Statistical Methods in Particle Physics

5. Maximum Likelihood Estimation

Heidelberg University, WS 2023/24

Klaus Reygers, <u>Martin Völkl</u> (lectures) Ulrich Schmidt, (tutorials)

Reminder: Evaluating Estimator Performance

Consistency:

Does the estimate converge to the true value? $\lim \hat{\theta} = \theta$ $n \rightarrow \infty$

Bias:

Does the average of many measurements converge towards the true value? Otherwise: bias b

 $E[\hat{\theta}] = \theta$

Efficiency:

How small is the uncertainty for a given amount and how fast does it decrease with *n*?

Robustness:

Does the estimator still work if we are slightly w about the assumptions of the data (e.g. in the p of rare outliers)?

t of data	Example: Estimators for the lifetime of a particle					
	Estimator	Consistent?	Unbiased?	Efficient		
	$\hat{\tau} = rac{t_1 + t_2 + \ldots + t_n}{n}$	yes	yes	yes		
rong Dresence	$\hat{ au} = rac{t_1+t_2+\ldots+t_n}{n-1}$	yes	no	no		
	$\hat{ au} = t_1$	no	yes	no		

http://www.terascale.de/e149980/index_eng.html

Drawing random numbers from a uniform distribution

- Draw k numbers from an even distribution between 1 and N
- The MVUE is $\hat{N} = (1 + k^{-1})m 1$, where *m* is the largest number in the sample
- The variance of the estimator is $V[\hat{N}]$
- Known as the German tank problem
- How to estimate the total number of produced units from the serial numbers of a few investigated ones?

Month	Statistical estimate	Intelligence estimate	German records
June 1940	169	1,000	122
June 1941	244	1,550	271
August 1942	327	1,550	342

$$\tilde{V}] \approx \frac{N^2}{k^2}$$

https://en.wikipedia.org/wiki/German_tank_problem

CHART I. A SCATTER DIAGRAM OF THE ACCURACY OF INDIVIDUAL ESTIMATES, BY TYPE AND MODEL AND BY YEAR FOR SEVEN TYPES OF MILITARY EQUIPMENT

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

The end of the world

The doomsday argument

- Make N the total number of humans that have been and will ever been born
- Now number them consecutively by date of birth
- You are one random sample from this distribution (m)

• $\hat{N} = (1 + k^{-1})m - 1$

near the beginning or the end)

• *m* is about 100b. So we can estimate that around 200b people will ever exist

Simple argument: If you are randomly one of all people who are ever born, then you are likely somewhere in the middle of the numbered list (and unlikely to be

Unbiased estimators for mean and variance

Consider *n* independent and identically distributed measurements *x_i* drawn from a distribution with mean μ and standard deviation σ :

Estimator for the mean:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$E[\hat{\mu}] = \frac{1}{n} E[\sum_{i} x_{i}] = \frac{1}{n} \sum_{i} E[x_{i}] = \mu \quad \Rightarrow \text{ estimator is unbiased}$$

$$V[\hat{\mu}] = V[\frac{1}{n} \sum_{i} x_{i}] = \frac{1}{n^{2}} V[\sum_{i} x_{i}] = \frac{1}{n} V[x] = \frac{\sigma^{2}}{n}, \text{ i.e., } \sigma_{\hat{\mu}} = \frac{\sigma}{\sqrt{n}}$$
Unbiased estimator for the variance:

$$s^{2} := \hat{\sigma^{2}} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Un var

Unbiased estimator of the variance: Derivation (1)

Consider *n* independent and identically distributed random variables x_i :

$$\mu := E[x_i], \quad \sigma^2 := V[x_i], \quad \bar{x} := \frac{1}{n} \sum_{i=1}^n x_i$$

We'll use:

$$\sigma^{2} = E[x_{i}^{2}] - \mu^{2} \quad \rightsquigarrow \quad E[x_{i}^{2}] = \mu^{2} + \sigma^{2}$$
$$V[\bar{x}] = \frac{1}{n^{2}} V[\sum_{i=1}^{n} x_{i}] = \frac{1}{n} V[x_{i}] = \frac{\sigma^{2}}{n} \stackrel{!}{=} E[\bar{x}^{2}] - \mu^{2} \quad \rightsquigarrow \quad E[\bar{x}^{2}] = \frac{\sigma^{2}}{n} + \mu^{2}$$

