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Fun with probabilities 

2

Monty Hall problem ("Ziegenproblem") 
Suppose you're on a game show, and you're given the choice of three doors: Behind one door 
is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's 
behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do 
you want to pick door No. 2?" Is it to your advantage to switch your choice?

Standard assumptions 
‣ The host must always open a door that was not picked by the contestant 
‣ The host must always open a door to reveal a goat and never the car. 
‣ The host must always offer the chance to switch between the originally chosen door and 

the remaining closed door.

https://en.wikipedia.org/wiki/Monty_Hall_problem

Under these assumptions you should switch your choice!
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Reminder: Frequentist and Bayesian Statistics

■ Bayesian probability: degree of belief 
■ Start with prior  

 

■ Result of statistical analysis is the posterior 
probability distribution (e.g. of a parameter)

p(A)

p(A |B) =
p(B |A) p(A)

p(B)

3

■ Frequentist probability: Relative frequency of 
outcome 

■  

■ Outcome usually formulated in terms of what 
would happen if the experiment was repeated a 
number of times

p ≡ lim
N→∞

Nsuccess

N
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Estimators
■ Experiment with possible measured outcomes 
■ We “sample” the population of all possible results, giving measurement  

■ Probability distribution for outcomes may depend on unknown parameter(s)  
■ Define function giving a value for parameter of interest based on measurement: 

‣

⃗m

p( ⃗m | ⃗θ)

̂θ1 = ̂θ1( ⃗m )

4

■ In general, called a statistic (e.g. sample mean). 
Here, an estimator of the parameter 

■ For now, we will guess  

■ Estimate of  is measured value  

■ Uncertainty from standard deviation of  over 
several measurements 

■  does not have a probability distribution, but  
does!

̂θ1

θ1
̂θ1

̂θ1

θ1
̂θ1
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Conjugate Priors

■ Bayes:  

■ Assume  is part of a class of functions with some parameters 

■ Depending on the likelihood, the posterior  can be part of the same 
class, but with updated parameters 

■ In this case, the function class is called the conjugate prior to the likelihood 
 

■ Only the parameters update, often via simple arithmetic laws 
■ This makes calculations easier

p(θ |m) ∼ p(m |θ) p(θ)
p(θ)

p(θ |m)

p(m |θ)

5
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Sums of variables

■ Reminder: Densities transform with the Jacobian: 

 and so , with  

■ Special case (from last time), transformation to new single variable: 

 

■ Now: Calculate sum of variables  of bivariate distribution . Transform 
 

■ Therefore  , now integrate out : 

■ Marginalize  ; for independent variables  

 

■ The convolution of the two distributions is the distribution of the sum of the variables

∫ pa( ⃗a) d ⃗a = ∫ pa( ⃗a(b⃗)) J db⃗ pb = pa Jb→a J =
∂ai

∂bj

pϕ(ϕ) =
dλ
dϕ

pλ(λ(ϕ))

z = x + y p(x, y)
(x, y) → (z = x + y, y) , J = 1

pz,y(z, y) = px,y(z − y, y) ⋅ 1 y

pz(z) = ∫ pz,y(z, y) dy = ∫ px,y(z − y, y) dy px,y(x, y) = px(x)py(y)

pz(z) = ∫ px(z − y)py(y) dy ≡ px * py

6
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Convolutions

 

■ Means are additive:  

■ Variances are additive:  

■ For families of distributions with a location and scale parameter: If convolution two distributions 
always yields a distribution from the same family, it is called a stable distribution

pz(z) = ∫ px(z − y)py(y) dy ≡ px * py

⟨z⟩ = ⟨x⟩ + ⟨y⟩

V[Z] = V[X] + V[Y] , ⟨(z − μz)2⟩ = ⟨(x − μx)2⟩ + ⟨(y − μy)2⟩

7
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Linear combinations of random variables

Consider two random variables with known covariance cov(x, y):

8

V [x + y ] = E [(x + y � µx � µy )
2] = E [(x � µx + y � µy )

2]

= E [(x � µx)
2 + (y � µy )

2 + 2(x � µx)(y � µy )]

= E [(x � µx)
2] + E [(y � µy )

2] + 2E [(x � µx)(y � µy )]

