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Nobel laureates in Chemistry, Physics, Medicine, and Economics

■ What makes the Faroe Islands and St. Lucia so 
efficient at producing great scientists?
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Nobel laureates in Chemistry, Physics, Medicine, and Economics

■ What makes the Faroe Islands and St. Lucia so 
efficient at producing great scientists? 

■ Consider not just estimate, but also uncertainty
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1.0 Organization
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Contents
1. Basics concepts 

‣ Probability 
‣ Mean, median, mode 
‣ Covariance and correlation 

2. Probability distributions 
3. Uncertainty 

‣ Statistical and systematic uncertainties 
‣ Propagation of uncertainties 
‣ Combination of uncorrelated measurements 

4. Monte Carlo and numerical methods 
‣ Generation of random numbers 
‣ Monte Carlo integration 
‣ Applications in HE 

5. Maximum likelihood estimation 
‣ Basics: consistency, bias, efficiency 
‣ Maximum likelihood method
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6. Least squares 
7. Goodness-of-fit and hypothesis testing 
8. Confidence limits and intervals 

‣ Neyman construction 
‣ Feldman-Cousins confidence intervals 

9. Machine learning 
‣ General Overview: machine learning, 

deep learning and all that 
‣ Neural Networks 
‣ Boosted Decision trees 

10. Unfolding
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Learning goals and required knowledge

6

This course is a natural follow-up to PEP4 for Bachelor students interested in 
Particle Physics. Master students are invited to attend this lecture in parallel or 
after the Particle Physics course. 

Learning goals 
■ Get to know and apply the toolbox of statistical methods used in particle 

physics 
■ Understand error bars and confidence limits as reported in publications 
■ Solid understanding of maximum likelihood and least squares fits 
■ From measurement to message: which conclusion can you draw from your data 

(and which not)? 
■ Learn to apply machine learning methods 

Required knowledge 
■ Basic understanding of experimental particle physics (as taught in the 

bachelor's course) 
■ Basic knowledge of python is helpful



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl  | 1. Basic Concepts

Practical information

■ Website 
‣ https://uebungen.physik.uni-heidelberg.de/vorlesung/20232/1733 

■ Lecture 
‣ Thursday 16:15-17:45 
‣ Break? 

■ Exam 
‣ There will be a written exam at the end of the semester 
‣ Refers to contents of lectures and exercises 
‣ 60% of the points of the homework sheets required to be eligible to write the 

exam 
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Klaus Reygers, Martin Völkl (lectures) 
Ulrich Schmidt, (tutorials) 

https://uebungen.physik.uni-heidelberg.de/vorlesung/20232/1733
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Tutorials

■ Mondays, 16:15 – 17:45 
■ Weekly problem sheets, to be handed in (uploaded) on Thursday before 10:00 
■ Includes programming exercises - Python using Jupyter Notebooks 
■ First Tutorial, 23.10., introduction to Python 
■ Solutions ideally in groups of 2 

■ See next slide for detailed schedule

8
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Week Date  
Monday

Date  
Friday

Tutorial 
Mon., 16:15-17:45

Lecture 
Thu., 16:15-17:45

Hand out sheet 
Thu., 18:00

Hand in sheet 
Thu., 12:00 Comment

1 16.10.23 20.10.23 — Lecture 1 Sheet 1 —
2 23.10.23 27.10.23 Tutorial 1 / Python Lecture 2 Sheet 2 Sheet 1
3 30.10.23 03.11.23 Tutorial 2 / Sheet 1 Lecture 3 Sheet 3 Sheet 2
4 06.11.23 10.11.23 Tutorial 3 / Sheet 2 Lecture 4 Sheet 4 Sheet 3
5 13.11.23 17.11.23 Tutorial 4 / Sheet 3 Lecture 5 Sheet 5 Sheet 4
6 20.11.23 24.11.23 Tutorial 5 / Sheet 4 Lecture 6 Sheet 6 Sheet 5
7 27.11.23 01.12.23 Tutorial 6 / Sheet 5 Lecture 7 Sheet 7 Sheet 6
8 04.12.23 08.12.23 Tutorial 7 / Sheet 6 Lecture 8 Sheet 8 Sheet 7
9 11.12.23 15.12.23 Tutorial 8 / Sheet 7 Lecture 9 Sheet 9 Sheet 8
10 18.12.23 22.12.23 Tutorial 9 / Sheet 8 — — —
11 08.01.24 12.01.24 Tutorial 10 / test exam Lecture 10 Sheet 10 Sheet 9
12 15.01.24 19.01.24 Tutorial 11 / Sheet 9 Lecture 11 — Sheet 10
13 22.01.24 26.01.24 Tutorial 12 / Sheet 10 Lecture 12
14 29.01.24 02.02.24 Tutorial 13 / Lernwoche
15 05.02.24 09.02.24 Klausurwoche

