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Reminder: Evaluating Estimator Performance
Consistency: 
■ Does the estimate converge to the true value? 

 

Bias: 
■ Does the average of many measurements converge 

towards the true value? Otherwise: bias  
 

Efficiency: 
■ How small is the uncertainty for a given amount of data 

and how fast does it decrease with ? 
Robustness: 
■ Does the estimator still work if we are slightly wrong 

about the assumptions of the data (e.g. in the presence 
of rare outliers)?

lim
n→∞

̂θ = θ

b
E[ ̂θ] = θ
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Example: Estimators for the lifetime of a particle

http://www.terascale.de/e149980/index_eng.html

Estimator Consistent? Unbiased? E�cient?

⌧̂ = t1+t2+...+tn
n yes yes yes

⌧̂ = t1+t2+...+tn
n�1 yes no no

⌧̂ = t1 no yes no
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Drawing random numbers from a uniform distribution

■ Draw  numbers from an even distribution between  and  

■ The MVUE is , where  is the largest number in the 
sample 

■ The variance of the estimator is 

k 1 N

N̂ = (1 + k−1)m − 1 m

V[N̂] ≈
N2

k2

3

■ Known as the German tank problem 
■ How to estimate the total number of produced 

units from the serial numbers of a few 
investigated ones?

https://en.wikipedia.org/wiki/German_tank_problem
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R. Ruggles and H. Brodie,  An Empirical Approach 
to Economic Intelligence in World War II  
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The end of the world
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The doomsday argument

■ Make  the total number of humans that have been and will ever been born 
■ Now number them consecutively by date of birth 
■ You are one random sample from this distribution ( ) 

■

N

m

N̂ = (1 + k−1)m − 1

6

■  is about 100b. So we can estimate that around 200b people will ever exist 

■ Simple argument: If you are randomly one of all people who are ever born, then 
you are likely somewhere in the middle of the numbered list (and unlikely to be 
near the beginning or the end)

m
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Unbiased estimators for mean and variance

7

Estimator for the mean: µ̂ =
1

n

nX

i=1

xi

Unbiased estimator for the 
variance: s2 := �̂2 =

1

n � 1

nX

i=1

(xi � x̄)2

Consider n independent and identically distributed measurements xi drawn 
from a distribution with mean μ and standard deviation σ:

V[µ̂] = V[
1

n

X

i

xi ] =
1

n2
V[
X

i

xi ] =
1

n
V[x ] =

�2

n
, i.e., �µ̂ =

�p
n

E[µ̂] =
1

n
E[
X

i

xi ] =
1

n

X

i

E[xi ] = µ →  estimator is unbiased
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Unbiased estimator of the variance: Derivation (1)

8

Consider n independent and identically distributed random variables xi:

We'll use:

�2 = E [x2i ]� µ2  E [x2i ] = µ2 + �2

nX

i=1

(xi � x̄)2 =
nX

i=1

x2i � 2xi x̄ + x̄2 =

 
nX

i=1

x2i

!
� nx̄2

E [
nX

i=1

(xi � x̄)2] = E [
nX

i=1

x2i ]� E [nx̄2] = n(µ2 + �2)� �2 � nµ2 = (n � 1)�2

Now we calculate the expectation value of                         : 
Pn

i=1(xi � x̄)2

µ := E [xi ], �2 := V [xi ], x̄ :=
1

n

nX

i=1

xi

V [x̄ ] =
1

n2
V [

nX

i=1

xi ] =
1

n
V [xi ] =

�2

n
!
= E [x̄2]� µ2  E [x̄2] =

�2

n
+ µ2
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Unbiased estimator of the variance: Derivation (2)

9

This means that 

s2 :=
1

n � 1

nX

i=1

(xi � x̄)2

is an unbiased estimator of the variance, i.e.,                  .E [s2] = �2

Multiplying the sample variance by n/(n–1) is known as Bessel's correction.