= V [x ] + V [y ] + 2cov(x , y)

Example of more detailed calculation:

hx + yi = hxi+ hyi
haxi = ahxi

V [ax ] = a2V [x ]

cov(x , x) = V [x ]

V [x + y ] = V [x ] + V [y ] + 2cov(x , y)
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Cumulative Distribution Function (cdf)

9

18 3 Probability Distributions and their Properties

Fig. 3.3. Probability density and distribution function of a continuous distribution.

f(t) ≡ f(t|λ) = λe−λt for t ≥ 0 , (3.2)

where the parameter2 λ > 0, the decay constant, is the inverse of the mean
lifetime τ = 1/λ. The probability density and the distribution function

F (t) =

∫ t

−∞
f(t′)dt′ = 1− e−λt

are shown in Fig. 3.4. The probability of observing a lifetime longer than τ
is

P {t > τ} = F (∞)− F (τ) = e−1 .

Example 8. Probability density of the normal distribution

An oxygen atom is drifting in argon gas, driven by thermal scattering. It
starts at the origin. After a certain time its position is (x, y, z). Each projec-

2We use the bar | to separate random variables (x, t) from parameters (λ) which specify
the distribution. This notation will be discussed below in Chap. 6, Sect. 6.3.

F (x) :=

xZ

�1

f (x 0) dx 0
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Bernoulli distribution

■ Two possible outcomes, e.g. , parameter is probability  

■  

■  
■ Examples: 
‣ throwing a coin 
‣ particle decaying in a particular decay channel 
‣ Detector successfully measuring a particle

true/false ϕ

p(true |ϕ) = ϕ
p(false |ϕ) = 1 − ϕ

10
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Binomial distribution
N independent experiments 
‣ Outcome of each is 'success' or 'failure' 
‣ Probability for success is  
‣ Number of ways to arrange k successes and (n-k) failures - binomial coefficient 

ϕ

pb(k |N, ϕ) = (N
k )ϕk(1 − ϕ)N−k , E[k] = Nϕ , V[k] = Nϕ(1 − ϕ)

11

✓
N

k

◆
=

N!

k!(N � k)!

Examples: 
‣ Example: Detection efficiency 
‣ Polls 
‣ Coin throws 
‣ Number of particles (out of a total) decaying in some channel 

■  gives us the probability distribution for finding that n out of N particles decay in this 
particular channel 

■ But usually we want to know the opposite: we measure a number of decays and want to know the branching ratio 
■ Or we simulate that some number of particles out of the total are measured in the detector and want to estimate 

the detector efficiency

p(ndecays |Nparticles, ϕB.R.)
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Binomial parameter inference (Frequentist)
■ In a test,  out of  particles were correctly 

reconstructed. What is the reconstruction efficiency ? 

 

■ We know:  
■ Since the outcomes are distributed around the true value, we can 

guess an estimator: 

 

■ The variance of  is , which we can approximate 
with our estimator  and so 

 

■ So the result would be: 

k = 70 N = 100
ϕe

pb(k |N, ϕ) = (N
k )ϕk(1 − ϕ)N−k

E[k] = Nϕ

̂ϕe = k/N
k V[k] = Nϕ(1 − ϕ)

V[k] ≈ N ̂ϕe(1 − ̂ϕe)

V[ ̂ϕe] ≈
̂ϕe(1 − ̂ϕe)

N
, σϕ ≈

̂ϕe(1 − ̂ϕe)
N

ϕe = 0.700 ± 0.046

12
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Binomial parameter inference (Bayesian)

■ Assume prior  

■ Posterior is then  

■ Mean and standard deviation of posterior give 

 

■ In general: For large statistics frequentist and Bayesian 
methods often arrive at similar results!

p(ϕ) = 1 (for 0 < ϕ < 1)

p(ϕ |k, N) ∼ (N
k )ϕk(1 − ϕ)N−k ⋅ 1

ϕ = 0.696 ± 0.045

13

Reminder: the likelihood is the probability distribution 
, but considered as a function of p(k |N, ϕ) ϕ
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Small number tests

Your test 100 products from your factory and 
find problems with 0 of them. 
‣ The estimator from above would suggest that 

the probability of producing a faulty product 
would be  

‣ In this case, the approximation of the variance 
is not very good 

‣ The estimation only works well for sufficiently 
large numbers!