Statistical methods in particle physics — WS 2023/24
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Useful books
■ G. Cowan, Statistical Data Analysis 
■ L. Lista, Statistical Methods for Data Analysis in Particle Physics 
■ Behnke, Kroeninger, Schott, Schoerner-Sadenius: Data Analysis in High Energy 

Physics: A Practical Guide to Statistical Methods 
■ C. Pruneau, Data Analysis Techniques for Physical Scientists 
■ R. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical 

Sciences 
■ Bohm, Zech, Introduction to Statistics and Data Analysis for Physicist [available 

online] 
■ Blobel, Lohrmann: Statistische Methoden der Datenanalyse (in German),  [free 

ebook] 
■ L. Lyons: 

Statistics for Nuclear and Particle Physicists (Cambridge University Press) 
■ F. James, Statistical Methods in Experimental physics 
■ W. Metzger, Statistical Methods in Data Analysis [available online]
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http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
http://www.desy.de/~blobel/ebuch.html
http://www.desy.de/~blobel/ebuch.html
http://www.hef.ru.nl/~wes/stat_course/statist.pdf
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Further Material

■ Glen Cowan: http://www.pp.rhul.ac.uk/~cowan/stat_course.html 

■ Scott Oser: http://www.phas.ubc.ca/~oser/p509/ 

■ Terascale Statistics School:  
https://indico.desy.de/indico/event/25594/other-view?view=standard 

■ Particle Data Group reviews on Probability and Statistics 
‣ https://pdg.lbl.gov/2020/reviews/rpp2020-rev-probability.pdf 
‣ https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf  

■ E.T. Jaynes, Probability Theory, the Logic of Science - Bayesian view 
■ Nate Silver, The Signal and the Noise - Statistics and Probability in the “real world”
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http://www.pp.rhul.ac.uk/~cowan/stat_course.html
http://www.phas.ubc.ca/~oser/p509/
https://indico.desy.de/indico/event/25594/other-view?view=standard
https://pdg.lbl.gov/2020/reviews/rpp2020-rev-probability.pdf
https://pdg.lbl.gov/2020/reviews/rpp2020-rev-statistics.pdf
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1.1 Introduction
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Why bother with statistical methods?
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Grand Forks, North Dakota (1997)  

Levee height: 50 ,               Flood predic4on: 49 ,
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Grand Forks, North Dakota (1997)  

Levee height: 50 ,               Flood predic4on: 49 ,
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The CERN LHC
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ALICE

■ Lead nuclei with  
■ Many 1000s of particles per collision 
■ How to extract physics from that?

γ ≈ 1000

17
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Why bother with statistical methods?

14.09.2015, Livingston and Hanford
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Why bother with statistical methods?

19

How to connect a measurement with the knowledge it provides?

LIGO GW measurement
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Error and Uncertainty

■ “Error calculation”, “Error bars”, “Measurement error” - 
frequently used 

■ Also frequently used: Uncertainty 
■ Definition for this lecture: 
■ Error of a measurement: The difference between the 

true and measured value 
■ Uncertainty: Available information about the 

difference between true and measured value - usually 
described as an interval (e.g. )a ± Δa

20
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Examples for sources of uncertainty: LIGO

■ Quantum fluctuations in the photon number 
■ Fluctuations in pressure of photons on the mirrors 
■ Vibration in wires 
■ Anthropogenous noise 
■ Brownian motion of detector setup 
■ Alternating current etc.
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GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, LIGO Collaboration  
PRL 116, 131103 (2016)
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Examples for sources of uncertainty: ATLAS

■ Fluctuations in the measured values 
■ Uncertainty of the expected background from 

other sources 

Uncertainties can come from quantum 
processes, classical processes, imperfect 
knowledge, etc.

