Statistical Methods in Particle Physics

2. Probability Distributions

Heidelberg University, WS 2023/24
Klaus Reygers, Martin Völkl (lectures)
Ulrich Schmidt, (tutorials)

Fun with probabilities

Monty Hall problem ("Ziegenproblem")

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

Standard assumptions

- The host must always open a door that was not picked by the contestant
- The host must always open a door to reveal a goat and never the car.
- The host must always offer the chance to switch between the originally chosen door and the remaining closed door.

Under these assumptions you should switch your choice!

Reminder: Frequentist and Bayesian Statistics

- Bayesian probability: degree of belief
- Start with prior $p(A)$

$$
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)}
$$

- Result of statistical analysis is the posterior probability distribution (e.g. of a parameter)
- Frequentist probability: Relative frequency of outcome
- $p \equiv \lim _{N \rightarrow \infty} \frac{N_{\text {success }}}{N}$
- Outcome usually formulated in terms of what would happen if the experiment was repeated a number of times

Estimators

- Experiment with possible measured outcomes
- We "sample" the population of all possible results, giving measurement \vec{m}
- Probability distribution for outcomes may depend on unknown parameter(s) $p(\vec{m} \mid \vec{\theta})$
- Define function giving a value for parameter of interest based on measurement:
- $\hat{\theta}_{1}=\hat{\theta}_{1}(\vec{m})$
- In general, called a statistic (e.g. sample mean). Here, an estimator of the parameter
- For now, we will guess $\hat{\theta}_{1}$
- Estimate of θ_{1} is measured value $\hat{\theta}_{1}$
- Uncertainty from standard deviation of $\hat{\theta}_{1}$ over several measurements
- θ_{1} does not have a probability distribution, but $\hat{\theta}_{1}$ does!

Conjugate Priors

- Bayes: $p(\theta \mid m) \sim p(m \mid \theta) p(\theta)$
- Assume $p(\theta)$ is part of a class of functions with some parameters
- Depending on the likelihood, the posterior $p(\theta \mid m)$ can be part of the same class, but with updated parameters
- In this case, the function class is called the conjugate prior to the likelihood $p(m \mid \theta)$
- Only the parameters update, often via simple arithmetic laws
- This makes calculations easier

Sums of variables

- Reminder: Densities transform with the Jacobian:

$$
\int p_{a}(\vec{a}) \mathrm{d} \vec{a}=\int p_{a}(\vec{a}(\vec{b}))|J| \mathrm{d} \vec{b} \text { and so } p_{b}=p_{a}\left|J_{b \rightarrow a}\right|, \text { with } J=\frac{\partial a_{i}}{\partial b_{j}}
$$

- Special case (from last time), transformation to new single variable:

$$
p_{\phi}(\phi)=\left|\frac{\mathrm{d} \lambda}{\mathrm{~d} \phi}\right| p_{\lambda}(\lambda(\phi))
$$

- Now: Calculate sum of variables $z=x+y$ of bivariate distribution $p(x, y)$. Transform $(x, y) \rightarrow(z=x+y, y),|J|=1$
- Therefore $p_{z, y}(z, y)=p_{x, y}(z-y, y) \cdot 1$, now integrate out y :
- Marginalize $p_{z}(z)=\int p_{z, y}(z, y) \mathrm{d} y=\int p_{x, y}(z-y, y) \mathrm{d} y ;$ for independent variables $p_{x, y}(x, y)=p_{x}(x) p_{y}(y)$

$$
p_{z}(z)=\int p_{x}(z-y) p_{y}(y) \mathrm{d} y \equiv p_{x} * p_{y}
$$

- The convolution of the two distributions is the distribution of the sum of the variables

Convolutions

$$
p_{z}(z)=\int p_{x}(z-y) p_{y}(y) \mathrm{d} y \equiv p_{x} * p_{y}
$$

- Means are additive: $\langle z\rangle=\langle x\rangle+\langle y\rangle$
- Variances are additive: $V[Z]=V[X]+V[Y],\left\langle\left(z-\mu_{z}\right)^{2}\right\rangle=\left\langle\left(x-\mu_{x}\right)^{2}\right\rangle+\left\langle\left(y-\mu_{y}\right)^{2}\right\rangle$
- For families of distributions with a location and scale parameter: If convolution two distributions always yields a distribution from the same family, it is called a stable distribution