Now we calculate the expectation valu

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - 2x_i \bar{x} + \bar{x}^2 = \left(\sum_{i=1}^{n} x_i^2\right) - n\bar{x}^2$$
$$E[\sum_{i=1}^{n} (x_i - \bar{x})^2] = E[\sum_{i=1}^{n} x_i^2] - E[n\bar{x}^2] = n(\mu^2 + \sigma^2) - \sigma^2 - n\mu^2 = (n-1)\sigma^2$$

Le of
$$\sum_{i=1}^{n} (x_i - \bar{x})^2$$
.

Unbiased estimator of the variance: Derivation (2)

This means that

is an unbiased estimator of the variance, i.e., $E[s^2] = \sigma^2$

Multiplying the sample variance by n/(n-1) is known as Bessel's correction.

Note that s is not an unbiased estimator of the standard deviation: https://en.wikipedia.org/wiki/Unbiased estimation of standard deviation

Unbiased estimator for the standard deviation for the normal distribution ($E[\hat{\sigma}] = \sigma$):

$$\hat{\sigma} = c_4(n)\sqrt{s^2}, \quad c_4(n) = \sqrt{\frac{2}{n-1}} \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})} = 1 - \frac{1}{4n} - \frac{7}{32n^2} + \dots, \quad \hat{\sigma} \approx \sqrt{\frac{1}{n-1.5}} \sum_{i=1}^n (x_i - \overline{x})^2$$

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

$$\sum_{i=1}^n (x_i - \bar{x})^2$$

Rule of thumb:

Reminder: Probability of the data \rightleftharpoons likelihood

• $p(\vec{d} \mid \vec{\theta})$ is the probability distribution of the data for different parameters • When considered as a function of $\vec{\theta}$ instead, it is called the *likelihood* • Often called \mathscr{L} or L with $\mathscr{L}(\vec{\theta} \mid \vec{d}) \equiv p(\vec{d} \mid \vec{\theta})$

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

Likelihood function is not a probability density function

The integral of $L(\vec{x}, \vec{\theta})$ with respect to the parameter is not necessarily equal to unity $(L(\vec{x}, \vec{\theta}) \text{ might not be integrable at all}).$

This is why $L(\vec{x}, \vec{\theta})$ is not a probability density function.

Example: exponential decay, one measurement at t = 1h.

$$L(\tau) = \frac{1}{\tau} e^{-t/\tau} \approx \frac{1}{\tau}$$
 as $\tau \to \infty$, $\int_0^\infty L(\tau) d\tau$ not defined

Note: With Jeffreys' prior $1/\tau$ the posterior $L(\tau) \pi(\tau)$ is normalizable.

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

How much do we learn from a result?

For Bayes:

Narrower posterior distribut	ion means more	(
knowledge		

- Happens when likelihood distribution is narrow
- Generally: Narrower likelihood distributions contain more information 1
- For large statistics, likelihood becomes Gaussian, $\log L$ becomes parabola
- $\partial_{\theta}^2 \log L(\theta)$ relates to width
- For frequentist approach, interested in fluctuations when experiment is repeated
- $E[-\partial_{\theta}^2 \log L(\theta)]$ is thus a measure for the information content (evaluated at the true θ)

_ikelihood for binomial distribution

12

The Fisher Information Matrix

is called the Fisher Information It is larger for narrower likelihood distributions and fulfils which is what we want from an information measure. • For more than one parameter $(\theta_1, \dots, \theta_n)$ this generalises to the Fisher Information Matrix.

- $\mathbb{I}(\theta) = E[-\partial_{\theta}^2 \log L(\theta)] = E[(\partial_{\theta} \log L(\theta))^2]$

 - $\mathbb{I}_{1+2} = \mathbb{I}_1 + \mathbb{I}_2,$
- $\mathbb{I}_{i,i} = E[-\partial_i \partial_i \log L(\vec{\theta})] = E[(\partial_i \log L(\vec{\theta})) \ (\partial_i \log L(\vec{\theta}))],$

Minimum Variance Bound

Consider an unbiased estimator:

$$\langle \hat{\theta} \rangle = E[\hat{\theta}] = \int \hat{\theta}(x) p(x | \theta) dx = \int \hat{\theta}(x) L(\theta | x) dx = \theta$$

• What can we learn about the variance of the estimator?