→

22

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS 
detector at the LHC, ATLAS Collaboration 
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Probability
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Uncertainty and Probability

Consider the following statements: 
■ I will probably manage to finish the project by the end of the week. 
■ The probability of two dice throws each yielding "6” is 1/36. 
■ The extinction of the dinosaurs was probably caused by an asteroid impact. 
■ The probability of rain for tomorrow is 75%. 

■ The true value is probably in the interval . 
■ The patient probably has the flu. 
■ You will probably not win the lottery this week. 
■ The probability for Germany to become European Champion in 2024 is 10%.

a ± σa

24

The term probability is used in a variety of ways.
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Mathematical definition of probability

25

Let A be an event. Then probability is a number obeying  
three conditions, the Kolmogorov axioms: 

1. P(A) ≥ 0 (non-negative real number) 
2. P(S) = 1, where S is the set of all A, the sample space 
3. P(A ∪ B) = P(A) + P(B) for any A, B which are exclusive, i.e., A ∩ B = 0 

From these axioms further properties can be derived, e.g.: 

P(Ā) = 1 – P(A) 
P(∅) = 0 
if A ⊂ B then P(A) ≤ P(B) 
P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 

Kolmogorov, 1933

■ Does not assign any meaning to “P” - Not useful for physics. 

■ But useful for proving theorems of probability
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Classical Probability

Assume symmetry between a number  of 
possible outcomes 

The probability of one outcome is then  

Probability of a favourable outcome is then just 
counting. E.g. 18 red numbers out of 37 means: 

N

1
N

P(red) =
18
37

26

Not helpful for physics - typically no symmetry between all cases 
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Frequentist Interpretation of Probability

■ Take some process with a classical probability  
for a success 

■ Make sure it is possible to make an independent 
repetition of this 

■ When repeating a large number of times, there is 
a high probability that 

             

■ This can be turned around to define probability as 

               

 Now probabilities are defined without needing 
any symmetry; this can be used in physics!

p

Nsuccess

Ntries
≈ p

p ≡ lim
N→∞

Nsuccess

N
→

27

(Occasionally also referred to as “classical”.)
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Frequentist Interpretation of Probability

 

Some caveats: 
■ This definition requires a random process as 

prerequisite 
‣ Probabilities only exist for random processes 
‣ Tricky to define “random” without using probability 

■ Only works if process can be independently repeated 
many times 

Things that are not probabilities in the frequentist 
sense: 
■ Probability of rain tomorrow 
■ Probability for sports team to win the next game 

p ≡ lim
N→∞

Nsuccess

N

28

■ Probability for a hypothesis to be true 
■ Probability for a physical parameter to be in 

some range
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Bayesian Interpretation of Probability

A probability expresses a state of knowledge 
For example: 

 
Expresses degree of belief 
To quantify: Consider the odds at which a bet 
would be rational 

New information changes (updates) the state of 
knowledge 

Since different people might have different 
states of knowledge about something, 
probabilities are subjective

p("There will be rain tomorrow")
p("Dark matter is made of WIMPS")

29
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Bayesian Interpretation of Probability

Under symmetric conditions:  is only rational 
assessment of probability  contains classical 
definition 

For a random process with known average frequency, 

 is the only rational assessment of 

probability  contains frequentist definition 

For other cases, we have a prior probability (before all 
data) and this is modified as we learn more information 

 it is not so obvious what this prior should be

p = 1/N
→

p = lim
N→∞

Nsuccess

N
→

→

30

Problem of old evidence: What happens 
if we only formulate the hypothesis after 
the evidence has been found?
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Should we always draw the same conclusions from the 
same data?

I tell you that this die is weighted and 6 will 
appear much more often. You throw the die 
10 times and “6” appears five times.

I tell you that with my psychic powers I can 
often predict dice rolls. You throw a die 10 
times and I correctly predict the result five 
times.