Linear combinations of random variables

Consider two random variables with known $\operatorname{covariance~} \operatorname{cov}(x, y)$:

$$
\begin{aligned}
\langle x+y\rangle & =\langle x\rangle+\langle y\rangle \\
\langle a x\rangle & =a\langle x\rangle \\
V[a x] & =a^{2} V[x] \\
\operatorname{cov}(x, x) & =V[x] \\
V[x+y] & =V[x]+V[y]+2 \operatorname{cov}(x, y)
\end{aligned}
$$

Example of more detailed calculation:

$$
\begin{aligned}
V[x+y] & =E\left[\left(x+y-\mu_{x}-\mu_{y}\right)^{2}\right]=E\left[\left(x-\mu_{x}+y-\mu_{y}\right)^{2}\right] \\
& =E\left[\left(x-\mu_{x}\right)^{2}+\left(y-\mu_{y}\right)^{2}+2\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right] \\
& =E\left[\left(x-\mu_{x}\right)^{2}\right]+E\left[\left(y-\mu_{y}\right)^{2}\right]+2 E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right] \\
& =V[x]+V[y]+2 \operatorname{cov}(x, y)
\end{aligned}
$$

Cumulative Distribution Function (cdf)

$$
F(x):=\int_{-\infty}^{x} f\left(x^{\prime}\right) \mathrm{d} x^{\prime}
$$

Bernoulli distribution

- Two possible outcomes, e.g. true/false, parameter is probability ϕ
- $p($ true $\mid \phi)=\phi$
- $p($ false $\mid \phi)=1-\phi$
- Examples:
- throwing a coin
- particle decaying in a particular decay channel
- Detector successfully measuring a particle

Performance of the ALICE Experiment at the CERN LHC, ALICE Collaboration

Binomial distribution

N independent experiments

- Outcome of each is 'success' or 'failure'
- Probability for success is ϕ

$$
\binom{N}{k}=\frac{N!}{k!(N-k)!}
$$

- Number of ways to arrange k successes and $(n-k)$ failures - binomial coefficient
$p_{b}(k \mid N, \phi)=\binom{N}{k} \phi^{k}(1-\phi)^{N-k}, E[k]=N \phi, V[k]=N \phi(1-\phi)$

Examples:

- Example: Detection efficiency
- Polls
- Coin throws
- Number of particles (out of a total) decaying in some channel
- $p\left(n_{\text {decays }} \mid N_{\text {particles }}, \phi_{B . R .}\right)$ gives us the probability distribution for finding that n out of N particles decay in this particular channel
- But usually we want to know the opposite: we measure a number of decays and want to know the branching ratio
- Or we simulate that some number of particles out of the total are measured in the detector and want to estimate the detector efficiency

Binomial parameter inference (Frequentist)

- In a test, $k=70$ out of $N=100$ particles were correctly reconstructed. What is the reconstruction efficiency ϕ_{e} ?

$$
p_{b}(k \mid N, \phi)=\binom{N}{k} \phi^{k}(1-\phi)^{N-k}
$$

- We know: $E[k]=N \phi$
- Since the outcomes are distributed around the true value, we can guess an estimator:

$$
\hat{\phi}_{e}=k / N
$$

- The variance of k is $V[k]=N \phi(1-\phi)$, which we can approximate with our estimator $V[k] \approx N \hat{\phi}_{e}\left(1-\hat{\phi}_{e}\right)$ and so

$$
V\left[\hat{\phi}_{e}\right] \approx \frac{\hat{\phi}_{e}\left(1-\hat{\phi}_{e}\right)}{N}, \sigma_{\phi} \approx \sqrt{\frac{\hat{\phi}_{e}\left(1-\hat{\phi}_{e}\right)}{N}}
$$

- So the result would be: $\phi_{e}=0.700 \pm 0.046$

Binomial parameter inference (Bayesian)

- Assume prior $p(\phi)=1$ (for $0<\phi<1$)
. Posterior is then $p(\phi \mid k, N) \sim\binom{N}{k} \phi^{k}(1-\phi)^{N-k} \cdot 1$
- Mean and standard deviation of posterior give

$$
\phi=0.696 \pm 0.045
$$

- In general: For large statistics frequentist and Bayesian methods often arrive at similar results!

Reminder: the likelihood is the probability distribution $p(k \mid N, \phi)$, but considered as a function of ϕ

Small number tests

Your test 100 products from your factory and find problems with 0 of them.