Note that s is not an unbiased estimator of the standard deviation:
https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation

Unbiased estimator for the standard deviation for the normal distribution ( ):E[ ̂σ] = σ
Rule of thumb:

�̂ ⇡

vuut 1

n � 1.5

nX

i=1

(xi � x)2�̂ = c4(n)
p
s2, c4(n) =

r
2

n � 1

�( n2 )

�( n�1
2 )

= 1� 1

4n
� 7

32n2
+ ...,

https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
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Reminder: Probability of the data  likelihood⇄

■  is the probability distribution of the data for different parameters 

■ When considered as a function of  instead, it is called the likelihood 

■ Often called  or  with 

p( ⃗d | ⃗θ)

⃗θ

ℒ L ℒ( ⃗θ | ⃗d) ≡ p( ⃗d | ⃗θ)
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Likelihood function is not a probability density function

The integral of  with respect to the parameter is not necessarily equal 
to unity (  might not be integrable at all). 
 
This is why  is not a probability density function. 

L( ⃗x, ⃗θ)
L( ⃗x, ⃗θ)

L( ⃗x, ⃗θ)

11

Example: exponential decay, one measurement at t = 1h.

L(⌧) =
1

⌧
e�t/⌧ ⇡ 1

⌧
as ⌧ ! 1,

Z 1

0
L(⌧) d⌧ not defined

Note: With Jeffreys' prior 1/τ the posterior L(τ) π(τ) is normalizable.
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How much do we learn from a result?

■ For Bayes: 
‣ Narrower posterior distribution means more 

knowledge 
‣ Happens when likelihood distribution is 

narrow 
■ Generally: Narrower likelihood distributions 

contain more information 
■ For large statistics, likelihood becomes 

Gaussian,  becomes parabola 

■  relates to width 

■ For frequentist approach, interested in 
fluctuations when experiment is repeated 

■  is thus a measure for the 
information content (evaluated at the true )

log L
∂2

θ log L(θ)

E[−∂2
θ log L(θ)]

θ
Likelihood for binomial distribution
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The Fisher Information Matrix

 

is called the Fisher Information 
■ It is larger for narrower likelihood distributions and fulfils 

, 
which is what we want from an information measure. 

■ For more than one parameter  this generalises to 

, 

the Fisher Information Matrix.

𝕀(θ) = E[−∂2
θ log L(θ)] = E[(∂θ log L(θ))2]

𝕀1+2 = 𝕀1 + 𝕀2

(θ1, …, θn)

𝕀i,j = E[−∂i∂j log L( ⃗θ)] = E[(∂i log L( ⃗θ)) (∂j log L( ⃗θ))]
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Minimum Variance Bound

■ Consider an unbiased estimator: 

 

■ What can we learn about the variance of the estimator? 

■ Use  

1.  

2.  

and thus 

⟨ ̂θ⟩ = E[ ̂θ] = ∫ ̂θ(x) p(x |θ) dx = ∫ ̂θ(x) L(θ |x) dx = θ

d log L
dθ

=
dL
dθ

1
L

∫ L dx = 1 ⟹ ∫
dL
dθ

dx = 0 ⟹ ∫ θ
d log L

dθ
L dx = 0

∫ ̂θ L dx = θ ⟹ ∫ ̂θ
dL
dθ

dx = ∫ ̂θ
d log L

dθ
L dx = 1

∫ ( ̂θ − θ)
d log L

dθ
L dx = ⟨( ̂θ − θ)

d log L
dθ

⟩ = 1

14
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Minimum Variance Bound (II)

 

with  and , we can now use the Cauchy-Schwarz 

inequality: 

 , or 

 

■ This is the Cramér-Rao minimum variance bound 
■ No unbiased estimator can be better than this

∫ ( ̂θ − θ)
d log L

dθ
L dx = ⟨( ̂θ − θ)

d log L
dθ

⟩ = 1

u = ( ̂θ − θ) L v =
d log L

dθ
L

(∫ ( ̂θ − θ)2L dx) (∫ ( d log L
dθ )

2

L dx) ≥ 1

V[ ̂θ] ≥
1

⟨(d log L/dθ)2⟩
=

1
𝕀[θ]

15

Cauchy-Schwarz inequality: 

∫ u2dx∫ v2dx ≥ (∫ uv dx)
2
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Likelihood function and maximum likelihood

16

Principle of maximum likelihood: 
■ The best estimate of the parameters  is that value which maximizes the 

likelihood function 
■ This is called the maximum likelihood estimator 

In the limit of infinite statistics, the maximum likelihood estimator: 
■ Is unbiased 
■ Achieves the Cramer-Rao bound (meaning it is maximally efficient) 

■ In most practical cases it is thus prudent to simply take the maximum likelihood 
estimator, rather than look for a MVUE

⃗θ
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Properties of the ML estimator

