MVCMP-1 Bardeen – Josephson Debate

The Nobel Laureate Versus the Graduate Student

In a recent note, Josephson uses a somewhat similar formulation to discuss the possibility of superfluid flow across the tunneling region, in which no quasi-particles are created. However, as pointed out by the author [Bardeen, in a previous publication], pairing does not extend into the barrier, so that there can be no such superfluid flow.

Physics Today 54, 46-51 (2001)

10.4 Unconventional Superconductors

LaH₁₀ @ 188 GPa ^O.

Quantum states

SS 2023

MVCMP-1

		S	L
<i>s</i> -wave	conventional superconductors	0	0
<i>p</i> -wave	(Sr ₂ RuO ₄)	1	1
<i>d</i> -wave	cuprate high- $T_{\rm c}$ superconductors	0	2
<i>f</i> -wave	(UPt ₃)	1	3

energy gap $\Delta_{m{k}} = \Delta_0(T) f(\widehat{m{k}})$		nodes
conventional superconductors	isotropic	
cuprate high-T _c superconductors	2D	
Sr ₂ RuO ₄	axial 2D	
UPt ₃	3D	Ó
UBe ₁₃	axial 3D	

10.4 Unconventional Superconductors

4

cuprate high- T_c superconductors

discovered June 1986

SS 2023

MVCMP-1

Possible High T_c Superconductivity in the Ba – La – Cu – O System

J.G. Bednorz and K.A. Müller IBM Zürich Research Laboratory, Rüschlikon, Switzerland

Georg Bednorz

Karl Alexander Müller

APS March Meeting of 1987 The "Woodstock of Physics" Hilton Hotel New York

SS 2023 MVCMP-1 4

best investigated system: YBCO Yttrium barium copper oxide

important are the Cu-O planes — different phases depending on hole concentration introduced by oxygen surplus

structure

•	
Ва	
Cu	

$0 < \delta < 0.4$	insulator
$\delta \approx 0.4$	insulator-metal transition
$\delta > 0.4$	superconductor
$\delta = 0.92$	superconductor with $T_{\rm c}$ = 95 K

AF anti-ferromagnetic phase
PG pseudo gap
CDW charge density wave
SM strange metal
FL Fermi liquid phase

10.4 Unconventional Superconductors

superconducting transition

SS 2023

MVCMP-1

a) resistance

- resistivity depends on crystal direction
- in *c*-direction (perpendicular to CuO₂ planes) resistivity is much higher

b) specific heat

- second order phase transition
- rounded onset of transition caused by large fluctuation
 - indicates short coherence length

10.4 Unconventional Superconductors

4

Critical fields

SS 2023

MVCMP-1

$$B_{
m c1}=rac{\Phi_0}{4\pi\lambda_{
m L}^2}$$

- \blacktriangleright B_{c1} depends on crystal direction
- B_{c1} is very small at T = 0
 - \rightarrow $\lambda_{L} = 150 \text{ nm} \longrightarrow \text{ factor 10 larger as for Al}$
 - $ightarrow \lambda_{
 m L}^2 \propto 1/n_{
 m s} ~~$ factor 100 less Cooper pairs

$$B_{\rm c2} = \frac{\Phi_0}{2\pi\xi_{\rm GL}^2}$$

- \triangleright B_{c2} depends on crystal direction
- ► B_{c2} is very large at $T = 0 \longrightarrow B_{c2} > 800$ T for $B \parallel ab$
 - \rightarrow very short coherence length $\xi_{GL} = 1.5$ nm
- \longrightarrow $\lambda_{\rm L} \gg \xi_{
 m GL}$ \longrightarrow extreme type II superconductor