- The estimator from above would suggest that the probability of producing a faulty product would be 0 ± 0
- In this case, the approximation of the variance is not very good
- The estimation only works well for sufficiently large numbers!

The Poisson distribution

- Typical case: N is large, but ϕ is very small
- Example: Radioactive material, $\mathcal{O}\left(10^{23}\right)$ particles; within a time interval, each decays with a very small (independent) probability
- Total number of expected decays, $N \phi$ is is not small
- Then Binomial distribution can be approximated by Poisson distribution with single parameter $\mu=N \phi$
- Advantage: Do not have to define N as precisely
- Example: Count gold atoms in bucket of ocean water
- Each atom has some small probability of being gold
- But what N do we sample from? The nearby water? All oceans in the world?

Poisson distribution

Large number of independent trials with small probability of success, total successes k

$$
\begin{aligned}
& p(k ; \mu)=\frac{\mu^{k}}{k!} e^{-\mu} \\
& E[k]=\mu, \quad V[k]=\mu
\end{aligned}
$$

Properties:

- n_{1}, n_{2} follow Poisson distr.
$\rightarrow n_{1}+n_{2}$ follows Poisson distr., too
- Reasonable estimator: $\hat{\mu}=k$ with variance $\sigma_{k}=\sqrt{\mu} \approx \sqrt{\hat{\mu}}$

Examples:

- Clicks of a Geiger counter in a given time interval
- Number of Prussian cavalrymen killed by horse-kicks
- Goals in football(?)

Number of deaths in 1 corps in 1 year	Actual number of such cases	Poisson prediction
0	109	108.7
1	65	66.3
2	22	20.2
3	3	4.1
4	1	0.6

Example for Poisson inference - SN 1987A

- Kamiokande II measured 12 neutrinos
- Expected number thus $12 \pm \sqrt{12}$
- Sufficiently large number for approximation?

ESA/Hubble \& NASA

Poisson distribution - Histogram entries

- For histogram entry: each particle (or pair) has a very small chance of landing in a particular bin
- Different events don't interfere independence
- Often error bars as \sqrt{N} of the entries

Convoluting many distributions

When summing up variables from a complicated distribution, the sum starts resembling a normal or Gaussian distribution

Normal (or Gaussian) distribution

$$
\begin{aligned}
& g(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \\
& \\
& E[x]=\mu \\
& \text { Variance: } \quad V[x]=\sigma^{2} \\
& \mu=0, \sigma=1 \text { ("standard normal distribution, } N(0,1) "): \quad \phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Cumulative distribution function:

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{z^{2}}{2}} \mathrm{~d} z=\frac{1}{2}\left[\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)+1\right]
$$

Why are Gaussians so useful?

Central limit theorem:

- When independent random variables are added, their properly normalized sum tends toward a normal distribution (a bell curve) even if the original variables themselves are not normally distributed.

More specifically:
Consider n random variables with finite variance σ_{i}^{2} and arbitrary pdfs:

$$
y=\sum_{i=1}^{n} x_{i} \xrightarrow{n \rightarrow \infty} y \text { follows Gaussian with } E[y]=\sum_{i=1}^{n} \mu_{i}, V[y]=\sum_{i=1}^{n} \sigma_{i}^{2}
$$

Measurement uncertainties are often the sum of many independent contributions.
The underlying pdf for a measurement can therefore be assumed to be a Gaussian.

The Gaussian distribution is a stable distribution \rightarrow sum or difference of two Gaussian random variables is again a Gaussian.

Averaging measurements

- Gaussian distribution $p(x)=g(x, \mu, \sigma)$
- Reasonable estimator for μ is $\hat{\mu}=x$, with standard deviation σ
- For several measurements x_{1}, x_{2}, \ldots, use mean $\hat{\mu}=\frac{1}{N} \sum x_{i}$
- We know that this is the convolution of many g scaled by $1 / N$
- The variance of the sum is $V\left[\sum X_{i}\right]=N \sigma^{2}$, meaning $V[\hat{\mu}]=\sigma^{2} / N$
- Thus the uncertainty of the estimate is σ / \sqrt{N}
- This $1 / \sqrt{N}$ of scaling appears frequently

Binomial, Poisson and Normal Distribution

Poisson $P(k ; \mu): \quad \frac{k-\mu}{\sqrt{\mu}} \rightarrow N(0,1) \quad$ as $\quad \mu \rightarrow \infty$
Binomial $B(k ; n, p): \quad \frac{k-n p}{\sqrt{n p(1-p)}} \rightarrow N(0,1) \quad$ as $\quad n \rightarrow \infty$

Deviation in units of σ for a Gaussian

Significance of some result is often quantified as the deviation to some value relative to the uncertainty.