■ The ML Estimator is invariant under parameter transformation: 

■ ML does not provide a goodness-of-fit measure 
■ It tells you which parameter set fits best with the data 
■ It does not tell you if it fits well in an absolute sense (no goodness-of-fit 

measure) 

■ Sometimes the maximum has to be found numerically

17

 = g(✓) )  ̂ = g(✓̂)
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Maximum likelihood example 1: Exponential Decay

18

Consider exponential pdf: f (t; ⌧) =
1

⌧
e�t/⌧

Independent measurements drawn from this distribution: t1, t2, ..., tn

Likelihood function: L(⌧) =
nY

i=1

1

⌧
e�ti/⌧

L(τ) is maximum when ln L(τ) is maximum:

@ ln L(⌧)

@⌧
= 0  

nX

i=1

✓
�1

⌧
+

ti
⌧ 2

◆
= 0  ⌧̂ =

1

n

nX

i=1

ti

Find maximum:

ln L(⌧) =
nX

i=1

ln f (ti ; ⌧) =
nX

i=1

✓
ln

1

⌧
� ti

⌧

◆
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MVB example: Exponential decay

19

@2 ln L(⌧)

@2⌧
=

nX

i=1

✓
1

⌧ 2
� 2

ti
⌧ 3

◆
=

n

⌧ 2
� 2

⌧ 3

nX

i=1

ti =
n

⌧ 2

✓
1� 2⌧̂

⌧

◆

V [⌧̂ ] � 1

E
⇥
� n

⌧ 2

�
1� 2⌧̂

⌧

�⇤ =
1

� n
⌧ 2

⇣
1� 2E [⌧̂ ]

⌧

⌘ =
⌧ 2

n

Minimum variance bound (MVB):

Variance of ML estimator:

̂τ =
1
n

n

∑
i=1

ti V[ ̂τ] = V [ 1
n

n

∑
i=1

ti] =
1
n2

n

∑
i=1

V[ti] =
τ2

n

So  reaches the MVB for any .̂τ n
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Maximum likelihood example 2: Gaussian (I)

20

Consider x1, x2, …, xn drawn from Gaussian(μ, σ2)

Log-likelihood function:

ln L(µ,�2) =
nX

i=1

ln f (xi ;µ,�
2) =

nX

i=1

✓
ln

1p
2⇡

� ln� � (xi � µ) 2

2�2

◆

Derivatives w.r.t. μ and σ2: 

@ ln L(µ,�2)

@µ
=

nX

i=1

xi � µ

�2

@ ln L(µ,�2)

@�2
=

nX

i=1

✓
(xi � µ) 2

2�4
� 1

2�2

◆

f (x ;µ,�2) =
1p
2⇡�

e�
(x�µ)2

2�2
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Maximum likelihood example 2: Gaussian (II)

21

Setting the derivatives w.r.t. μ and σ2 to zero and solving the equations: 

µ̂ =
1

n

nX

i=1

xi , c�2 =
1

n

nX

i=1

(xi � µ̂)2

We find that the ML estimator for σ2 is biased!
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Maximum likelihood example 3: Cauchy distribution

Cauchy:  

■ For 8 measurements, maximise: 

 

■ Solving derivative for  gives complicated polynomial  
solve numerically instead 

■ A bit better than the median estimator

p(x) =
1/(πγ)

1 + (x − μ)2/γ2

L = ∏
i

1/(πγ)
1 + (xi − μ)2/γ2

̂μ →

22
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Uncertainty of the ML estimator:  
Approximating the minimum variance bound

23

In many cases it is impractical to calculate the MVB analytically. Instead, one 
uses the following approximation which is good for large n:

E


�@2 ln L

@2✓

�
⇡ �@2 ln L

@2✓

����
✓=✓̂

The variance of the ML estimator is given by: 

V [✓̂] = � 1
@2 ln L
@2✓

���
✓=✓̂

Example: Exponential decay

@2 ln L(⌧)

@2⌧
=

nX

i=1

✓
1

⌧ 2
� 2

ti
⌧ 3

◆
=

n

⌧ 2
� 2

⌧ 3

nX

i=1

ti =
n

⌧ 2

✓
1� 2⌧̂

⌧

◆

V [⌧̂ ] = �
✓
@2 ln L

@2✓

◆�1

⌧=⌧̂

=
⌧̂ 2

n
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Maximum likelihood uncertainty
Consider maximum likelihood estimate of a parameter θ. Methods to estimate 
Uncertainty of θ: 

1.  from Monte Carlo 
Generate pseudo-data by sampling the assumed distribution using the ML 
estimate  as parameter 

2. Use minimum variance bound 
 
 

3.  method:

σ ̂θ

̂θ

Δ ln L = − 1/2

24

ln L(✓̂ ± �) = ln L(✓̂)� 1

2

For a Gaussian likelihood function all methods agree. 
Method 3 usually gives asymmetric uncertainties (which are messy).

