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Reminder: ML fitting of  models with free parameters

■ Models (hypotheses) with unknown parameters 
■ Compare with data to extract values 

■ Model e.g.  

■ Parameters could be background fraction, signal yield, 
resonance lifetime etc. 

■ For binned measurements, calculate expected  for each 
bin :  

■ Then log-likelihood is: 

 

■ We can maximise it to find the best fitting parameters

dN
dMinv

= f(Minv |θ1, θ2, …)

N
i fi( ⃗θ)

log L = ∑ ni log fi( ⃗θ) − fi( ⃗θ)

2

Production of K∗(892)0 and ϕ(1020) in pp and Pb−Pb collisions at √sNN=5.02 , ALICE Collaboration

The Voigt-profile is a convolution of a Breit-Wigner and Gaussian 
distribution. It models the physical line shape with detector effects.
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Other inputs

■ Not all data is from individual particles/counts 
■ Often previous measurements or even other 

publications 
■ If we know likelihood function, then we can use 

maximum likelihood 
■ Otherwise we have to approximate/make assumptions 
■ Natural assumption knowing point and variance: 

Normal distribution 

3

pdg review of QCD
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Least squares from ML (1)

4

Consider n measured values y1(x1), y2(x2), … , 
yn(xn) assumed to be independent Gaussian 
random variables with known variances:

V [yi ] = �2
i

Assume we have a function f with 

E [yi ] = f (xi ; ~✓)

We want to estimate ~✓

Likelihood function:

L(~✓) =
nY

i=1

1p
2⇡�i

exp

2

4�1

2

 
yi � f (xi ; ~✓)

�i

!2
3

5

0 1 2 3 4 5 6 7
x

0

1

2

3

4

5

6

7y



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 6. Method of Least Squares

Least squares from ML (2)

5

Log-likelihood function:

ln L(~✓) = �1

2

nX

i=1

 
yi � f (xi ; ~✓)

�i

!2

+ terms not depending on ~✓

So maximizing the likelihood is equivalent to minimizing

In other words, for Gaussian uncertainties the method of least squares 
coincides with the maximum likelihood method.

The χ2 minimization is often done numerically, e.g., using the MINUIT code 
https://en.wikipedia.org/wiki/MINUIT

�2(~✓) =
nX

i=1

 
yi � f (xi ; ~✓)

�i

!2 Minimizing χ2 is called the method of 
least squares, goes back to Gauss 
and Legendre. 

Minimization:
@�2

@✓j
= 0, j = 1, ...,m

Number of parameters
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Least Squares Example

■ Measurements at different known positions x 
■ True values lie on the true model 
■ Measurements are drawn from normal 

distribution around true point

6

■ Measurements at different known positions x 
■ True values lie on the true model 
■ Measurements are drawn from normal 

distribution around true point

f(x |a, b) = ax + be
1

x + 1
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Generalized least squares for correlated yi

7

Suppose the yi have a covariance matrix V and follow a multi-variate Gaussian:

The generalized least-squares method then corresponds to minimizing:

We can write this also as

g(~y ; ~µ,V ) =
1

(2⇡)n/2|V |1/2
exp


�1

2
(~y � ~µ)TV�1(~y � ~µ)

�

�2(~✓) = (~y � ~f (~x ; ~✓))TV�1(~y � ~f (~x ; ~✓))

~f (~x ; ~✓) = (f (x1; ~✓), ..., f (xn; ~✓))

�2(~✓) =
X

i , j

(yi � f (xi ; ~✓))
T (V�1)ij(yj � f (xj ; ~✓))
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Variance of the least squares estimator

8

Using 

�2(~✓) = �2 ln L(✓) + const.

we can use the result for the variance of the ML estimators and obtain 

Or determine 1σ uncertainties from the contour where

For z⋅σ uncertainties the condition is 

�2(~✓0) = �2
min + 1

�2(~✓0) = �2
min + z2

i.e.V [
b~✓] ⇡ 2

"
@2�2(~✓)

@2~✓

�����
~✓=

b~✓

#�1

(V�1[
b~✓])ij =

1

2

@2�2(~x ; ~✓)

@✓i@✓j

�����
~✓=

b~✓
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Linear least squares
Consider n data points yi whose uncertainties and correlations are described 
by a covariance matrix V. The yi are measured at points xi. 

9

We would like to fit a linear combination of m functions aj(x) to the data: 

f (x ; ~✓) =
mX

j=1

✓jaj(x)
n data points yi

m parameters ✓j

examples:

The linear least squares problem can be solved in closed form:

Define n × m matrix A:  Ai ,j = aj(xi ) "design matrix"

Minimize

U = (ATV�1A)�1

best fit parameters: covariance matrix of the parameters:

f (x) = ✓0 + ✓1x + ✓2x
2

f (x) = ✓0 + ✓1 cos(x)

�2 = (~y � A~✓)TV�1(~y � A~✓), ~y = (y1, ..., yn)

b~✓ = (ATV�1A)�1

| {z }
symmetric
m⇥m matrix

ATV�1~y
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Linear least squares: Derivation of the formula

10

Set derivatives w.r.t. θi to zero:

~r(~xTM~x) = (MT +M)~x
M symm.