0 ± 0

14
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The Poisson distribution

■ Typical case:  is large, but  is very small 

■ Example: Radioactive material,  particles; within a time interval, each 
decays with a very small (independent) probability 

‣ Total number of expected decays,  is is not small 
■ Then Binomial distribution can be approximated by Poisson distribution with 

single parameter  

■ Advantage: Do not have to define  as precisely 
■ Example: Count gold atoms in bucket of ocean water 
■ Each atom has some small probability of being gold 
■ But what N do we sample from? The nearby water? All oceans in the world?

N ϕ
𝒪(1023)

Nϕ

μ = Nϕ
N

15
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Poisson distribution

Examples: 
‣ Clicks of a Geiger counter in a given time 

interval 
‣ Number of Prussian cavalrymen killed by 

horse-kicks  
‣ Goals in football(?)

16

Properties: 
‣ n1, n2 follow Poisson distr.  
→ n1+n2 follows Poisson distr., too 

‣ Reasonable estimator:  with variance ̂μ = k
σk = μ ≈ ̂μ

https://en.wikipedia.org/wiki/Poisson_distribution

E [k] = µ, V [k] = µ

p(k ;µ) =
µk

k!
e�µ

μ = 1 

μ = 4 

μ = 10

Large number of independent trials with small 
probability of success, total successes k
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Example for Poisson inference - SN 1987A 

■ Kamiokande II measured 12 neutrinos 

■ Expected number thus  
■ Sufficiently large number for approximation?

12 ± 12

17

ESA/Hubble & NASA 
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Poisson distribution - Histogram entries

■ For histogram entry: each particle (or pair) 
has a very small chance of landing in a 
particular bin 

■ Different events don’t interfere - 
independence 

■ Often error bars as  of the entriesN

18
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Convoluting many distributions

When summing up variables from a complicated 
distribution, the sum starts resembling a normal or 
Gaussian distribution

19
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Normal (or Gaussian) distribution

20

g(x ;µ,�) =
1p
2⇡�

exp

✓
� (x � µ)2

2�2

◆

E [x ] = µ

Variance: V [x ] = �2

μ = 0, σ = 1 ("standard normal distribution, N(0,1)"):

Cumulative distribution function:

�(x) =
1p
2⇡

e�
x2

2

�(x) =
1p
2⇡

Z x

�1
e�

z2

2 dz =
1

2


erf

✓
xp
2

◆
+ 1

�

https://en.wikipedia.org/wiki/Normal_distribution
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Why are Gaussians so useful?

Central limit theorem: 
‣ When independent random variables are added, their properly normalized sum 

tends toward a normal distribution (a bell curve) even if the original variables 
themselves are not normally distributed.

21

More specifically: 
Consider n random variables with finite variance σi2 and arbitrary pdfs: 

y =
nX

i=1

xi
n ! 1

Measurement uncertainties are often the sum of many independent contributions. 
The underlying pdf for a measurement can therefore be assumed to be a 
Gaussian.

The Gaussian distribution is a stable distribution  sum or difference of two 
Gaussian random variables is again a Gaussian.

→

y follows Gaussian with E [y ] =
nX

i=1

µi , V [y ] =
nX

i=1

�2
i
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Averaging measurements

■ Gaussian distribution  

■ Reasonable estimator for  is , with standard deviation  

■ For several measurements , use mean  

■ We know that this is the convolution of many  scaled by  

■ The variance of the sum is , meaning  

■ Thus the uncertainty of the estimate is  

■ This  of scaling appears frequently

p(x) = g(x, μ, σ)

μ ̂μ = x σ

x1, x2, … ̂μ =
1
N ∑ xi

g 1/N
V[∑ Xi] = Nσ2 V[ ̂μ] = σ2/N

σ/ N

1/ N

22
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Binomial, Poisson and Normal Distribution

23

Binomial
B(k ;N, p)

Poisson
P(k ;µ)

Normal
N(x ;µ,�)

N ! 1, p ! 0,Np = µ fixed

µ ! 1N ! 1

PoissonP(k ;µ) :
k � µ
p
µ

! N(0, 1) as µ ! 1

BinomialB(k ; n, p) :
k � npp
np(1� p)

! N(0, 1) as n ! 1
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Deviation in units of σ for a Gaussian

24

68.27% of area within ±1σ 
95.45% of area within ±2σ 
99.73% of area within ±3σ

90% of area within ±1.645σ 
95% of area within ±1.960σ 
99% of area within ±2.576σ 

P(Z�) =
1p
2⇡

Z +Z

�Z
e�

x2

2 dx

Significance of some result is often quantified as the deviation to some value relative to the uncertainty.