�✓̂ =
1q

� @2

@2✓ ln L(✓)
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Asymptotic normality of the likelihood function

25

1.0 1.5 2.0 2.5 3.0
τ

-16.5

-16.0

-15.5

-15.0

ln L(τ)

1.0 1.5 2.0 2.5 3.0
τ-863.0

-862.5

-862.0

-861.5

-861.0

ln L(τ)
10 data points 500 data points

quadratic approximation of 
ln L(τ) is not very good

quadratic approximation of 
ln L(τ) is excellent

Quadratic 
approximation 
of ln L(τ)

Data points sampled from f (t; ⌧) =
1

⌧
e�t/⌧  with ⌧ = 2

For any probability function   the likelihood function L approaches a 
Gaussian for large n, i.e., for a large number of events, and the variance of the 
ML estimator reaches the minimum variance bound.

f(x; θ)
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Uncertainty of the ML estimator:  
 methodΔ ln L = − 1/2

26

ln L(✓) = ln L(✓̂) +


@ ln L

@✓

�

✓=✓̂

(✓ � ✓̂)

| {z }
=0

+
1

2!


@2 ln L

@2✓

�

✓=✓̂

(✓ � ✓̂)2 + ...

ln L(✓) ⇡ ln Lmax �
(✓ � ✓̂)2

2c�2
✓̂

ln L(✓̂ ± �̂✓̂) ⇡ ln Lmax �
1

2

Taylor expansion of ln L around the maximum:

If L(θ) is approximately Gaussian (ln L(θ) then is a approximately a parabola):

One can then estimate the uncertainties from the points where ln L has 
dropped by 1/2 from its maximum:

� 1

�2

[from MVB, 
or from assuming 
Gaussian shape]

good approximation in 
the large sample limit
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Illustration of the  methodΔ ln L = − 1/2

27

L is Gaussian    ⟷    ln L is a parabola

C. Pruneau, Data Analysis Techniques for the Physical Scientist
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Averaging measurements with Gaussian uncertainties

28

f (x ;µ,�2
i ) =

1p
2⇡�i

e
� (x�µ)2

2�2
i ln L(µ) =

nX

i=1

✓
ln

1p
2⇡

� ln�i �
(xi � µ) 2

2�2
i

◆
pdf for measurement (same mean, different σ):

Weighted average = ML estimate

@ ln L(µ)

@µ

����
µ=µ̂

=
nX

i=1

xi � µ̂

�2
i

!
= 0 ) µ̂ =

Pn
i=1

xi
�2
iPn

i=1
1
�2
i

Uncertainty? In this case L is Gaussian and we can write it as

L(µ) / e
� (µ�µ̂)2

2�2
µ̂ with �2

µ̂ =
1P
i

1
�2
i

We obtain the formula for the weighted average:

µ̂ =

Pn
i=1

xi
�2
iPn

i=1
1
�2
i

± 1qPn
i=1

1
�2
i



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 5. Maximum Likelihood Estimation

Minimum variance bound for m parameters

29

V [✓̂j ] � (I (~✓)�1)jj

f (x ; ~✓), ~✓ = (✓1, ✓2, ..., ✓m)

Cramér-Rao-Frechet bound for an unbiased estimator then states that  is a 
positive-semidefinite matrix.