• Use
$$\frac{d \log L}{d\theta} = \frac{dL}{d\theta} \frac{1}{L}$$

1. $\int L dx = 1 \implies \int \frac{dL}{d\theta} dx = 0 \implies \int \theta \frac{d \log L}{d\theta} L dx = 0$
2. $\int \hat{\theta} L dx = \theta \implies \int \hat{\theta} \frac{dL}{d\theta} dx = \int \hat{\theta} \frac{d \log L}{d\theta} L dx = 1$

and thus

 $\int (\hat{\theta} - \theta) \frac{d \log L}{10} L dx$ $\mathrm{d}\theta$ J

$$x = \langle (\hat{\theta} - \theta) \frac{d \log L}{d\theta} \rangle = 1$$

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

Minimum Variance Bound (II)

$$\int (\hat{\theta} - \theta) \frac{d \log L}{d\theta} L \, dx = \langle (\hat{\theta} - \theta) \frac{d \log L}{d\theta} \rangle = 1$$

with $u = (\hat{\theta} - \theta) \sqrt{L}$ and $v = \frac{d \log L}{d\theta} \sqrt{L}$, we can now use the Cauch
inequality:

$$\left(\int (\hat{\theta} - \theta)^2 L \, \mathrm{d}x\right) \left(\int \left(\frac{\mathrm{d}\log L}{\mathrm{d}\theta}\right)^2 L \, \mathrm{d}x\right) \ge 1 \text{, or}$$
$$\left[V[\hat{\theta}] \ge \frac{1}{\langle (\mathrm{d}\log L/\mathrm{d}\theta)^2 \rangle} = \frac{1}{\mathbb{I}[\theta]}\right]$$

This is the Cramér-Rao minimum variance bound

No unbiased estimator can be better than this

chy-Schwarz

Cauchy-Schwarz inequality:

$$\int u^2 \mathrm{d}x \int v^2 \mathrm{d}x \ge \left(\int uv \,\mathrm{d}x\right)$$

Likelihood function and maximum likelihood

Principle of maximum likelihood:

- The best estimate of the parameters $\vec{\theta}$ is that value which maximizes the likelihood function
- This is called the maximum likelihood estimator

In the limit of infinite statistics, the maximum likelihood estimator:

- Is unbiased
- Achieves the Cramer-Rao bound (meaning it is maximally efficient)
- In most practical cases it is thus prudent to simply take the maximum likelihood estimator, rather than look for a MVUE

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

Properties of the ML estimator

The ML Estimator is invariant under parameter transformation:

$$\psi = g(\theta)$$

- ML does not provide a goodness-of-fit measure
 - It tells you which parameter set fits best with the data
 - measure)
- Sometimes the maximum has to be found numerically

$$\Rightarrow \hat{\psi} = g(\hat{\theta})$$

It does not tell you if it fits well in an absolute sense (no goodness-of-fit

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

Maximum likelihood example 1: Exponential Decay

Consider exponential pdf: f(t;

Independent measurements drawn from this distribution:

Likelihood function: $L(\tau) = \prod_{i=1}^{n} \frac{1}{\tau} e^{-\tau}$

 $L(\tau)$ is maximum when ln $L(\tau)$ is maximum:

$$\ln L(\tau) = \sum_{i=1}^{n} \ln f(t_i; \tau) = \sum_{i=1}^{n} \left(\ln \frac{1}{\tau} - \frac{t_i}{\tau} \right)$$

Find maximum:

$$\frac{\partial \ln L(\tau)}{\partial \tau} = 0 \quad \rightsquigarrow \quad \sum_{i=1}^{n} \left(-\frac{1}{\tau} + \frac{t_i}{\tau^2} \right) = 0 \quad \rightsquigarrow \quad \hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} t_i$$