= 2M~x~r(~aTM~x) = MT~a

r�2 = �2(ATV�1~y � ATV�1A~✓) = 0

Solution: b~✓ = (ATV�1A)�1 ATV�1~y ⌘ L~y

Covariance matrix U of the parameters:
(XY )T = Y TXT,

[(ATV�1A)�1]T = (ATV�1A)�1

Here we use

U = LVLT

= (ATV�1A)�1 ATV�1VV�1A(ATV�1A)�1

= (ATV�1A)�1

�2(~✓) = (~y � A~✓)TV�1(~y � A~✓) = ~yV�1~y � 2~yTV�1A~✓ + ~✓TATV�1A~✓
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Non-linear least squares
Use numerical minimization programs like MINUIT if the model is not linear in the 
parameters. 

MINUIT’s MIGRAD algorithm relies on gradients, it is based on the Davidon–
Fletcher–Powell algorithm, a quasi-Newton method 

Often used: Levenberg–Marquardt algorithm (see e.g. scipy.optimize.least_squares) 

Choice of initial values of the fit parameters important to converge to the correct 
solution. 

Often a numerical minimization program is also used in the linear case for 
convenience. 

11

https://iminuit.readthedocs.io/en/stable/

"Minuit2 has good performance compared 
to other minimisers, and it is one of the few 
codes out there which compute error 
estimates for your parameters."

[Non-linear least squares, 
Levenberg–Marquardt algorithm, 
Quasi-Newton method, 
BFGS method]

https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
https://en.wikipedia.org/wiki/Quasi-Newton_method
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
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Example: Straight line fit: y = θ0 + θ1∙x  (1)

12

The conditions dχ2/dθ0=0 and dχ2/dθ1=0 give two linear equations 
with two variables which is easy to solve.

Here we use the general solution for linear least squares fits:

L = (ATV�1A)�1 ATV�1 b~✓ = L~y

AT =

✓
1 1 ... 1
x1 x2 ... xn

◆
~✓ =

✓
✓0
✓1

◆
V�1 =

0

BBB@

1/�2
1

1/�2
2

. . .
1/�2

n

1

CCCA

ATV�1A =

✓
1/�2

1 1/�2
2 ... 1/�2

n

x1/�2
1 x2/�2

2 ... xn/�2
n

◆
·

0

BBB@

1 x1
1 x2
...

...
1 xn

1

CCCA
=

 P
i

1
�2
i

P
i

xi
�2
iP

i
xi
�2
i

P
i
x2
i

�2
i

!

ATV�1 =

✓
1/�2

1 1/�2
2 ... 1/�2

n

x1/�2
1 x2/�2

2 ... xn/�2
n

◆
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Example: Straight line fit: y = θ0 + θ1∙x  (2)

13

The 2 × 2 matrix is easy to invert: shorthand notation for 
the sum

This gives:

We finally obtain:

✓̂0 =
[x2][y ]� [x ][xy ]

[1][x2]� [x ][x ]
✓̂1 =

�[x ][y ] + [1][xy ]

[1][x2]� [x ][x ]

L = (ATV�1A)�1ATV�1

=
1

[1][x2]� [x ][x ]

✓
[x2] �[x ]
�[x ] [1]

◆
·
✓
1/�2

1 1/�2
2 ... 1/�2

n

x1/�2
1 x2/�2

2 ... xn/�2
n

◆

=
1

[1][x2]� [x ][x ]

 
[x2] 1

�2
1
� [x ] x1

�2
1

... [x2] 1
�2
n
� [x ] xn�2

n

�[x ] 1
�2
1
+ [1] x1

�2
1

... �[x ] 1
�2
n
+ [1] xn�2

n

!

(ATV�1A)�1 =
1

[1][x2]� [x ][x ]

✓
[x2] �[x ]
�[x ] [1]

◆
where [z ] :=

X

i

zi
�2
i

[xy ] :=
X

i

xiyi
�2
i
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Example: Straight line fit: y = θ0 + θ1∙x  (3)

14
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7y
y = ✓0 + x✓1

Covariance matrix of (θ0, θ1):

Fit result:

x y σy
1 1.7 0.5
2 2.3 0.3
3 3.5 0.4
4 3.3 0.4
5 4.3 0.6

U = (ATV�1A)�1

=

✓
0.211186 �0.0646035

�0.0646035 0.0234105

◆

✓̂0 =
[x2][y ]� [x ][xy ]

[1][x2]� [x ][x ]
= 1.16207

✓̂1 =
�[x ][y ] + [1][xy ]

[1][x2]� [x ][x ]
= 0.613945

[z ] :=
X

i

z

�2
i
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Straight line fit: Comparison to iminuit

15

y = ✓0 + x✓1

1σ ellipse

2σ ellipse

[basic_chi2_fit_iminuit.ipynb]

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/basic_chi2_fit_iminuit.ipynb
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Propagation of fit parameter uncertainties