Multivariate normal distribution

$$
\begin{aligned}
& f(\vec{x} ; \vec{\mu}, V)=\frac{1}{(2 \pi)^{n / 2}|V|^{1 / 2}} \exp \left[-\frac{1}{2}(\vec{x}-\vec{\mu})^{\top} V^{-1}(\vec{x}-\vec{\mu})\right. \\
& \text { (ransposed vector }
\end{aligned} \stackrel{\begin{array}{c}
\text { column } \\
\text { vector }
\end{array}}{\stackrel{\rightharpoonup}{x}=\left(x_{1}, \ldots, x_{n}\right), \quad \vec{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)} \begin{aligned}
& \text { Mean: } \quad E\left[x_{i}\right]=\mu_{i} \quad \text { Covariance: } \quad \operatorname{cov}\left[x_{i}, x_{j}\right]=V_{i, j}
\end{aligned}
$$

For $n=2$:

$$
V=\left(\begin{array}{cc}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right) \quad \rightsquigarrow \quad V^{-1}=\frac{1}{\left(1-\rho^{2}\right)}\left(\begin{array}{cc}
1 / \sigma_{x}^{2} & -\rho /\left(\sigma_{x} \sigma_{y}\right) \\
-\rho /\left(\sigma_{x} \sigma_{y}\right) & 1 / \sigma_{y}^{2}
\end{array}\right)
$$

$\rho=$ correlation coefficient

Visualizing the 2d Gaussian

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/plot 2d gaussian.ipynb

2d Gaussian distribution and error ellipse

2d Gaussian distribution:

$$
\begin{aligned}
& f\left(x_{1}, x_{2} ; \mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \times \\
& \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)\right]\right)
\end{aligned}
$$

where $\rho=\operatorname{cov}\left(x_{1}, x_{2}\right) /\left(\sigma_{1} \sigma_{2}\right)$ is the correlation coefficient.

Lines of constant probability correspond to constant argument of exp
\rightarrow this defines an ellipse

1 σ ellipse: $f\left(x_{1}, x_{2}\right)$ has dropped to $1 / \sqrt{ }$ e of its maximum value (argument of exp is $-1 / 2$):

$$
\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)=1-\rho^{2}
$$

2d Gaussian: Error Ellipse

$$
\begin{aligned}
f_{y}(x) & =\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y \\
& =\frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}\right) \\
f_{y}(y) & =\frac{1}{\sqrt{2 \pi} \sigma_{y}} \exp \left(-\frac{1}{2}\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right)
\end{aligned}
$$

	$P_{1 D}$	$P_{2 D}$
1σ	0.6827	0.3934
2σ	0.9545	0.8647
3σ	0.9973	0.9889
1.515σ		0.6827
2.486σ		0.9545
3.439σ		0.9973

Integral of probability in 1σ ellipse: 39.34%

Application of the central limit theorem: Multiple Scattering

- Particle traverses some medium
- Assume: Many independent interactions with small scattering angles
- Convolute them all for final result
- Final distribution of directions must be a 2 d Gaussian
- Derived purely from statistical principles
- All the remaining physics is then in the width of the Gaussian!

from PDG book

Negative Binomial Distribution

Keep number of successes k fixed and ask for the probability of m failures before having k successes:

$$
\begin{array}{ll}
P(m ; k, p)=\binom{m+k-1}{m} p^{k}(1-p)^{m} & E[m]=k \frac{1-p}{p} \\
m=0,1, \ldots, \infty & V[m]=k \frac{1-p}{p^{2}}
\end{array}
$$

Another representation:

$$
P(m ; \mu, k)=\binom{m+k-1}{m} \frac{\left(\frac{\mu}{k}\right)^{m}}{\left(1+\frac{\mu}{k}\right)^{m+k}}
$$

Use Gamma-fct. for non-integer values

$$
0 \rightarrow-1
$$

$$
\begin{aligned}
& E[m]=\mu \\
& V[m]=\mu\left(1+\frac{\mu}{k}\right)
\end{aligned}
$$

$$
x!:=\Gamma(x+1)
$$

Example: Charged Particle Multiplicity Distribution in pp collisions

At LHC energies:
Superposition of two NBD used to fit multiplicity distributions

Example: Distribution of the number of produced particles in $e^{+} e^{-}$and proton-proton collisions reasonably well described by a NBD. Why? Empirical observation, not so obvious.