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

$$au$$
) = $rac{1}{ au}e^{-t/ au}$

 $t_1, t_2, ..., t_n$

$$e^{-t_i/\tau}$$

MVB example: Exponential decay

Minimum variance bound (MVB):

$$\frac{\partial^2 \ln L(\tau)}{\partial^2 \tau} = \sum_{i=1}^n \left(\frac{1}{\tau^2} - 2\frac{t_i}{\tau^3} \right) = \frac{n}{\tau^2} - \frac{2}{\tau^3} \sum_{i=1}^n t_i = \frac{n}{\tau^2} \left(1 - \frac{1}{\tau^2} \right) = \frac{V[\hat{\tau}]}{E\left[-\frac{n}{\tau^2} \left(1 - \frac{2\hat{\tau}}{\tau} \right) \right]} = \frac{1}{-\frac{n}{\tau^2} \left(1 - \frac{2E[\hat{\tau}]}{\tau} \right)} = \frac{\tau^2}{n}$$

Variance of ML estimator:

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} t_i \qquad V[\hat{\tau}] = V\left[\frac{1}{n} \sum_{i=1}^{n} t_i\right] = \frac{1}{n^2} \sum_{i=1}^{n} V[t_i] = \frac{\tau^2}{n}$$

So $\hat{\tau}$ reaches the MVB for any n.

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

Maximum likelihood example 2: Gaussian (I)

Consider $x_1, x_2, ..., x_n$ drawn from Gaussian(μ, σ^2)

 $f(x; \mu, \sigma^2) =$

Log-likelihood function:

$$\ln L(\mu, \sigma^2) = \sum_{i=1}^n \ln f(x_i; \mu, \sigma^2) = \sum_{i=1}^n \left(\ln \frac{1}{\sqrt{2\pi}} - \ln \sigma - \frac{(x_i - \mu)^2}{2\sigma^2} \right)$$

Derivatives w.r.t. μ and σ^2 :

$$\frac{\partial \ln L(\mu, \sigma^2)}{\partial \mu} = \sum_{i=1}^n \frac{x_i - \mu}{\sigma^2}$$

$$=\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\frac{\partial \ln L(\mu, \sigma^2)}{\partial \sigma^2} = \sum_{i=1}^n \left(\frac{(x_i - \mu)^2}{2\sigma^4} - \frac{1}{2\sigma^2} \right)$$

Maximum likelihood example 2: Gaussian (II)

Setting the derivatives w.r.t. μ and σ^2 to zero and solving the equations:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

We find that the ML estimator for σ^2 is biased!

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Maximum likelihood example 3: Cauchy distribution

Cauchy:
$$p(x) = \frac{1/(\pi\gamma)}{1 + (x - \mu)^2/\gamma^2}$$

• For 8 measurements, maximise:

$$L = \prod_i \frac{1/(\pi\gamma)}{1 + (x_i - \mu)^2/\gamma^2}$$

- Solving derivative for $\hat{\mu}$ gives complicated polynomial \rightarrow solve numerically instead
- A bit better than the median estimator

Uncertainty of the ML estimator: Approximating the minimum variance bound

In many cases it is impractical to calculate the MVB analytically. Instead, one uses the following approximation which is good for large *n*:

$$E\left[-\frac{\partial^2 \ln L}{\partial^2 \theta}\right] \approx -\frac{\partial^2 \ln L}{\partial^2 \theta}\Big|_{\theta=\hat{\theta}}$$

The variance of the ML estimator is given by: $V[\hat{\theta}] = -\frac{1}{2^{2}\ln t}$

Example: Exponential decay

$$\frac{\partial^2 \ln L(\tau)}{\partial^2 \tau} = \sum_{i=1}^n \left(\frac{1}{\tau^2} - 2\frac{t_i}{\tau^3} \right) = V[\hat{\tau}] = -\left(\frac{\partial^2 \ln L}{\partial^2 \theta} \right)_{\tau=\hat{\tau}}^{-1} = \frac{\hat{\tau}^2}{n}$$

$$\frac{1}{\frac{\partial^2 \ln L}{\partial^2 \theta}}\Big|_{\theta = \hat{\theta}}$$

$$= \frac{n}{\tau^2} - \frac{2}{\tau^3} \sum_{i=1}^{n} t_i = \frac{n}{\tau^2} \left(1 - \frac{2\hat{\tau}}{\tau} \right)$$