Experimental determination of *d*-wave nature of Cooper pairs inYBCO

flux quantization Josephson effect

SS 2023

MVCMP-1

a) flux quantization

normal geometry -- YBCO ring

- flux quantization measured with SQUID
- result: $\Phi_0 = h/2e$

Experimental determination of *d*-wave nature of Cooper pairs in YBCO

unconventional flux quantization

tri-crystalline rings

SS 2023

MVCMP-1

- ► YBCO film is grown epitaxially on SrTiO₃ substrate
- ► SrTiO₃ is suitably tailored having 3 crystal orientations
- YBCO is patterned by ion milling to produces rings
- rings are positioned that they contain grain boundaries
- macroscopic quantum states in different parts of the rings have different orientations
- the grain boundaries produce π junctions

0 or even number of π junctions $\Phi = n \Phi_0$

odd number of π junctions

 $\Phi = \left(n + \frac{1}{2} \right) \Phi_0 \quad \longrightarrow \quad \text{half-flux quantum}$

Experimental result

SS 2023

MVCMP-1

scanning SQUID microscopy

- rings with even number of π junctions show no flux
- ring in the middle with 3 π junctions shows spontaneous formation of half-flux quantum

11. Cooling Techniques

⁴He bath cryostat: glass dewar

⁴He Bath cryostat: metal dewar

helium transport vessel

helium transfer tube

Radiation shields – super insulation

multiple radiation shields \rightarrow smaller steps \rightarrow reduction of heat flow

30 to 80 layers of low conductivity high reflection material \rightarrow aluminized Mylar

apparent thermal conductivity $\sim 10^{-4}$ to 10^{-5} W/(m K)

Cryostats with 1-K-Pot

SS 2023

MVCMP-1

⁴He $L = 90 \text{ J mol}^{-1}$ ³He $L = 40 \text{ J mol}^{-1}$

Vapor pressure curve of various cryogenic liquids

Clausius-Clapeyron equation

vapor pressure curve

394

³He cryostats

cooling power $\dot{Q} = \dot{n}_{
m g} \, L \propto p \propto {
m e}^{-L/RT}$

Cooling power of a ³He cryostat with charcoal absorption pump

History

- 1951 basic idea suggested by Heinz London
- 1962 detailed concept worked out by London, Clark, Mendoza
- 1965 first realization Das, De Bruyn Ouboter, Taconis $T_{min} = 220 \text{ mK}$
- 1999 lowest temperature obtained , J.C. Cousins *et al.* $T_{min} = 1.75$ mK

Heinz London

occurrence of miscibility gap

but 6.5 % ³He in ⁴He at T = 0 K

reason:

zero-point motion weakens binding

but: Fermi energy

max. 6.5% ³He in ⁴He at T = 0 K

principal of cooling by mixing ³He/⁴He

- transition of ³He into the ⁴He rich phase
- cooling by "evaporation" of ³He into ⁴He quasi vacuum

heat of solubility per Mol:

$$\Delta Q = T\Delta S = aT^2$$

$$a = -84 \,\mathrm{J/K^2}$$

Realisation of ³He/⁴He cooling cycle

SS 2023

MVCMP-1

11.2 Dilution Refrigerators

Kapitza Resistance – thermal boundary resistance

Snell's law of refraction

$$\frac{\sin \alpha_\ell}{\sin \alpha_{\rm s}} = \frac{v_\ell}{v_{\rm s}}$$

critical angle of total reflection $\alpha_{\ell}^{c} = \arcsin\left(\frac{v_{\ell}}{v_{s}}\right)$

for liquid helium and copper $~~ lpha_\ell^{
m c} pprox 4^\circ$

fraction of phonons incident within critical angle

$$f = \frac{1}{2}\sin^2 \alpha_{\ell}^{c} = \frac{1}{2} \left(\frac{v_{\ell}}{v_{s}}\right)^2 < 10^{-2}$$

transmission coefficient

 $t = \frac{4Z_{\ell}Z_{\rm s}}{\left(Z_{\ell} + Z_{\rm s}\right)^2} \approx \frac{4Z_{\ell}}{Z_{\rm s}} = \frac{4\varrho_{\ell}v_{\ell}}{\varrho_{\rm s}v_{\rm s}}$ $\overbrace{Z_{\ell} = \varrho_{\ell}v_{\ell}} \sum Z_{\rm s} = \varrho_{\rm s}v_{\rm s} \quad \text{acoustic impedances}$

fraction of phonons crossing the interface

$$ft=rac{2arrho_\ell v_\ell^3}{arrho_{
m s} v_{
m s}^3}$$

- Kaptiza resistance occurs at any solidsolid, liquid-solid interface
- particular problematic for liquid helium because of the low sound velocity
- helium-copper $ft < 10^{-5}$