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl  | 2. Probability distributions

Multivariate normal distribution

For n = 2:

25

~x = (x1, ..., xn), ~µ = (µ1, ...,µn)

column 
vector

transposed 
(row) vector

E [xi ] = µi

V =

✓
�2
x ⇢�x�y

⇢�x�y �2
y

◆
 V�1 =

1

(1� ⇢2)

✓
1/�2

x �⇢/(�x�y )
�⇢/(�x�y ) 1/�2

y

◆

 = correlation coefficientρ

Mean: cov[xi , xj ] = Vi ,jCovariance:

f (~x ; ~µ,V ) =
1

(2⇡)n/2|V |1/2
exp


�1

2
(~x � ~µ)TV�1(~x � ~µ)

�
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Visualizing the 2d Gaussian

26

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/plot_2d_gaussian.ipynb

�x = 1, �y = 0.5, ⇢ = �0.8

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/plot_2d_gaussian.ipynb
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2d Gaussian distribution and error ellipse
2d Gaussian distribution:

27

where ρ = cov(x1, x2)/(σ1σ2) is the correlation coefficient.

Lines of constant probability correspond to constant argument of exp  
→ this defines an ellipse

1σ ellipse: f(x1, x2) has dropped to 1/√e of its maximum value  
(argument of exp is –1/2): 

✓
x1 � µ1

�1

◆2

+

✓
x2 � µ2

�2

◆2

� 2⇢

✓
x1 � µ1

�1

◆✓
x2 � µ2

�2

◆
= 1� ⇢2

f (x1, x2;µ1,µ2,�1,�2, ⇢) =
1

2⇡�1�2

p
1� ⇢2

⇥

exp

 
� 1

2(1� ⇢2)

"✓
x1 � µ1

�1

◆2

+

✓
x2 � µ2

�2

◆2

� 2⇢

✓
x1 � µ1

�1

◆✓
x2 � µ2

�2

◆#!
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Physics 509 17

s
x
=2

s
y
=1

r=0.8

Red ellipse: 
contour with 
argument of 
exponential 
set to equal 
-1/2

Blue ellipse: 
contour 
containing 
68% of 2D 
probability 
content.

2d Gaussian: Error Ellipse

28

Integral of probability in 1σ ellipse: 39.34% 

1σ ellipse (1/√e of 
maximum values)

Ellipse which contains 
68% of the events

fy (x) =

Z 1

�1
f (x , y) dy

=
1p
2⇡�x

exp

 
�1

2

✓
x � µx

�x

◆2
!

http://www.phas.ubc.ca/~oser/p509/Lec_07.pdf

Luca Lista Statistical Methods for Data Analysis 43 

1D projections 

x 

y 

1σ 

2σ 

1σ 2σ 

P1D P2D 

1σ 0.6827 0.3934 

2σ 0.9545 0.8647 

3σ 0.9973 0.9889 

1.515σ 0.6827 

2.486σ 0.9545 

3.439σ 0.9973 

•  PDF projections are (1D) Gaussians: 
•  Areas of 1σ and 2σ  

contours differ 
in 1D and 2D! 

fy (y) =
1p
2⇡�y

exp

 
�1

2

✓
y � µy

�y

◆2
!
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Application of the central limit theorem: Multiple Scattering

■ Particle traverses some medium 
■ Assume: Many independent interactions with small 

scattering angles 
■ Convolute them all for final result 
‣ Final distribution of directions must be a 2d 

Gaussian 
■ Derived purely from statistical principles 
■ All the remaining physics is then in the width of the 

Gaussian!