Maximum likelihood uncertainty

Consider maximum likelihood estimate of a parameter θ . Methods to estimate Uncertainty of θ :

1. $\sigma_{\hat{\theta}}$ from Monte Carlo

Generate pseudo-data by sampling the assumed distribution using the ML estimate $\hat{\theta}$ as parameter

2. Use minimum variance bound

$$\sigma_{\hat{\theta}} = \frac{1}{\sqrt{-2}}$$
3. $\Delta \ln L = -\frac{1}{2}$ method:

 $\ln L(\hat{\theta} \pm \sigma)$

For a Gaussian likelihood function all methods agree. Method 3 usually gives asymmetric uncertainties (which are messy).

$$\frac{1}{\frac{\partial^2}{\partial^2\theta}\ln L(\theta)}$$

$$=\ln L(\hat{\theta})-rac{1}{2}$$

Asymptotic normality of the likelihood function

For any probability function $f(x; \theta)$ the likelihood function L approaches a ML estimator reaches the minimum variance bound.

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

Gaussian for large n, i.e., for a large number of events, and the variance of the

Uncertainty of the ML estimator: $\Delta \ln L = -1/2$ method

Taylor expansion of In *L* around the maximum:

$$\ln L(\theta) = \ln L(\hat{\theta}) + \underbrace{\left[\frac{\partial \ln L}{\partial \theta}\right]_{\theta=\hat{\theta}}}_{=0} (\theta)$$

If $L(\theta)$ is approximately Gaussian (In $L(\theta)$ then is a approximately a parabola):

$$\ln L(heta) pprox \ln L_{ ext{max}}$$
 -

One can then estimate the uncertainties from the points where $\ln L$ has dropped by 1/2 from its maximum:

 $\ln L(\hat{\theta} \pm \hat{\sigma}_{\hat{\theta}})$

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

good approximation in the large sample limit

$$)pprox \ln L_{
m max} - rac{1}{2}$$

Illustration of the $\Delta \ln L = -1/2$ method

L is Gaussian \leftrightarrow

ln L is a parabola

Averaging measurements with Gaussian uncertainties

pdf for measurement (same mean, different σ):

$$f(x;\mu,\sigma_i^2) = \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{(x-\mu)^2}{2\sigma_i^2}} \qquad \ln L(\mu) = \sum_{i=1}^n \left(\ln \frac{1}{\sqrt{2\pi}} - \ln \sigma_i - \frac{(x_i-\mu)^2}{2\sigma_i^2} \right)$$

Weighted average = ML estimate

$$\frac{\partial \ln L(\mu)}{\partial \mu}\Big|_{\mu=\hat{\mu}} = \sum_{i=1}^{n} \frac{x_i - \hat{\mu}}{\sigma_i^2} \stackrel{!}{=} 0 \qquad \Rightarrow \qquad \hat{\mu} = \frac{\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}}$$

Uncertainty? In this case L is Gaussian and we can write it as

$$L(\mu) \propto e^{-rac{(\mu-\hat{\mu})^2}{2\sigma_{\hat{\mu}}^2}}$$

We obtain the formula for the weighted average:

$$\hat{\mu} = \frac{\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}}$$

with
$$\sigma_{\hat{\mu}}^2 = rac{1}{\sum_i rac{1}{\sigma_i^2}}$$

$$\frac{1}{1} \frac{\frac{\pi_i}{\sigma_i^2}}{\frac{1}{1} \frac{1}{\sigma_i^2}} \quad \pm \quad \frac{1}{\sqrt{\sum_{i=1}^n \frac{1}{\sigma_i^2}}}$$

Minimum variance bound for *m* parameters

 $f(x; \vec{\theta}), \quad \vec{\theta} =$

Fisher information matrix $I(\vec{\theta})$ ($m \times m$ matrix):

$$I_{jk}[\vec{\theta}] = -E\left[\frac{\partial^2}{\partial \theta_j \partial \theta_k} \ln L(x, \vec{\theta})\right]$$

Covariance matrix of the parameters:

Cramér-Rao-Frechet bound for an unl positive-semidefinite matrix.