Uniform Distribution

Properties:

$$
\begin{aligned}
f(x ; a, b) & = \begin{cases}\frac{1}{b-a}, & a \leq x \leq b \\
0, & \text { otherwise }\end{cases} \\
E[x] & =\frac{1}{2}(a+b) \\
V[x] & =\frac{1}{12}(b-a)^{2}
\end{aligned}
$$

Example:

- Silicon strip detector: resolution for one-strip clusters: pitch// 12

Exponential Distribution

$$
\begin{aligned}
& f(x ; \xi)= \begin{cases}\frac{1}{\xi} e^{-x / \xi} & x \geq 0 \\
0 & \text { otherwise }\end{cases} \\
& E[x]=\xi \quad V[x]=\xi^{2}
\end{aligned}
$$

Example:

Decay time of an unstable particle at rest

$$
f(t, \tau)=\frac{1}{\tau} e^{-t / \tau} \quad \tau=\text { mean lifetime }
$$

Landau Distribution

Describes energy loss of a charged particle in a thin layer of material

- Describes the sum of several Rutherford scatterings
- tail with large energy loss leads to occasional creation of delta rays

$$
\begin{gathered}
f(\lambda)=\frac{1}{\pi} \int_{0}^{\infty} e^{-u \ln u-\lambda u} \sin (\pi u) \mathrm{d} u \\
\text { actual energy loss } \\
\qquad \lambda=\frac{\Delta-\Delta_{0}^{l}}{\xi} \backslash_{\substack{\text { location } \\
\text { parameters } \\
\text { properial }}}^{\text {promen }}
\end{gathered}
$$

Another stable distribution.
Mean and variance not defined.

But what about the Bethe-Bloch equation?

- The Landau distribution describes fluctuations in energy loss and has no defined mean (average energy loss $\approx \infty$)
- The Bethe(-Bloch) equation describes the mean energy loss of a particle

The mean of the energy loss given by the Bethe equation, [...], is thus ill-defined experimentally and is not useful for describing energy loss by single particles

- PDG review Passage of Particles Through Matter
- Landau distribution assumes Rutherford goes as $1 / E^{2}$, with divergent average - actual distribution has maximum energy transfer
- Actual distribution has mean much higher than the peak
- TPC "dE/dx" plots actually show not the mean, but the truncated mean of energy loss in reconstructed clusters -> mean of the lowest 60\% of values only
[Delta rays]

https://en.wikipedia.org/wiki/Delta_ray

Student's t Distribution

Developed in 1908 by William Gosset for the Guinness Brewery. Published under the name "student".
Let x_{1}, \ldots, x_{n} be distributed as $N(\mu, \sigma)$.
Sample mean and estimate of $\quad \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
the variance:
How Student's t distribution arises from sampling:

$$
\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \quad \rightarrow \text { follows standard } \quad t:=\frac{\bar{x}-\mu}{\hat{\sigma} / \sqrt{n}} \quad \begin{aligned}
& \rightarrow \text { follows Student's } t \text { distr. with } n-1 \\
& \text { degrees of freedom }
\end{aligned}
$$

Student's t distribution:

$$
f(t ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

With $v=n-1$ for n measurements; t-distribution can be used to construct a confidence interval for the true mean
$\nu=1$: Cauchy distr.
$\nu \rightarrow \infty$: Gaussian

Multinomial distribution

. Binomial distribution: $p_{b}(k \mid N, \phi)=\frac{N!}{k!(N-k)!} \phi^{k}(1-\phi)^{N-k}$ for k successes, $N-k$ failures

- Can rewrite as
$p_{b}\left(k_{1}, k_{2} \mid N, \phi_{1}, \phi_{2}\right)=\frac{N!}{k_{1}!k_{2}!} \phi_{1}^{k_{1}} \phi_{2}^{k_{2}}$ with conditions $k_{1}+k_{2}=N$ and $\phi_{1}+\phi_{2}=1$
- This generalizes as:

$$
p_{b}\left(k_{1}, k_{2}, \ldots \mid N, \phi_{1}, \phi_{2}, \ldots\right)=\frac{N!}{k_{1}!k_{2}!k_{3}!\ldots} \phi_{1}^{k_{1}} \phi_{2}^{k_{2}} \phi_{3}^{k_{3}} \ldots
$$