29

from PDG book
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Negative Binomial Distribution

Keep number of successes k fixed and ask for the probability of m failures before 
having k successes:

30

P(m; k , p) =

✓
m + k � 1

m

◆
pk(1� p)m

E [m] = k
1� p

p

V [m] = k
1� p

p2

P(m;µ, k) =

✓
m + k � 1

m

◆ �µ
k

�m
�
1 + µ

k

�m+k

E [m] = µ

V [m] = µ
⇣
1 +

µ

k

⌘

Another representation:

[relation btw. 
parameters]p =

1

1 + µ
k

m = 0, 1, ...,1

Use Gamma-fct. for non-integer values

x! := �(x + 1)
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Example: Charged Particle Multiplicity Distribution 
in pp collisions 

31

At LHC energies: 
Superposition of two NBD 
used to fit multiplicity 
distributions

Example: Distribution of the number of produced particles in e+e– and proton-proton collisions 
reasonably well described by a NBD. Why? Empirical observation, not so obvious.
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Uniform Distribution
Properties:

32

Example: 
‣ Silicon strip detector:  

resolution for one-strip clusters:  
pitch/√12

72 KAPITEL 4. STATISTIK

in den einzelnen Intervallen stark unterschiedlich sind, kann man die Genauigkeit der einzel-
nen Datenwerte nicht leicht auf einen Blick einschätzen, weil sie alle verschiedene Varianzen
haben. Die folgende Formel transformiert die Zahl der Einträge in jedem Intervall ri zu neuen
Variablen yi, welche alle ungefähr dieselbe Varianz von 1 haben:

yi = 2 ·
√
ri oder auch yi =

√
ri +

√
ri + 1 .

Dies sieht man leicht durch Anwendung von Gleichung (4.51). Die letztere Transformation hat
eine Varianz von 1.0 (±6%) für alle Argumente ri > 1.

4.5 Spezielle Wahrscheinlichkeitsdichten

4.5.1 Gleichverteilung

Diese Wahrscheinlichkeitsdichte ist konstant zwischen den Grenzen x = a und x = b

f (x) =






1

b− a
a ≤ x < b

0 außerhalb
. (4.17)

Sie ist in Abbildung 4.5 gezeigt. Mittelwert und Varianz sind

〈x〉 = E[x] =
a+ b

2
V [x] = σ2 =

(b− a)2

12
.

a b
0

1

b− a

Abbildung 4.5: Die Gleichverteilung mit
konstanter Dichte zwischen den Grenzen a
und b.

Die Gleichverteilung wird oft U(a, b) geschrieben. Besonders wichtig ist die VerteilungU(0, 1)
mit den Grenzen 0 und 1, die eine Varianz 1/12 (Standardabweichung σ = 1/

√
12) hat.

4.5.2 Normalverteilung

Die Normal- oder Gauß-Verteilung4 ist die wichtigste Wahrscheinlichkeitsdichte wegen ihrer
großen Bedeutung in der Praxis (siehe Kapitel 4.6.3). Die Wahrscheinlichkeitsdichte ist

f (x) =
1√
2πσ

e
− (x− µ)2

2σ2 x ∈ (−∞,∞) . (4.18)

Die Abbildung 4.6 zeigt eine Seite aus der Originalarbeit von Gauß “Motus Corporum Coele-
stium”, wo er die Gauß-Funktion einführt.

Die Normalverteilung wird von zwei Parametern bestimmt, µ und σ. Durch direkte Rechnung
zeigt man, daß µ = E [x] der Mittelwert ist und σ =

√
V [x] die Standardabweichung. Die

4Korrekt: Gauß’sche Wahrscheinlichkeitsdichte; dem allgemeinen Brauch folgend wird sie hier auch als Gauß-
Verteilung bezeichnet.

f (x ; a, b) =

(
1

b�a , a  x  b

0, otherwise

E [x ] =
1

2
(a+ b)

V [x ] =
1

12
(b � a)2
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Exponential Distribution

Example:  
Decay time of an unstable particle at rest

33

f (x ; ⇠) =

(
1
⇠ e

�x/⇠ x � 0

0 otherwise

E [x ] = ⇠ V [x ] = ⇠2

f (t, ⌧) =
1

⌧
e�t/⌧ ⌧ = mean lifetime
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Landau Distribution
Describes energy loss of a charged particle in a thin layer of material 
‣ Describes the sum of several Rutherford scatterings 
‣ tail with large energy loss leads to occasional creation of delta rays