In particular one obtained for the variance:

 $V[\hat{ heta}_j]$

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

$$= (\theta_1, \theta_2, ..., \theta_m)$$

$$V_{ij} := \operatorname{cov}[\theta_i, \theta_j]$$

Cramér-Rao-Frechet bound for an unbiased estimator then states that $V - I^{-1}$ is a

$$\geq (I(ec{ heta})^{-1})_{jj}$$

Variance of the ML estimator for *m* parameters

For any probability function $f(x; \vec{\theta})$ the likelihood function L approaches a multi-variate Gaussian for large n

$$L(\vec{ heta}) \propto e^{-\frac{1}{2}(\vec{ heta} - \hat{ec{ heta}})^{\mathsf{T}} V^{-1}[\hat{ec{ heta}}](\vec{ heta} - \hat{ec{ heta}})}$$

The variance of the ML estimator then reaches the MVB:

Covariance matrix of the estimated parameters:

$$\mathcal{I}[\hat{\vec{ heta}}] \approx \left[-\frac{\partial^2}{\partial t}\right]$$

Standard deviation of a single parameters:

$$\hat{\sigma}_{\hat{ heta}_j} =$$

$$\sqrt{(V[\hat{ec{ heta}}])_{jj}}$$

Scattering angle distribution, $x = \cos \theta$:

Normalization:

$$\int_{x_{\min}}^{x_{\max}} f(x; a, b) dx$$

Numerical minimization with MINUIT:

$$\hat{a} = 0.53 \pm 0.08$$

 $\hat{b} = 0.51 \pm 0.16$
 $\mathrm{cov}[\hat{a}, \hat{b}] = 0.006$
 $ho = 0.48$

Uncertainties and covariance from inverse of Hessian matrix *H*:

$$\widehat{V} = -H^{-1}, \ (H)_{ij} = \left. \frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j} \right|_{\vec{\theta} = \hat{\vec{\theta}}}$$

Example: Two-parameter ML fit (from Cowan's book) $f(x; a, b) = \frac{1 + ax + bx^2}{2 + 2b/3}$ = 1

Example: a = 0.5, b = 0.5; $x_{min} = -0.95$, $x_{max} = 0.95$, 1000 MC events

[link to jupyter notebook]

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

Example: Two-parameter ML fit (iminuit)

import numpy as np import matplotlib.pyplot as plt from iminuit import Minuit

x = np.loadtxt("data.txt")

```
def f(x, a, b):
   """normalized fit function"""
   xmin = -0.95
   xmax = 0.95
    return (6 * (1 + a * x + b * x * x)) /
           ((xmax - xmin) * (3 * a * (xmax + xmin) +
```

def negative_log_likelihood(a, b): p = np.log(f(x, a, b))return -np.sum(p)

m = Minuit(negative_log_likelihood,

m.migrad()

Example: Two-Parameter ML Fit (iminuit)

m.	mig	rad	()	
----	-----	-----	---	---	--

							-	
		46 total)	= 10 (14	Ncall	6.5	CN = 60	F	
		up = 0.5			oal: 0.0001)	3e-10 (G)M = 1.33	EC
		call limit	eached	Above EDM	Valid Param.	vin.	Valid N	
		False		False	True	rue	Т	
		Forced	os. def.	Accurate F	Has cov.	iled	Hesse fa	
		False	True	True	True	alse	Fa	
Limit+ Fixe	Limit-	Error+	Minos	Minos Error	Hesse Error	Value	Name	
					0.08	0.53	а	0
					0.16	0.51	b	1

https://iminuit.readthedocs.io/en/stable/

https://nbviewer.jupyter.org/github/scikit-hep/iminuit/blob/master/tutorial/basic_tutorial.ipynb

Example: Two-Parameter ML Fit (iminuit)

Extended maximum likelihood method (1)

Standard ML fit: information is in the shape of the distribution of the data x_i .