V − I−1

Fisher information matrix  (m × m matrix):I( ⃗θ)

Ijk [~✓] = �E


@2

@✓j@✓k
ln L(x , ~✓)

�

Covariance matrix of the parameters: Vij := cov[✓i , ✓j ]

In particular one obtained for the variance:
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Variance of the ML estimator for m parameters

30

For any probability function            the likelihood function L approaches a 
multi-variate Gaussian for large n

f (x ; ~✓)

Covariance matrix of the estimated parameters:

Standard deviation of a single parameters:

The variance of the ML estimator then reaches the MVB:

V [
b~✓] ! I (~✓)�1

L(~✓) / e�
1
2 (
~✓�b~✓)T V�1[

b~✓] (~✓�b~✓)

V [
b~✓] ⇡

"
�@2 ln L(~x ; ~✓)

@2~✓

�����
~✓=

b~✓

#�1

�̂✓̂j
=

q
(V [

b~✓])jj

or equivalently:

(V�1[
b~✓])ij = � @2 ln L(~x ; ~✓)

@✓i@✓j

�����
~✓=

b~✓
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Example: Two-parameter ML fit (from Cowan's book)

31

f (x ; a, b) =
1 + ax + bx2

2 + 2b/3
Scattering angle distribution, x = cos θ:

Normalization:
Z xmax

xmin

f (x ; a, b) dx = 1

Example: a = 0.5, b = 0.5; xmin = �0.95, xmax = 0.95, 1000MC events

Numerical minimization with MINUIT: 

Uncertainties and covariance from 
inverse of Hessian matrix H:

â = 0.53± 0.08

b̂ = 0.51± 0.16

cov[â, b̂] = 0.006

⇢ = 0.48

histogram only 
for visual representation, 
full data set used in fit

bV = �H
�1, (H)ij =

@2 ln L

@✓i@✓j

����
~✓=~̂✓

[link to jupyter notebook]

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/ml_fit_example_iminuit.ipynb
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Example: Two-parameter ML fit (iminuit)

32

iminuit uses introspection to 
detect the parameter names 
of your function
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Example: Two-Parameter ML Fit (iminuit)

33

https://nbviewer.jupyter.org/github/scikit-hep/iminuit/blob/master/tutorial/basic_tutorial.ipynb
https://iminuit.readthedocs.io/en/stable/

https://nbviewer.jupyter.org/github/scikit-hep/iminuit/blob/master/tutorial/basic_tutorial.ipynb
https://iminuit.readthedocs.io/en/stable/
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Example: Two-Parameter ML Fit (iminuit)

34
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Extended maximum likelihood method (1)

35

Standard ML fit: information is in the shape of the distribution of the data xi.

Sometimes the number of observed events contains information 
about the parameters of interest, e.g., when we measure a rate.

Z
f (x , ~✓) dx = 1

Normal ML method:

Extended ML method:

Z
q(x , ~✓) dx = ⌫(~✓) = predicted number of events

Extended ML fit: normalization becomes a fit parameter
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Extended maximum likelihood method (2)

36

Z
f (x , ~✓) dx = 1

L(~✓) =
⌫ne�⌫

n!

nY

i=1

f (xi ; ~✓) where ⌫ ⌘ ⌫(~✓)

ln L(~✓) = � ln(n!)� ⌫(~✓) +
nX

i=1

ln[f (xi ; ~✓)⌫(~✓)]

� ln L̃(~✓) = ⌫(~✓)�
nX

i=1

ln[f (xi ; ~✓)⌫(~✓)]

Likelihood function:

Normalized pdf:

Log-Likelihood function:

ln(n!) does not depend on the parameters. So we need to minimize:

prediction for total 
number of events
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Application of the extended ML method: 
Linear combination of signal and background PDF (1)

37

Normalized pdf:

Two-component fit  
(signal + linear background)

Unbinned ML fit works fine also in case 
of low statistics

f (x ; r , ~✓) = r fs(x , ~✓) + (1� r) fb(x , ~✓)

� ln L̃(~✓) = s + b � n ln(s + b)�
nX

i=1

ln[f (xi ; ~✓)]

⌫(s, b) = s + b, r =
s

s + b

histogram only 
for visual 
representation 
(unbinned fit) Parameters: 

- signal counts s 
- background counts b 
- linear background (slope, intercept) 
- Gaussian peak: μ, σ

negative log-likelihood:
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Application of the extended ML method: 
Linear combination of signal and background PDF (2)

38

We could have just fitted the normalized pdf:

Discussion:

Good estimate of the number of signal events:

However,           is not a good estimate of the variation of the number of signal 
events (ignores fluctuations of n)
[C. Blocker, Maximum Likelihood Primer]

f (x ; rs , ~✓) = r fs(x , ~✓) + (1� r) fb(x , ~✓)

nsignal = r n

�r n

(Trivial) example (L. Lyons): 
96 protons and 4 heavy nuclei have 
been measured in a cosmic ray 
experiment

protons heavy nuclei 
nucleiML estimate 96 ± 2 4 ± 2  

Extended ML estimate 96 ± 10  4 ± 2  

http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Likelihood_primer.pdf
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Maximum likelihood fits with binned data (1)
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Common practice: data put into a histogram: ~n = (n1, ..., nk), ntot =
kX

i=1

ni

Model prediction for the expected counts in bin i for fixed ntot:

⌫i (~✓) = (⌫1, ..., ⌫k)

If ntot is fixed the probability to get a certain     is given by the 
multinomial distribution.

Multinomial distribution (generalization of binomial distribution):

→ k different possible outcomes, probability for outcome i is pi,  
kX

i=1

pi = 1

f (~n; ntot,~p) =
ntot!

n1! · ... · nk !
pn11 · ... · pnkk ~p = (p1, ..., pk)

~n

⌫i (~✓) = ntot

Z

bin i
f (x ; ~✓) dx
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Maximum likelihood fits with binned Data (2)
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⌫i (~✓) = (⌫1, ..., ⌫k)

With pi = νi/ntot we write the likelihood of a certain n1, …, nk outcome as:

L(~✓) =
ntot!

n1! · ... · nk !

✓
⌫1
ntot

◆n1

· ... ·
✓

⌫k
ntot

◆nk

Log-likelihood function:

ln L(~✓) =
kX

i=1

ni ln ⌫i (~✓) + C

Limit of zero bin width → usual unbinned maximum likelihood method
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Maximum likelihood fits with binned Data (3)
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Extended log-likelihood fit for binned data:

⌫tot =
kX

i=1

⌫i , ntot =
kX

i=1

nintot fluctuates, predicted average: νtot

Likelihood function:

L(~✓) =
⌫ntottot

ntot!
e�⌫tot

ntot!

n1! · ... · nk !

✓
⌫1
⌫tot

◆n1

· ... ·
✓

⌫k
⌫tot

◆nk

=
kY

i=1

⌫nii
ni !

e�⌫i

Function that needs to be maximized (dropping terms that do not 
depend on the parameters):

⌫i (~✓) = (⌫1, ..., ⌫k)ln L(~✓) =
kX

i=1

ni ln ⌫i � ⌫i = �⌫tot +
kX

i=1

ni ln ⌫i ,
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■ Can also be understood with Poisson distribution: There is an expectation value 
of the number of particles in each bin  

■ When repeating the experiment, the counts of particles in each bin fluctuate as 
described by Poisson distribution 

■ Poisson:  for each bin 

■ So the likelihood is  

■ And the log-likelihood is 

νi

p(ni |νi) =
νni

i exp(−νi)
ni!

L = ∏
νni

i exp(−νi)
ni!

log L = ∑ ni log νi − νi

42

Maximum likelihood fits with binned Data (4)
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The likelihood principle

The likelihood  contains all information in the data  that is relevant for the 
parameters  within the context of this model.

L( ⃗θ | ⃗d) ⃗d
⃗θ

43
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Optional stopping

■ Option 1: Perform an experiment N times 
and count number of successes 

■ Option 2: Perform the experiment until k 
successes are reached 

■ Probability distribution is different 
■ But likelihoods are the same (apart from 

constant prefactors) 
■ Do we draw the same conclusions? 

■ If we think the experimenter used one rule, 
but later find they used another, does this 
change our conclusions for the same data?

44

Binomial:  

Negative Binomial: 

 

pb(k |N, ϕ) = (N
k )ϕk(1 − ϕ)N−k

pb(m |k, ϕ) = (m + k − 1
m )ϕk(1 − ϕ)m

(m = N − k)
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Example

■ Measurements were made by a student 
on a voltmeter going to 10V 

■ All measurements below 
■ Average gives unbiased estimator of 

some quantity 
■ But since there is a maximum, suddenly 

the measurement is biased 
■ Should this affect the conclusions even if 

the value was never reached? 

■ What if there was a second voltmeter that 
could be used in such cases? 

■ What if afterwards you find out that the 
second voltmeter was broken?

45
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Birnbaums argument

Consider two possible experiments. We now flip a coin to decide which one we 
perform. The result of our analysis can only depend on the experiment we actually 
did, not the potential other one.

46
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