34

f (�) =
1

⇡

1Z

0

e�u ln u��u sin(⇡u) du

� =
���0

⇠

actual energy loss
location 
parameters

material 
property

1.3 Theoretical Distributions 11

form as

f (x ) D 1
π

1
1 C x 2

, (1.23)

where x D (E ! M )/(Γ /2). The mean is clearly M. It does not have a variance: the
integral

R
x 2 f (x )dx is divergent. If you have to compare this curve and with that

of a Gaussian, the full width at half maximum (FWHM) is clearly Γ for this curve
and for a Gaussian it is 2

p
2 ln 2σ D 2.35σ.

This distribution is used in fitting resonance peaks (provided the width is much
larger than the measurement error on E). It also has an empirical use in fitting a
set of data which is almost Gaussian but has wider tails. This often arises in cases
where a fraction of the data is not so well measured as the rest. A double Gaussian
may give a good fit, but it often turns out that this form does an adequate job
without the need to invoke extra parameters.

1.3.4.3 The Landau Distribution
When a charged particle passes an atom, its electrons experience a changing elec-
tromagnetic field and acquire energy. The amount of energy may be large; on rare
occasions it will be large enough to create a delta ray. The probability distribution
for the energy loss was computed by Landau [5] and is given by

f (λ) D 1
π

1Z

0

e!u ln u!λu sin(πu)du , (1.24)

where λ D (∆ ! ∆0)/% . Here, ∆ is the actual energy loss, ∆0 is a location parame-
ter, and % is a scale, exact values for which depend on the material. This distribution
has a peak at ∆0, cuts off quickly below that, and has a very large long positive tail.
The function is shown in Figure 1.3.

λ

f (
λ)

-2 0 2 4 6 8 10

15

10

5

f (λ) = 1
" e sin ("u) du∫

∞
-u ln u - λu

0

Figure 1.3 The Landau distribution.
Another stable distribution. 
Mean and variance not defined.

L. Landau, J. Phys. USSR 8 (1944) 201  
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.
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But what about the Bethe-Bloch equation?

■ The Landau distribution describes fluctuations in energy 
loss and has no defined mean (average energy loss ) 

■ The Bethe(-Bloch) equation describes the mean energy 
loss of a particle 

The mean of the energy loss given by the Bethe equation, 
[…], is thus ill-defined experimentally and is not useful for 
describing energy loss by single particles  

- PDG review Passage of Particles Through Matter 

■ Landau distribution assumes Rutherford goes as , 
with divergent average - actual distribution has maximum 
energy transfer 

■ Actual distribution has mean much higher than the peak 
■ TPC “dE/dx” plots actually show not the mean, but the 

truncated mean of energy loss in reconstructed clusters 
-> mean of the lowest 60% of values only 

≈ ∞

1/E2
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[Delta rays]

36

https://en.wikipedia.org/wiki/Delta_ray
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Student's t Distribution
Let x1, …, xn be distributed as N(μ, σ).

37

x̄ =
1

n

nX

i=1

xi
Sample mean and estimate of 
the variance:

x̄ � µ

�/
p
n

→ follows standard 
normal distr. (μ=0, σ=1)

→ follows Student's t distr. with n–1 
degrees of freedom

Student's t distribution:

Developed in 1908 by William Gosset for 
the Guinness Brewery. Published under 
the name "student". 

How Student's t distribution arises from sampling:

With ν = n – 1 for n measurements; 
t-distribution can be used to construct a 
confidence interval for the true mean

f (t; ⌫) =
�( ⌫+1

2 )
p
⌫⇡ �( ⌫2 )

✓
1 +

t2

⌫

◆� ⌫+1
2

⌫ = 1 : Cauchy distr.