“Extraordinary claims require extraordinary evidence.” 
- Carl Sagan
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Some definitions
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Probability density functions

■ Discrete probability distributions - probabilities for for all 
possible  events out of a set of possible events  

■ Probabilities sum to 1:  

■ Can generalise to continuous case as usual. E.g. for 
random variable : 

 is the probability for  to be in the range  

 

■  is called the probability density function (pdf) 

■ From now on we will always use  to signify probabilities: 
 for discrete and  for continuous cases

Ei S

∑
i

p(Ei) = 1

x

∫
x2

x1

p(x) dx x [x1, x2]

∫ p(x) dx = 1

p(x)
p

p(A) p(λ)

33
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Reparametrization

■ Start with probability distribution  for parameter  

■ Want to find distribution  for parameter  
with inverse  

■ Transformation: 

 

■ To memorize:  

■
Also useful 

pλ(λ) λ

pϕ(ϕ) ϕ = ϕ(λ)
λ = λ(ϕ)

pϕ(ϕ) =
dλ
dϕ

pλ(λ(ϕ))

pϕ(ϕ) =
dp
dϕ

"="
dλ
dϕ

dp
dλ

dλ
dϕ

=
1
dϕ
dλ

34
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Multivariate probability distributions

■ Signify as , meaning , the probability that  and  are both 
true 

‣ Example: , the probability that out of two dice the first gives  and the 
second gives  

‣
 

■ Similar for densities, written as:  

‣ Example: , the probability that a particle is measured at the coordinates  
and  

‣

p(A, B) P(A ∩ B) A B

p(N1, N2) N1
N2

∑
N1,N2

p(N1, N2) = 1

p(x1, x2)
p(x, y) x

y

∫
∞

−∞ ∫
∞

−∞
p(x1, x2) dx1 dx2 = 1

35
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Marginalization

■ To remove one variable, sum over all its possible values 
 

■ Example of two dice, then , each of the 36 outcomes is 

equally likely. Now  

■ Similarly, for the continuous case:  

■ This is called marginalization

p(N1) = ∑
N2

p(N1, N2)

p(N1, N2) = 1/36

p(N1) =
6

∑
N2=1

p(N1, N2) = 1/6

p(x1) = ∫ p(x1, x2) dx2

36
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Conditional probabilities

■ Write  to mean the probability of  assuming  

‣ E.g.:  

■ Product rule:  
‣ E.g.: The probability that tomorrow the chess player wins their game and has a 

good breakfast is the probability that they have a good breakfast multiplied by the 
probability that they win the game assuming they had a good breakfast

p(A |B) A B
p("There will be rain tomorrow" | "There was rain today")

p(A, B) = p(A |B) p(B)

37
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Bayes’ Theorem
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Bayes’ Theorem

■ Take a probability distribution with two variables:  

■ Product rule:  

■ But also:  
■ Combining these two, we get: 

 

■ This is called  Bayes’ Theorem 
■ We can connect the two conditional probabilities

p(A, B)
p(A, B) = p(A |B) p(B)

p(A, B) = p(B |A) p(A)

p(A |B) =
p(B |A) p(A)

p(B)

39
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Bayesian inference I

■ Consider  , where  is the number of 
particles measured in the detector and  is the production 
cross section 

■ The number measured depends on , but also the 
detector efficiency, the measurement accuracy, quantum 
fluctuations etc. 

■  tells us how for a particular  the 
measurement would fluctuate when we repeat it 

■ Want to know the opposite: What does a measurement of 
 tell us about ? 

■ Bayesian probability:  is our state of knowledge about 
 

■ So we need to calculate : the probability of  
assuming we measured 

p(Nmeas |σ) Nmeas
σ

σ

p(Nmeas |σ) σ

N σ
p(σ)

σ
p(σ |Nmeas) σ
Nmeas

40

TOTEM Experiment at the LHC
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Bayesian inference II

■ Want to calculate probability of statements  based on a 
measurement  

■ Bayes’ theorem: 

 

■  is the probability of the statement given the measurement. This is 
called the posterior 

■  is the probability of the statement without knowing about the 
measurement, this is called the prior 

■  is the probability of the measurement given the statement, this is 
called the likelihood 

■  is a normalisation and can be rewritten as 

A ∈ {A1, A2, …}
B ∈ {B1, B2, …}

p(A |B) =
p(B |A) p(A)

p(B)
p(A |B)

p(A)

p(B |A)

p(B)
p(B) = ∑

i

p(Ai, B) = ∑
i

p(B |Ai) p(Ai)

41
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Example of using Bayes' theorem: 
Test for a rare disease

42

Base probability (for anyone)  
to have a disease D:

Consider a test for the disease: result is positive or negative (  or ):+ −

Suppose your result is +. How worried should you be?

