shows again, that the power of a test
depends strongly on the alternatives to H0. The deviations of the left hand histogram
are well detected by the Kolmogorov–Smirnov test, those of the right hand histogram
much better by the Anderson–Darling test which we will present below.

There exist other EDF tests [57], which in most situations are more effective than
the simple Kolmogorov–Smirnov test.

10.3.6 Tests of the Kolmogorov–Smirnov – and Cramer–von Mises
Families

In the Kuiper test one uses as the test statistic the sum V = D+ +D− of the two
deviations of the empirical distribution function S from F . This quantity is designed
for distributions “on the circle”. This are distributions where the beginning and the
end of the distributed quantity are arbitrary, like the distribution of the azimuthal
angle which can be presented with equal justification in all intervals [ϕ0,ϕ0 + 2π]
with arbitrary ϕ0.

The tests of the Cramer–von Mises family are based on the quadratic difference
between F and S. The simple Cramer–von Mises test employs the test statistic

Expected distribution of D known (Kolmogorov distribution) for given N → p-value

Bohm, Zech, 
http://www-library.desy.de/preparch/books/vstatmp_engl.pdf

D⇤ =
p
ND,

N = number of data points

from scipy import stats 
D, p_value =  
stats.kstest(x, stats.norm.cdf)

Kolmogorov–Smirnov test: only for 1d data

Example: 
Test whether data xi come from 
standard normal distribution 
N(0,1):
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Two-Sample χ2 Test

28

Test hypothesis that two binned data sets come from the same underlying distribution.

Number of entries in bin i: ni for measurement 1, mi for measurement 2

Two histograms with k bins

�2 =
kX

i=1

(ni �mi )2

�2
ni + �2

mi
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Run test (Wald–Wolfowitz test)

29

Drawback of the χ2 test: insensitive to the sign of the deviation

++++−−−+++−−++++++−−−− N = N+ + N– = 22 bins, 6 runs

µ = 1 +
2 N+ N�

N
, �2 =

2 N+ N� (2 N+ N� � N)

N2 (N � 1)
=

(µ� 1)(µ� 2)

N � 1

For more than about 20 bins the Gaussian approximation holds and the 
significance of the deviation of an observed number r of runs from the expected 
value in units of the standard deviation is:

Z =
r � µ

�

Run test is complementary to the χ2 square test (can be done in addition)

Consider N bins, N = N+ + N– 
N+: number of positive deviations, N–: number of negative deviations

run = consecutive bins where the data show deviations in the same direction

Mean and variance for the number of runs for the null hypothesis that each 
element in the sequence is independently drawn from the same distribution (no 
assumption about prob. for "+" and “–"):
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χ2min = 2.29557, ndf = 3:

p-value = 0.51337

observed χ2min

expected distribution 
if model is correct
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Constant model (y = θ0) rejected by small p-value
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7y χ2min = 2.29557, ndf = 3:

p-value = 0.51337

root [1] TMath::Prob(chi2, n_dof)

χ2min = 18.3964, ndf = 4:

p-value = 0.001032

θ0 = 2.86  ±  0.18

Statistical uncertainty of the fit 
parameter does not tell us 
whether model is correct!

from scipy import stats 
pvalue = 1 - stats.chi2.cdf(chi2, n_dof)
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p-value for different χ2min and ndf

32
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http://pdg.lbl.gov/2017/reviews/rpp2016-rev-statistics.pdf
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Wilks' theorem

33

Let null hypothesis H0 be a special case of the hypothesis H1 
("nested hypotheses")

Example: 
  H0 : f(m) = a0 + a1m

H1 : f(m) = a0 + a1m + a2m2 + a3m3

Wilks’ theorem:  
If H0 is correct then  follows  distribution with  = #added parameters in the 
large sample limit.

Δχ̃2 χ2 ndof

Δχ̃2 := 2 ln ( L(H1)
L(H0) )

In the above example: ndof = 2

Samuel S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses 
Ann. Math. Statist., Volume 9, Number 1 (1938), 60-62.

Define:

https://projecteuclid.org/euclid.aoms/1177732360
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Significance of a peak

34

  H0 : f(m) = a0 + a1m
H1 : f(m) = a0 + a1m + a2N(m; μ, σ)

,  fixed in  
→ one additional parameter
μ = 3.1 σ = 0.03 H1H0

H1

 should follow a  distribution with 
 if H0 ist true

Δχ̃2 χ2

ndof = 1

p-value = 2.15∙10–6

→ H0 can be safely rejected

Δχ̃2 = 2 log ( L(H1)
L(H0) ) = 22.5



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 7. Hypothesis Testing 35

Why bother with statistical methods?

Statistics:  
Draw reliable conclusions  
from data 

In case of doubt:  
just get more data … 

Yes, but not always easy …

Presentations by CMS and ATLAS, December 2015: 
https://indico.cern.ch/event/442432/

"750 GeV diphoton excess"

A heavy Higgs boson? 

Peak disappeared with more data 
… [link]

https://en.wikipedia.org/wiki/750_GeV_diphoton_excess#December_2015_data
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A look at other research fields
"Why Most Published Research Findings Are 
False":  
Main thesis: large number, if not the majority, of 
published medical research papers contain results 
that cannot be replicated. 