16

y = ✓̂0 + ✓̂1x

± 1σ error bands
Note: 
correlation vanishes if you choose 
y = θ0 + θ1(x − ⟨x⟩)

~J =

 
@y
@✓̂0
@y
@✓̂1

!
=

✓
1
x

◆

�2
y = ~J TU~J =

�
1 x

�✓ �2
0 cov[✓̂0, ✓̂1]

cov[✓̂0, ✓̂1] �2
1

◆✓
1
x

◆

=
�
1 x

�✓�2
0 + x cov[✓̂0, ✓̂1]
cov[✓̂0, ✓̂1] + x�2

1

◆

= �2
1x

2 + 2cov[✓̂0, ✓̂1]x + �2
0
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Least-squares fits to histograms

17

Consider histogram with k bins and ni counts in bin i. If ni is not too small one 
can use the Gaussian approximation of the Poisson distribution and apply the 
least-squares method:

�2(~✓) =
kX

i=1

(ni � ⌫i (~✓))2

⌫i (~✓)
Pearson's χ2:

Neyman's χ2: �2(~✓) =
kX

i=1

(ni � ⌫i (~✓))2

ni

Problems arise in bins with few entries (typically less than 5), in particular in 
Neyman's χ2. 

Bins with zero entries are problematic, typically omitted from the fit 
→ leads to biased fit results
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Pearsons and Neymans  exampleχ2

Neyman’s  χ2

χ2 = ∑
i

(ni − νi( ⃗θ))2

ni

18

■ The last bin by itself basically excludes the model 
■ There is no chance of negative numbers of counts

Pearson’s  χ2

χ2 = ∑
i

(ni − νi( ⃗θ))2

νi( ⃗θ)
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Summary: Maximum likelihood and χ2 method

19

L(~✓) =
nY

i=1

f (xi ; ~✓)

�2(~✓) = (~y � ~µ(✓))TV�1(~y � ~µ(✓)), V = (vij), vij = cov[yi , yj ]

�2(~✓) = �2 ln L(~✓) + constant =
nX

i=1

(yi � µ(xi ; ~✓))2

�2
i

U[
b~✓] = 2H�1, hij =

@2�2

@✓i@✓j

����b~✓

Maximum likelihood method:

covariance matrix of the estimated parameters θi

Least-squares method:

@ ln L

@✓i
= 0, i = 1, ...,m  b~✓

No correlations btw. the yi;

With correlations btw. the yi;

U[
b~✓] = �H

�1, hij =
@2 ln L

@✓i@✓j

����b~✓
, H = (hij), U = (uij), uij = cov[✓̂i , ✓̂j ]

covariance matrix of the θi

@�2

@✓i
= 0, i = 1, ...,m  b~✓
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A closer look at the  valueχ2

■ So far looked at the maximum 
■ But what about the blue itself? 
■ Consider the true model, then each term 

 

has the expectation value  

■ So 

 

has the expectation value of  and is distributed 
like a  distribution 

(ymeas
i − f(xi | ⃗θtrue))2

σ2
i

V[yi]/σ2
i = 1

χ2 = ∑
i

(ymeas
i − f(xi | ⃗θtrue))2

σ2
i

N
χ2

20
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Rescaled  distributionχ2

■ Look at  instead 
■ Expectation value is 1 

■ For large , the true model should thus have a 
 value near one 

■ If the model is wrong, then the expectation value of 
the quantity will be higher 

■ This allows to check if a model works without 
explicitly describing an alternative

χ2/N

N
χ2/N

21
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Reduced  as goodness-of-fitχ2

■ When free parameters are available, the  can be 
smaller than for the true model 

■ The more free parameters, the closer the model can 
come to the measurement points 

■ The number of independent comparisons has to be 
corrected for the fit parameters 

■  is distributed as with  degrees 
of freedom 

■  can be compared to  

■ Both numbers are usually given as the width of the 
distribution is important 

■ This is called the reduced 

χ2

χ2 Npoints − nparameters

χ2/(Npoints − nparameters) 1

χ2

22

Dissertation of Benjamin Heß, numbers are for the black curve
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Be careful about interpreting the results

■ “Model 1 is not consistent with the data, model 2 is consistent. Thus, we should use model 2”. 
■ This is dangerous, since here, data 2 has almost no resolving power. 
■ This is only a reasonable conclusion if we already know that one of the two models is exactly true. 
■ For interpolation or similar we are interested in how close the model is to the truth, not whether it is consistent.

23
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Discussion of fit methods
Unbinned maximum likelihood fit (the best) 

+ Don't need to bin data (no loss of information) 
+ Works with multi-dimensional data 
+ No Gaussian assumption 
– No direct goodness of fit estimate 
– Can be computationally expensive for large n 
– Can't plot directly with data 

Least-squares fit (the easiest) 
+ fast, robust, easy 
+ goodness of fit 
+ can plot with data 
+ works fine at high statistics 
– data should be Gaussian 
– misses information with feature size < bin size 

24

[Wouter Verkerke, link]

Binned maximum likelihood fit in between

https://www.physik.hu-berlin.de/de/gk1504/block-courses/autumn-2010/program_and_talks/Verkerke_part3/