⌫ ! 1 : Gaussian

t :=
x̄ � µ

�̂/
p
n

�̂2 =
1

n � 1

nX

i=1

(xi � x̄)2
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Multinomial distribution

■ Binomial distribution:  for  successes, 

 failures 
■ Can rewrite as 

 with conditions  and  

■ This generalizes as: 

 

With conditions  and 

pb(k |N, ϕ) =
N!

k!(N − k)!
ϕk(1 − ϕ)N−k k

N − k

pb(k1, k2 |N, ϕ1, ϕ2) =
N!

k1!k2!
ϕk1

1 ϕk2
2 k1 + k2 = N ϕ1 + ϕ2 = 1

pb(k1, k2, … |N, ϕ1, ϕ2, …) =
N!

k1!k2!k3!…
ϕk1

1 ϕk2
2 ϕk3

3 …

∑
i

ki = N ∑
i

ϕi = 1

38



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl  | 2. Probability distributions

χ2 Distribution
Let x1, …, xn be n independent standard normal (μ = 0, σ = 1) random variables. 
Then the sum of their squares

39

follows a χ2 distribution with n degrees of freedom.

χ2 distribution:

Application:  
Quantifies goodness of fit

E [z ] = n, V [z ] = 2n

z =
nX

i=1

x2i

�2 =
nX

i=1

✓
yi � h(xi )

�i

◆2

f (z ; n) =
zn/2�1e�z/2

2n/2�
�
n
2

� (z � 0)

mode: max(n � 2, 0)
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Log-Normal Distribution
Let y be a normal (i.e. Gaussian) distributed random variable. Then x = exp(y) 
follows the log-normal distribution

40

f (x ;µ,�) =
1

x
· 1

�
p
2⇡

exp

✓
� (ln x � µ)2

2�2

◆

E [x ] = exp

✓
µ+

�2

2

◆

V [x ] = [exp(�2)� 1] exp(2µ+ �2)

Multiplicative version of the central 
limit theorem 
‣ Relevant when observable is product of 

fluctuating variables 
‣ Occurs frequently, e.g., city sizes

f (x ;µ,�) = N(y ;µ;�)|dx
dy

|

= N(ln x ;µ;�)
1

x
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Cauchy, Breit-Wigner, or Lorentzian Distribution

Particle physics: cross section for production of resonance with mass M and 
width Γ (full width at half maximum):

41

f (E ;M, �) =
1

2⇡

�

(E �M)2 + (�/2)2

Dimensionless form:

f (x) =
1

⇡

1

1 + x2

Mean and variance are 
undefined, mode is M.

x =
E �M

�/2 here:  
x0 = M, x = E
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Estimating a mass

■ For Cauchy-Distribution 

 

■ Want to estimate position parameter  (e.g. to find the 
mass of a decaying particle) 

■ Try average as estimator 

■ Mean and variance undefined  convolution still has 
infinite uncertainty 

■ More: Averaging does not even decrease the width ! 
■ Instead using the median gives better results 
■ Median often useful when distributions have wide tails

p(x |μ, γ) =
1
πγ

1

1 + ( x − μ
γ )

2

μ

→

γ

42
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Beta Distribution

43

f (x ;↵,�) =
�(↵+ �)

�(↵)�(�)
x↵�1(1� x)��1

E [x ] =
↵

↵+ �

V [x ] =
↵�

(↵+ �)2(↵+ � + 1)

Often used for random variable 
bounded at both sides. 

Conjugate prior for the binomial distribution, i.e., if the likelihood function is 
binomial, then a beta prior gives a beta posterior. Bayesian updating then 
corresponds to modifying the parameters of the prior.

α = β = 1: uniform distribution
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Gamma Distribution

44

E [x ] = ↵�

V [x ] = ↵�2

f (x ;↵,�) =
1

�(↵)�↵
x↵�1e�x/�

Exponential and χ2 distributions are 
special cases of the gamma 
distribution

Conjugate prior for Poisson likelihood 
and exponential likelihood
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Probability of the data  likelihood⇄

■  is the probability distribution of the data for different parameters 

■ When considered as a function of  instead, it is called the likelihood 

■ Often called  or  with 

p( ⃗d | ⃗θ)

⃗θ

ℒ L ℒ( ⃗θ | ⃗d) ≡ p( ⃗d | ⃗θ)

45
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Conclusions

■ Probability distributions are the basis for mathematic modelling of 
measurements 

■ They are also important to define priors 
■ The likelihood is (technically) not a probability distribution but turns out to be 

extremely important 
■ In practice many distributions can be effectively modelled by Gaussians due to 

the central limit theorem
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