Reproducibility crisis:  
Affects the social sciences and life sciences most 
severely (in particular psychology)

John Ioannidis  
(Stanford School of Medicine) 
PLoS Med 2(8): e124., (2005), 
doi:10.1371/journal.pmed.0020124

1576 
researchers 

surveyed

Don't know
7 %

No, there is no crisis
3 %

Yes, a slight crisis
38 %

Yes, a significant crisis
52 %

Is there a reproducibility 
crisis? [Nature 533, 2016]

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
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p-value hacking

37

https://xkcd.com/882/
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p-values and Higgs measurement: 
Expected local p-values for a Higgs of a given mass

For each assumed Higgs mass (→ local p-value) 
‣ Calculate expected signal for Standard Model Higgs boson 
‣ Determine p-value for H0 that only SM background processes contribute 
‣ Pure calculation/simulation, no data involved
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CMS -1 = 8 TeV, L = 5.3 fbs-1 = 7 TeV, L = 5.1 fbs

CMS, arXiv:1207.7235
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p-values and Higgs measurement: 
Observed local p-values
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CMS, arXiv:1207.7235
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CMS -1 = 8 TeV, L = 5.3 fbs  -1 = 7 TeV, L = 5.1 fbs

"An excess of events is observed above the expected background, with a local 
significance of 5.0 standard deviations, at a mass near 125 GeV, signaling the 
production of a new particle. The expected significance for a standard model Higgs 
boson of that mass is 5.8 standard deviations."
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Look-elsewhere effect 
CMS Higgs paper 
‣ The probability for a background fluctuation to be at least as large as the observed 

maximum excess is termed the local p-value, and that for an excess anywhere in a 
specified mass range the global p-value. 

‣ Local p-value corresponds to 5σ 
‣ Global p-value for mass range 110–145 GeV corresponds to 4.5σ 

In general: 
‣ If one is performing multiple tests then obviously a p-value of 1/n is likely to occur 

after n tests 
‣ Solution: "trials penalty" or "trials factors", i.e. make threshold a function of n (more 

stringent threshold for larger n)  
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A Swedish study in 1992 tried to determine whether or not power lines caused some kind of poor health 
effects. The researchers surveyed everyone living within 300 meters of high-voltage power lines over a 25-year 
period and looked for statistically significant increases in rates of over 800 ailments. The study found that the 
incidence of childhood leukemia was four times higher among those that lived closest to the power lines, and it 
spurred calls to action by the Swedish government. The problem with the conclusion, however, was that they 
failed to compensate for the look-elsewhere effect; in any collection of 800 random samples, it is likely that at 
least one will be at least 3 standard deviations above the expected value, by chance alone. Subsequent studies 
failed to show any links between power lines and childhood leukemia, neither in causation nor even in 
correlation.

https://en.wikipedia.org/wiki/Look-elsewhere_effect
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Digression: p-value debate

Null hypothesis ("no effect") rejected and results deemed statistically significant if 
p-value < 0.05 
Relatively weak statistical standard, but often not realized as such 
Chance for false positive outcome 1/20 
‣ Might result in too many false positive results in the literature 
‣ Social and biomedical sciences in the focus of the discussion 

Problem exacerbated by p-value hacking 
‣ Data gathered by researches without first creating a hypothesis 
‣ Search for patterns in the data that can be reported as statistically significant 

Probably contributes to reproducibility crisis in science 
Proposed solution: lower threshold to p-value < 0.005 
‣ https://psyarxiv.com/mky9j (published in Nature Human Behavior, https://

www.nature.com/articles/s41562-017-0189-z)
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https://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

https://psyarxiv.com/mky9j
https://www.nature.com/articles/s41562-017-0189-z
https://www.nature.com/articles/s41562-017-0189-z
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Bayesian hypothesis testing
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■ We can write 

, but also 

 

thus 

 

■ The factor  is independent of the prior! It tells us how the ratio of the probabilities 

changes. This is called the Bayes factor. 
■ It is also the likelihood ratio 
■ Provides an objective result from Bayesian analysis (when no free parameters are present)

p(H0 | ⃗d) =
p( ⃗d |H0) p(H0)

p( ⃗d |H0) p(H0) + p( ⃗d |H1) p(H1)

p(H1 | ⃗d) =
p( ⃗d |H1) p(H1)

p( ⃗d |H0) p(H0) + p( ⃗d |H1) p(H1)

p(H1 | ⃗d)

p(H0 | ⃗d)
=

p( ⃗d |H1) p(H1)

p( ⃗d |H0) p(H0)
=

p( ⃗d |H1)

p( ⃗d |H0)

p(H1)
p(H0)

p( ⃗d |H1)

p( ⃗d |H0)
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Bayesian hypothesis testing (2)
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■ We know the  
■ Thus the Bayes factor ratio is 

 

■ So whatever our priors are, the data pushes the 
posteriors very much towards  

■ There is no choice of statistic in Bayesian 
statistics, just Bayes’ theorem 

■ When the models have free parameters, they 
need to be marginalised out first 
■ Then the Bayes factor depends on the prior of 

the parameters

Δχ2 = 48.5

p( ⃗d |H1)

p( ⃗d |H0)
= exp (−

48.5
2 ) ≈ 3 ⋅ 10−11

H0
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Why 5σ for discovery in particle physics?

History: there are many cases of 3σ and 4σ effects that have disappeared with 
more data  
The Look-Elsewhere Effect 
Systematics: 
‣ Usually more difficult to estimate than statistical uncertainties 
‣ "Safety margin" 

Subconscious Bayes factor: 
‣ Physicists subconsciously tend to assess the Bayesian probabilities p(H0|data) and 

p(H1|data) 
‣ If H1 involves something very unexpected (e.g., neutrinos travel faster than the 

speed of light) then prior probability for null hypothesis H0 is much larger than for 
H1. 

‣ "Extraordinary claims require extraordinary evidence"
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5σ ⇔ p-value = 2.87 × 10–7 (one-tailed test)

Louis Lyons, Statistical Issues in Searches for New Physics, arXiv:1409.1903

Last point ⇒ unreasonable to have a single criterion (5σ) for all experiments