With conditions $\sum_{i} k_{i}=N$ and $\sum_{i} \phi_{i}=1$

x^{2} Distribution

Let x_{1}, \ldots, x_{n} be n independent standard normal ($\mu=0, \sigma=1$) random variables. Then the sum of their squares

$$
z=\sum_{i=1}^{n} x_{i}^{2}
$$

follows a x^{2} distribution with n degrees of freedom.
X^{2} distribution:

$$
f(z ; n)=\frac{z^{n / 2-1} e^{-z / 2}}{2^{n / 2} \Gamma\left(\frac{n}{2}\right)} \quad(z \geq 0)
$$

$E[z]=n, \quad V[z]=2 n$
mode: $\max (n-2,0)$
Application:
Quantifies goodness of fit

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{y_{i}-h\left(x_{i}\right)}{\sigma_{i}}\right)^{2}
$$

Log-Normal Distribution

Let y be a normal (i.e. Gaussian) distributed random variable. Then $x=\exp (y)$ follows the log-normal distribution

$$
f(x ; \mu, \sigma)=\frac{1}{x} \cdot \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}\right) \quad f(x ; \mu, \sigma)=N(y ; \mu ; \sigma)\left|\frac{d x}{d y}\right| \begin{aligned}
& =N(\ln x ; \mu ; \sigma) \frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
& E[x]=\exp \left(\mu+\frac{\sigma^{2}}{2}\right) \\
& V[x]=\left[\exp \left(\sigma^{2}\right)-1\right] \exp \left(2 \mu+\sigma^{2}\right)
\end{aligned}
$$

Multiplicative version of the central limit theorem

- Relevant when observable is product of fluctuating variables
- Occurs frequently, e.g., city sizes

Cauchy, Breit-Wigner, or Lorentzian Distribution

Particle physics: cross section for production of resonance with mass M and width 「 (full width at half maximum):

$$
f(E ; M, \Gamma)=\frac{1}{2 \pi} \frac{\Gamma}{(E-M)^{2}+(\Gamma / 2)^{2}}
$$

Dimensionless form:

$$
f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}} \quad x=\frac{E-M}{\Gamma / 2}
$$

Mean and variance are undefined, mode is M.

Estimating a mass

- For Cauchy-Distribution
$p(x \mid \mu, \gamma)=\frac{1}{\pi \gamma} \frac{1}{1+\left(\frac{x-\mu}{\gamma}\right)^{2}}$
- Want to estimate position parameter μ (e.g. to find the mass of a decaying particle)
- Try average as estimator
- Mean and variance undefined \rightarrow convolution still has infinite uncertainty
- More: Averaging does not even decrease the width γ !
- Instead using the median gives better results
- Median often useful when distributions have wide tails

Beta Distribution

$$
\begin{aligned}
& f(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \\
& E[x]=\frac{\alpha}{\alpha+\beta} \\
& V[x]=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} \\
& \text { Often used for random variable } \\
& \text { bounded at both sides. }
\end{aligned}
$$

$a=\beta=1$: uniform distribution

Conjugate prior for the binomial distribution, i.e., if the likelihood function is binomial, then a beta prior gives a beta posterior. Bayesian updating then corresponds to modifying the parameters of the prior.

Gamma Distribution

$$
\begin{aligned}
& f(x ; \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} \\
& E[x]=\alpha \beta \\
& V[x]=\alpha \beta^{2}
\end{aligned}
$$

and exponential likelihood

Probability of the data \rightleftarrows likelihood

- $p(\vec{d} \mid \vec{\theta})$ is the probability distribution of the data for different parameters
- When considered as a function of $\vec{\theta}$ instead, it is called the likelihood
- Often called \mathscr{L} or L with $\mathscr{L}(\vec{\theta} \mid \vec{d}) \equiv p(\vec{d} \mid \vec{\theta})$

Conclusions

- Probability distributions are the basis for mathematic modelling of measurements
- They are also important to define priors
- The likelihood is (technically) not a probability distribution but turns out to be extremely important
- In practice many distributions can be effectively modelled by Gaussians due to the central limit theorem