11.2 Dilution Refrigerators

silver sinter SEM image

Kapitza resistance between pure ³He and ³He/⁴He mixtures and silver sinters of different grain sizes

- ▶ $20 \,\mathrm{mK} < T < 100 \,\mathrm{mK}$ good agreement with Debye model $R_{\mathrm{K}} \propto T^{-3}$
- \blacktriangleright below 20 mK $R_{
 m K} \propto T^{-2}$ or $R_{
 m K} \propto T^{-1}$
 - → anomalous Kapitza resistance
 - origin: TLS, coupling to zero and second sound modes, phonon wavelength larger than sinter grains

heat flow from liquid to solid (using Debye model)

$$\dot{\mathcal{Q}} = \frac{1}{2} ftuv_{\ell} A = \frac{\pi^2 k_{\rm B}^4 \varrho_{\ell} v_{\ell}}{30\hbar^3 \varrho_{\rm s} v_{\rm s}^3} AT^4$$
$$\bigvee_{u = U/V = \pi^2 k_{\rm B}^4 T^4 / (30\hbar^3 v_{\ell}^3)$$

in equilibrium identical heat flow from solid to liquid

net flow in non-equilibrium (ΔT)

$$\dot{Q} = \frac{\mathrm{d}\dot{\mathcal{Q}}}{\mathrm{d}T} \Delta T = \frac{2\pi^2 k_{\mathrm{B}}^4 \varrho_\ell v_\ell}{15\hbar^3 \varrho_{\mathrm{s}} v_{\mathrm{s}}^3} A T^3 \Delta T$$

Kapitza resistance

$$R_{
m K} = rac{A\Delta T}{\dot{Q}} = rac{15\hbar^{3}arrho_{
m s} v_{
m s}^{3}}{2\pi^{2}k_{
m B}{}^{4}arrho_{\ell} v_{\ell}} \, rac{1}{T^{3}}$$

Cooling power

assuming 100% ³He circulation one finds in equilibrium:

$$\dot{Q}_{\rm mc} + \dot{N}_3 \left[H_3(T_{\rm ex}) - H_3(T_{\rm mc}) \right] = \dot{N}_3 \left[H_{3,\rm d}(T_{\rm mc}) - H_3(T_{\rm mc}) \right]$$

enthalpy

$$H = U + pV$$

circulation rate

heat leak and/or available cooling power

enthalpy of ³He-dilute phase

enthalpy of ³He-rich phase

mixing chamber temperature

temperature after last heat exchanger

inserting the enthalpies

$$\dot{Q}_{\rm mc} = \dot{N}_3 \left[H_{3,\rm d}(T_{\rm mc}) - H_3(T_{\rm ex}) \right]$$
$$= \dot{N}_3 \left(95 \, T_{\rm mc}^2 - 11 \, T_{\rm ex}^2 \right) \, \left(\frac{\rm J}{\rm mol \ K^2} \right)$$

Temperature and circulation rate dependence of the cooling power

limiting case of vanishing cooling power: $\dot{Q}_{
m mc}=0$

$$95 T_{\rm mc}^2 - 11 T_{\rm ex}^2 = 0$$

$$\frac{T_{\rm ex}}{T_{\rm mc}} = 2.8$$

 this underlines the importance of the heat exchanger quality

 \blacktriangleright for $\dot{Q}\gg\dot{Q}_{
m heat\ leak}$ \longrightarrow $\dot{Q}\propto T^2$, $\dot{Q}\propto\dot{N}_3$

heat leak determines lowest temperature

circulation rate