Probability for you to have the disease is 3.2%, i.e., you're probably ok.

“sensitivity”
“specificity”

Remark: false positives not a relevant issue in statistics of Corona cases  
(in case of a positive result usually double checks are made resulting in very high specificity)

 p(D) = 0.001
p(no D) = 0.999

 p( + |D) = 0.98
p( − |D) = 0.02

 p( + |no D) = 0.03
p( − |no D) = 0.97

p(D | + ) =
p( + |D) p(D)

p( + )
=

p( + |D) p(D)
p( + |D) p(D) + p( + |no D) p(no D)

=
0.98 × 0.001

0.98 × 0.001 + 0.03 × 0.999
= 0.032
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What if we do a second test?

■ Second, independent test is also positive 

■ Same strength ,  

■ The prior is now the posterior of the previous result (current state of knowledge) 

■

p( +(2) |D) = 0.98 p( −(2) |no D) = 0.97

p(D | + ) =
0.98 × 0.032

0.98 × 0.032 + 0.03 × 0.968
= 0.52

43

Test 1 Test 2
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Bayesian and Frequentist interpretation of result

Bayesian: 
■ Frequency of disease in population is 

prior 
■ Probability for this patient to have 

disease is valid concept 
‣  is the probability 

for this patient to have the disease, 
this encodes the uncertainty 

p(D | + ) = 0.032

44

Frequentist: 
■ Probability for this patient to have disease is not 

a valid concept - there is no random process 
■ Probability for a patient randomly drawn from the 

population to have disease is a valid concept 
■ Two possible statements: 
‣ “If we randomly select a person from the 

population, then the people testing positive 
have a probability of  of having the 
disease.” 

‣ “If a patient is healthy, we would get a positive 
test with a probability of ” 

■ Neither are probabilities for this particular person 
to have the disease

0.032

0.03
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Criticisms of the probability interpretations
Frequentist interpretation: 
■ Gives objective results 
■ Variety of methods; some don’t require explicitly 

stating all hypotheses 
■ Essentially how we think about QM 
but: 
■ Need to reformulate question to get any answer at all 

■  actually not possible in practice (e.g. a coin 
may deform) 

■ p is not an intrinsic property of A, it depends on the 
how the ensemble of possible outcomes was 
constructed (do we consider redoing the test or also 
re-choosing a person) 

■ Many different methods follow different (possibly 
contradictory) paradigms

n → ∞

45

(Subjective) Bayesian interpretation: 
■ Gives us what we want from measurements: 

The degree of certainty in a particular statement 
■ Straightforward: Always apply Bayes’ theorem 

and that is all 
■ Close to everyday thinking 
but: 
■ “Subjective” estimates have no place in science 
■ Result may strongly depend on prior - how do 

we quantify the prior state of our knowledge 
■ Usually requires stating all possible hypotheses 

explicitly
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Bayesian inference for a continuous parameter

■ Bayes’ theorem for a parameter  with measurement(s) : 

 

■ Posterior usually much narrower than prior. Narrow distribution  more information content

x m

p(x |m) =
p(m |x) p(x)

∫ p(m |x) p(x) dx

→

46

Prior Likelihood Posterior

×
Normalisation
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Example of a posterior distribution

47

GW190814: Gravitational waves from the coalescence of a 23 solar mass 
Black Hole with a 2.6 solar mass compact object

LIGO Scientific Collaboration and Virgo 
Collaboration: 
The Astrophysical Journal Letters, 
896:L44 (20pp), 2020 June 20

vertical lines: 
90% credible 
bounds for each 
waveform model

Posterior distribution for 
mass of the lighter 
objects:

Measured value and uncertainty from position and width 
of posterior distribution
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Where does the prior come from?

