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Tunneling Experiments  - Normal Conductors
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S-I-N Junction, T = 0

One-particle representation

396 10 Superconductivity

More interesting results are obtained with a superconductor-insulator-
normal metal junction, often called a ‘SIN junction’. The energy-level diagram
for T = 0 is depicted in Fig. 10.39 using the ‘semiconductor representation’
(see Sect. 10.3.3). The energy gap of the superconductor prevents the flow of
quasiparticles through the barrier as long as V < ∆/e. As soon as the applied
voltage exceeds the critical voltage Vc = ∆/e, quasiparticles can cross the
barrier as indicated in Fig. 10.39b. A current is expected, steeply growing
with the voltage because of the rapidly rising number of quasiparticles that
are able to tunnel across the barrier into empty states.
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Fig. 10.39. Energy-level diagram for an SIN junction at absolute zero. (a) V < Vc,
no free states are available for tunneling quasiparticles, (b) V > Vc = eV , quasi-
particles tunnel from the superconductor to the normal conductor

At finite temperatures, the situation is slightly different. As discussed in
Sect. 10.3.3 and shown in Fig. 10.40, quasiparticles are thermally excited,
resulting in populated states above the gap, and empty states below. There-
fore, quasiparticles can tunnel through the barrier at voltages smaller than Vc

and a weak current is observed. The magnitude of the current depends on
the density of states and the occupation numbers. Since quasiparticles move
in both directions, the tunneling current I(V ) is expressed by

I(V ) = I0

∫
Ds(Ek)Dn(E + eV ) [f(E) − f(E + eV )] dE , (10.109)

where I0 is a constant depending on the geometry of the junction [492]. Of
course, this formulation is also valid for other types of junctions if the ap-
propriate densities of states are inserted. For SIN junctions, Dn(E) can be
replaced by Dn(EF), and f(E) by a step function. Carrying out the inte-
gration and differentiating with respect to the voltage, we obtain the simple
relation

dI/dV ∝ Ds(Ek = eV ) . (10.110)

VVc= Δ0/e 
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Fig. 10.39. Energy-level diagram for an SIN junction at absolute zero. (a) V < Vc,
no free states are available for tunneling quasiparticles, (b) V > Vc = eV , quasi-
particles tunnel from the superconductor to the normal conductor
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One-particle representation

10.3 Microscopic Theory of Superconductivity 397
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Fig. 10.40. Energy-level diagram for an
SIN junction at finite temperature. Occu-
pied states are represented by dark tinted
areas. The applied voltage V is smaller
than the critical voltage Vc

This result is remarkable. From the I–V characteristic of an SIN junction the
energy gap as well as the quasiparticle density of states can be deduced.

The expected current–voltage characteristics of an SIN junction at T = 0
are depicted by the full line in Fig. 10.41. The current is zero for voltages
smaller than Vc. It is followed by a steep rise at the critical voltage, reflecting
the singularity of the density of states at EF ± ∆. As mentioned above, at
finite temperatures a weak current (dashed-dotted line) is already expected
to flow at small applied voltages. At temperatures above Tc, the junction
behaves like an NIN junction, and exhibits ohmic properties as shown by the
dashed line. An example of the usefulness of this technique is the data that
was presented in Fig. 10.30. The density of states of the quasiparticles in lead
was determined with a Pb/MgO/Mg junction.
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Vc Fig. 10.41. Schematic I–V characteris-
tics of an SIN junction with the critical
voltage Vc. (a) T = 0, (b) 0 < T < Tc,
(c) T > Tc

As can directly be seen from Fig. 10.42a, the threshold voltage of SIS junc-
tions is given by eVc = (∆1 +∆2). As in SIN junctions, at finite temperatures
a current will flow because of the presence of excited quasiparticles. At the
voltage V = |∆2 − ∆1|/e, a maximum in the current is expected since the

S-I-N Junction, T ≠ 0

VΔ0/e 

I

T = 0

Δ/e T ≠ 0
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Two-particle representation

S-I-N Junction, T = 0

VVc= Δ0/e 

I

T = 0

V < Vc= Δ0/e 

V > Vc= Δ0/e 
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Two-particle representation

S-I-S Junction
398 10 Superconductivity
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Fig. 10.42. Energy-level diagram for an SIS junction. (a) At T = 0 current starts
to flow at eV = (∆1 + ∆2). (b) At T != 0, a current maximum is expected at
eV = (|∆2 − ∆1|)

poles of the density of states just face each other. This situation is depicted
in Fig. 10.42b. The voltage dependence of the quasiparticle current for su-
perconductors with the energy gaps ∆1 and ∆2 is schematically depicted in
Fig. 10.43a. Experimental results obtained with a Ta/TaO/Pb junction are
shown in Fig. 10.43b. As expected, a maximum of the tunneling current is
found at the voltage V = |∆Pb − ∆Ta|/e.