Extended ML fit: normalization becomes a fit parameter

Sometimes the number of observed events contains information about the parameters of interest, e.g., when we measure a rate.

Normal ML method:

Extended ML method:

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

$\int f(x,\vec{\theta}) \, \mathrm{d}x = 1$

$q(x, \vec{\theta}) dx = \nu(\vec{\theta}) =$ predicted number of events

Extended maximum likelihood method (2)

Normalized pdf:

Likelihood function:

$$L(\vec{\theta}) = \frac{\nu^n e^{-\nu}}{n!} \prod_{i=1}^n f(x_i; \vec{\theta}) \qquad \text{where} \quad \nu \equiv \nu(\vec{\theta})$$

Log-Likelihood function:

$$\ln L(\vec{\theta}) = -\ln(n!) - \nu(\vec{\theta}) + \sum_{i=1}^{n} \ln[f(x_i; \vec{\theta})\nu(\vec{\theta})]$$

In(*n*!) does not depend on the parameters. So we need to minimize:

$$-\ln \tilde{L}(\vec{\theta}) = \nu(\vec{\theta}) - \sum_{i=1}^{n} \ln[f(x_i; \vec{\theta})\nu(\vec{\theta})]$$

prediction for total number of events

$$\int f(x,\vec{\theta}) \, \mathrm{d}x = 1$$

Application of the extended ML method: Linear combination of signal and background PDF (1)

Two-component fit (signal + linear background)

Parameters:

- signal counts s
- background counts b
- linear background (slope, intercept)
- Gaussian peak: μ , σ

Normalized pdf:

$$f(x; r, \vec{\theta}) = r f_s(x, \vec{\theta}) + (1 - r) f_b(x, \vec{\theta})$$

negative log-likelihood:

$$-\ln \widetilde{L}(ec{ heta}) = s + b - n\ln(s+b) - \sum_{i=1}^{n} \ln[f(x_i;ec{ heta})]$$
 $u(s,b) = s + b, \quad r = rac{s}{s+b}$

Unbinned ML fit works fine also in case of low statistics

Application of the extended ML method: Linear combination of signal and background PDF (2)

Discussion:

We could have just fitted the normalized pdf:

 $f(x; r_s, \vec{\theta}) = r f_s$

Good estimate of the number of signal events: $n_{\rm signal} = r n$

events (ignores fluctuations of *n*)

[C. Blocker, Maximum Likelihood Primer]

(Trivial) example (L. Lyons): 96 protons and 4 heavy nuclei have been measured in a cosmic ray experiment

ML

Exte

$$(x, \vec{\theta}) + (1 - r) f_b(x, \vec{\theta})$$

However, $\sigma_r n$ is not a good estimate of the variation of the number of signal

	protons	heavy nuclei	
estimate	96 ± 2	4 ± 2	-
ended ML estimate	96 ± 10	4 ± 2	-

Maximum likelihood fits with binned data (1)

Common practice: data put into a hist

Model prediction for the expected counts in bin *i* for fixed *n*_{tot}:

$$\nu_i(\vec{\theta}) = n_{\text{tot}} \int_{\text{bin } i} f(x; \vec{\theta}) \, \mathrm{d}x \qquad \nu_i(\vec{\theta}) = (\nu_1, \dots, \nu_k)$$

If n_{tot} is fixed the probability to get a certain \vec{n} s given by the multinomial distribution.

Multinomial distribution (generalization

 \rightarrow k different possible outcomes, prob

$$f(\vec{n}; n_{\text{tot}}, \vec{p}) = \frac{n_{\text{tot}}!}{n_1! \cdot \ldots \cdot n_k!} p_1^{n_1} \cdot$$

cogram:
$$\vec{n} = (n_1, ..., n_k), n_{tot} = \sum_{i=1}^k n_i$$

h of binomial distribution):
bability for outcome *i* is
$$p_i$$
, $\sum_{i=1}^k p_i =$

$$\ldots \cdot p_k^{n_k} \qquad \vec{p} = (p_1, \ldots, p_k)$$

Maximum likelihood fits with binned Data (2)