■ Result depends on prior - where does it come from 
■ What does it mean if we “know nothing”? 
■ Complex question, will revisit later 

Three main approaches: 
1. Select prior to represent current (subjective) state of 

knowledge 
2. Select prior based on transformation/scaling properties 

(e.g. Jeffrey’s priors, maximum entropy principle) 
3. Select priors for convenience of calculation (e.g. 

conjugate priors) 

■ The good news: If the prior distribution is wide, the 
posterior only has weak dependence on it

48
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Bayesian versus Frequentist Probability

49

Bayesian Frequentist

Meaning of probability degree of belief relative frequency

Probability applies to random variables, parameters 
and hypotheses random variables only

Data analysis Data changes state of 
knowledge Data speaks for itself

Unphysical / empty 
intervals excluded by prior can occur

Final statement posterior probability 
distribution

parameter values, hypothesis test 
(p-value), confidence interval …

Nuisance parameters Marginalization Various methods, e.g., profile 
likelihood, hard

Systematics Included naturally Separate concept

Difficulties Describing state of knowledge 
as prior distribution Interpretation of result
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Bayesian versus 
Frequentism

50

https://xkcd.com/1132/
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1.2 Describing the Data
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Goal of describing data

■ Data often series of measurements, e.g.  
■ How to summarize in few numbers? 
■ Similarly: Summarize distribution, e.g. posterior 

■ Usually two main numbers: Where is the distribution and how wide is it? 
■ Also called summary statistics

m1, m2, m3, …

52
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Histograms

Histogram: 
‣ representation of the frequencies of the 

numerical outcome of a random phenomenon 
‣ Number of entries found in different (often 

equidistant) intervals 
 
 pdf = histogram for  
‣ infinite data sample 
‣ zero bin width 
‣ normalized to unit area

53

f (x) =
N(x)

n�x

n = total number of entries

�x = bin width
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Location summary statistics: Mean, Median, and Mode
Mean:

54

x̄ =
1

N

NX

i=1

xi µ ⌘ hxi ⌘
Z

x P(x) dx

Value for which half of 
measured values are 
above and half below

"sample mean"

4

The Centre of the Data: Mean, Median, & Mode

 Mean of a data set:

x=
1

N
∑
i=1

N

xi

Median:  the point with 
50% probability above 
& 50% below.  (If a tie, 
use an average of the 
tied values.)  Less 
sensitive to tails!

Mode: the most likely 
value

≡〈 x〉≡∫dx Px x

Mean of a PDF = 
expectation value 
of x

mode median mean

home 
away

Nu
m

be
r o

f o
cc

ur
re

nc
e

Goals

“expectation value”

Median:

 
 

μh = 1.66 ; μa = 1.21
medianh = 1 ; mediana = 1
modeh = 1 ; modea = 1

xmed

∫
−∞

p(x) dx =
∞

∫
xmed

p(x) dx =
1
2

Mode:

Most frequently 
measured value

Maximum of 
distribution

There are also others, e.g. centre between lowest and highest 
measured value
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Dispersion summary statistics

Mean absolute difference:

55

Root-mean-square deviation:

With respect to a position parameter x0

MD =
∑i xi − x0

N
MD =

∞

∫
−∞

p(x) x − x0 dx

rms =
∑i (xi − x0)2

N
rms =

∞

∫
−∞

p(x) (x − x0)2 dx

■ The mean absolute difference is minimised when  is the median 
■ The rms is minimised when  is chosen to be the mean 
‣ Standard deviation 

x0
x0

σ
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Variance and standard deviation

Variance of a distribution:

56

Sample variance: V (x) =
1

N

X

i

(xi � x̄)2 = x2 � x̄2

This formula underestimates the variance of underlying 
distribution as it uses the mean calculated from data!