Finally, we add a short remark on phonon generation. As discussed, qua-
siparticles in the occupied band of superconductor 1 can tunnel in the empty
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Fig. 10.43. (a) Sketch of the voltage dependence of the current between two su-
perconductors at 0 < T < Tc. The dashed line represents the ohmic variation at
T > Tc. (b) I–V characteristics of a Ta/TaxOy/Pb junction at different tempera-
tures [493]
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Fig. 10.42. Energy-level diagram for an SIS junction. (a) At T = 0 current starts
to flow at eV = (∆1 + ∆2). (b) At T != 0, a current maximum is expected at
eV = (|∆2 − ∆1|)
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found at the voltage V = |∆Pb − ∆Ta|/e.
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Fig. 10.42. Energy-level diagram for an SIS junction. (a) At T = 0 current starts
to flow at eV = (∆1 + ∆2). (b) At T != 0, a current maximum is expected at
eV = (|∆2 − ∆1|)
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Two-particle representation

S-I-S Junction

398 10 Superconductivity
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Fig. 10.42. Energy-level diagram for an SIS junction. (a) At T = 0 current starts
to flow at eV = (∆1 + ∆2). (b) At T != 0, a current maximum is expected at
eV = (|∆2 − ∆1|)

poles of the density of states just face each other. This situation is depicted
in Fig. 10.42b. The voltage dependence of the quasiparticle current for su-
perconductors with the energy gaps ∆1 and ∆2 is schematically depicted in
Fig. 10.43a. Experimental results obtained with a Ta/TaO/Pb junction are
shown in Fig. 10.43b. As expected, a maximum of the tunneling current is
found at the voltage V = |∆Pb − ∆Ta|/e.

Finally, we add a short remark on phonon generation. As discussed, qua-
siparticles in the occupied band of superconductor 1 can tunnel in the empty
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Fig. 10.43. (a) Sketch of the voltage dependence of the current between two su-
perconductors at 0 < T < Tc. The dashed line represents the ohmic variation at
T > Tc. (b) I–V characteristics of a Ta/TaxOy/Pb junction at different tempera-
tures [493]



SS 2023
MVCMP-1

371

S-I-S Junction

398 10 Superconductivity

D(      )Ek

D(      )Ek

∆

sc1 sc2

eV

2 1

D(      )Ek

∆

D(      )Ek

sc1 sc2

eV2 1

Fig. 10.42. Energy-level diagram for an SIS junction. (a) At T = 0 current starts
to flow at eV = (∆1 + ∆2). (b) At T != 0, a current maximum is expected at
eV = (|∆2 − ∆1|)

poles of the density of states just face each other. This situation is depicted
in Fig. 10.42b. The voltage dependence of the quasiparticle current for su-
perconductors with the energy gaps ∆1 and ∆2 is schematically depicted in
Fig. 10.43a. Experimental results obtained with a Ta/TaO/Pb junction are
shown in Fig. 10.43b. As expected, a maximum of the tunneling current is
found at the voltage V = |∆Pb − ∆Ta|/e.
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10.3 Macroscopic Quantum State

flux quantization

Josephson effecta) flux quantization

Macroscopic wave function

phase          is well defined in entire superconducting system

consider superconducting ring in magnetic field

phase difference along a path

quantum mechanical current density

with q = -2e and M = 2m 

integration along closed contour line L

Stokes theorem

magnetic flux enclosed by the ring is quantized

closed loop
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10.3 Macroscopic Quantum State

Experimental observation of flux quantization  1961
Deaver and Fairbank

Doll and Näbauer

10.4 Flux Quantization – Josephson Effect 403

London pointed out as early as 1950 that magnetic flux ought to be quan-
tized [11]. It is of great significance that the charge entering the expression
for the flux quantization is 2e, i.e., the charge of a Cooper pair. Therefore,
the experimental determination of the flux quantum that was accomplished
in 1961 by Doll and Nähbauer [495], and Deaver and Fairbank [496], was a
direct demonstration of the existence of Cooper pairs. In these experiments,
a thin superconducting hollow cylinder was cooled down in a very weak mag-
netic field. After switching off the external magnetic field, the magnetic dipole
moment of the cylinders was measured for a number of different applied mag-
netic fields. The experimental results demonstrated that the trapped flux was
quantized, and was in fact given by (10.121).

In Fig. 10.45 the result of a more recent measurement with a hollow cylin-
der of tin with a diameter of 56µm is shown. Obviously, the trapped magnetic
flux does not follow the steady variation of the cooling field but clearly ex-
hibits the expected quantization. The rounding of the curve is caused by
the fact that, under the given experimental conditions, in some cases a flux
quantum is not trapped inside the cylinder along its whole length.
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Fig. 10.45. Magnetic flux trapped
by a thin hollow cylinder made of tin
(length 24 mm, diameter 56 µm) as a
function of the cooling field [497]

From the quantization of the magnetic flux it immediately follows that
the current in a closed loop is quantized as well. A continuous variation of
the current is not possible since the phase of the wave function can only be
changed by a multiple of 2π. Thus, only phase jumps would be allowed, but
such changes require a temporary destruction of the coherence of the wave
function. In this case, the condensation energy of all the Cooper pairs would
have to be raised. Therefore, a jump such as this does not occur, and no
flux quantum can leave the superconducting loop, meaning that persistent
currents are absolutely stable.
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10.3 Macroscopic Quantum State

Josephson effects  (1962)

Brain Josephson

Schrödinger equations

chemical potential coupling strength

ansatz                              and 

Josephson equations

with

dc  Josephson effect

ac  Josephson effect
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10.3 Macroscopic Quantum State

Experimental observation of dc Josephson effect

Josephson junction

► hysteretic Josephson junction
► for I < Ic current is determined by current source
► for I > Ic super current breaks down 

► non-hysteretic Josephson junction
► for I > Ic super current breaks down 

underdamped junction (large R and C) overdamped junction (small R and C)

hysteresis parameter: 

x R
C