With $p_i = v_i/n_{tot}$ we write the likelihood of a certain n_1, \ldots, n_k outcome as:

$$L(\vec{\theta}) = \frac{n_{\text{tot}}!}{n_1! \cdot \ldots \cdot n_k!} \left(\frac{\nu_1}{n_{\text{tot}}}\right)^{n_1}$$

Log-likelihood function:

 $\ln L(\vec{\theta}) = \sum_{i=1}^{n}$

Limit of zero bin width \rightarrow usual unbinned maximum likelihood method

$$\frac{\nu_{k}}{\dots \cdot \left(\frac{\nu_{k}}{n_{\text{tot}}}\right)^{n_{k}}} \qquad \nu_{i}(\vec{\theta}) = (\nu_{1}, \dots, \nu_{k})$$

$$\sum_{i=1}^{k} n_i \ln \nu_i(\vec{\theta}) + C$$

Maximum likelihood fits with binned Data (3)

Extended log-likelihood fit for binned data:

*n*_{tot} fluctuates, predicted average:

Likelihood function:

$$L(\vec{\theta}) = \frac{\nu_{\text{tot}}^{n_{\text{tot}}}}{n_{\text{tot}}!} e^{-\nu_{\text{tot}}} \frac{n_{\text{tot}}!}{n_1! \cdot \dots \cdot n_k!} \left(\frac{\nu_1}{\nu_{\text{tot}}}\right)^{n_1} \cdot \dots \cdot \left(\frac{\nu_k}{\nu_{\text{tot}}}\right)^{n_k}$$
$$= \prod_{i=1}^k \frac{\nu_i^{n_i}}{n_i!} e^{-\nu_i}$$

Function that needs to be maximized (dropping terms that do not depend on the parameters):

$$\ln L(\vec{\theta}) = \sum_{i=1}^{k} n_i \ln \nu_i - \nu_i = -\nu_{tot} + \sum_{i=1}^{k} n_i \ln \nu_i, \qquad \nu_i(\vec{\theta}) = (\nu_1, ..., \nu_k)$$

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

$$v_{\text{tot}} \qquad \nu_{\text{tot}} = \sum_{i=1}^{k} \nu_i, \quad n_{\text{tot}} = \sum_{i=1}^{k} n_i$$

Maximum likelihood fits with binned Data (4)

- of the number of particles in each bin ν_i
- described by Poisson distribution

Poisson: $p(n_i | \nu_i) = \frac{\nu_i^{n_i} \exp(-\nu_i)}{n_i!}$ for each bin So the likelihood is $L = \prod \frac{\nu_i^{n_i} \exp(-\nu_i)}{n_i!}$ And the log-likelihood is $\log L = \sum n_i \log \nu_i - \nu_i$

Can also be understood with Poisson distribution: There is an expectation value

When repeating the experiment, the counts of particles in each bin fluctuate as

The likelihood principle

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

The likelihood $L(\vec{\theta} \mid \vec{d})$ contains all information in the data \vec{d} that is relevant for the parameters $\vec{\theta}$ within the context of this model.

Optional stopping

- Option 1: Perform an experiment N times and count number of successes
- Option 2: Perform the experiment until k successes are reached
- Probability distribution is different
- But likelihoods are the same (apart from constant prefactors)
- Do we draw the same conclusions?
- If we think the experimenter used one rule, but later find they used another, does this change our conclusions for the same data?

Binomial:
$$p_b(k | N, \phi) = \binom{N}{k} \phi^k (1 - \phi)^{N-k}$$

Negative Binomial:

(m = N - k)

 $p_b(m \mid k, \phi) = \binom{m+k-1}{m} \phi^k (1-\phi)^m$

Example

- Measurements were made by a student on a voltmeter going to 10V
- All measurements below
- Average gives unbiased estimator of some quantity
- But since there is a maximum, suddenly the measurement is biased
- Should this affect the conclusions even if the value was never reached?
- What if there was a second voltmeter that could be used in such cases?
- What if afterwards you find out that the second voltmeter was broken?

Birnbaums argument

Consider two possible experiments. We now flip a coin to decide which one we perform. The result of our analysis can only depend on the experiment we actually did, not the potential other one.