Use this if you have to estimate the mean from 
data (unbiased sample variance):

Use this if you know the true mean μ:

Standard deviation: � =
p

V (x)

expectation value

V (x) =
1

N

X

i

(xi � µ)2V̂ (x) =
1

N � 1

X

i

(xi � x̄)2

V (x) =

Z
dx P(x)(x � µ)2 = E [(x � µ)2]

V (x) =

Z
dx P(x)x2 � 2µ

Z
dx P(x)x

| {z }
=µ

+µ2

Z
dx P(x) = hx2i � µ2 = hx2i � hxi2
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Quantiles

■ Summarise both position and dispersion 
simultaneously 

■ Split range of distribution into intervals 
corresponding to equal probabilities 

■ For , the intervals are separated by the 
median

n = 2

57
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Supercentenarians

 Saul Justin Newman, https://doi.org/10.1101/704080 (preprint) 

58

https://doi.org/10.1101/704080
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Correlation and dependence

59

G. Cowan  Statistical Data Analysis / Stat 1 23 

Marginal pdf  (2) 

Marginal pdf ~ 
projection of joint pdf 
onto individual axes. 

x and y independent if

f (x , y) = fx(x) · fy (y)

■ Can have distributions of more than one 
variable 

■ Two variables are dependent or correlated 
if knowledge of one changes the state of 
knowledge about the other 

■ Otherwise they are independent 
■ We often consider linear correlation 
■ Stronger correlation means: knowledge 

about one variable gives more information 
about the other
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Covariance and correlation

■ Generalisation of variance, Covariance ( ):μx := ⟨x⟩, μy := ⟨y⟩

60

cov[x , y ] = E [(x � µx)(y � µy )]

Pearson (linear) correlation coefficient:

⇢xy =
cov[x, y]

�x�y

x, y independent, i.e.,  :f(x, y) = fx(x) ⋅ fy(y)

! cov[x , y ] = 0 (N.B. converse not always true)

fx(x) =

Z
dy f (x , y)

fy (y) =

Z
dx f (x , y)

E [(x � µx)(y � µy )] =

Z
dx

Z
dy (x � µx)(y � µy )f (x , y)

=

Z
(x � µx)fx(x) dx

Z
(y � µy )fy (y) dy = 0

Gives values in range [−1,1]

 is the variancecov[x, x] = σ2
x cov[y, y] = σ2

y
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Correlation coefficient

61

cov[x , y ] = E [(x � µx)(y � µy )]

https://en.wikipedia.org/wiki/Correlation_and_dependence
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Never trust summary statistics alone;  
always visualize your data

62

https://www.autodeskresearch.com/publications/samestats

same summary 
statistics for all data 
sets, in particular 
corr. = 0
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Higher moments

Skewness:

63

�1 =

*✓
x � hxi

�

◆3
+

Symmetric distribution have skewness 
equal to zero 

�2 =

*✓
x � hxi

�

◆4
+

Kurtosis:

�2 = �2 � 3

defined such that γ2 = 0 for the 
normal distribution

https://en.wikipedia.org/wiki/Skewness
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Worldwide	non-commercial	space	launches

	correlates	with	

Sociology	doctorates	awarded	(US)

Sociology	doctorates	awarded	(US) Worldwide	non-commercial	space	launches

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

500	Degrees	awarded

550	Degrees	awarded

600	Degrees	awarded

650	Degrees	awarded

700	Degrees	awarded

40	Launches

50	Launches

30	Launches

60	Launches

tylervigen.com

Correlation ≠ Causation

Example 1 ("reverse causality"): 
‣ The faster windmills are observed to rotate, the more wind is observed to be. 
‣ Therefore wind is caused by the rotation of windmills.

64

Examples of illogically inferring causation from correlation

Example 2 ("third factor C causes both A and B"): 
‣ Sleeping with one's shoes on is strongly correlated with waking up with a 

headache. 
‣ Therefore, sleeping with one's shoes on causes headache.

https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation

Example 3  
(“relationship is coincidental"): 
‣ many examples on  

tylervigen.com 
("spurious correlations”)

correlation 
coefficient: 0.79

http://tylervigen.com
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What makes nobel prize winners?

65

F. Messerli, 2012, New 
England Journal of 
Medicine, 2012

Correlation coefficient: 
0.791 

Improved cognitive 
function associated 
with a regular intake of 
flavonoids??? 

Probably not … 
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Correlation ≠ Causation

66

https://xkcd.com/552/

"Correlation doesn't imply causation, but it does waggle its eyebrows suggestively 
and gesture furtively while mouthing 'look over there'."
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