SS 2023 MVCMP-**Tunneling Experiments - Normal Conductors**

365

One-particle representation

SS 2023

MVCMP-1

S-I-N Junction, $T \neq 0$

One-particle representation

Two-particle representation

SS 2023

MVCMP-1

S-I-S Junction

SS 2023

MVCMP-1

369

10

• • •

S-I-S Junction

Two-particle representation

SS 2023

S-I-S Junction

SS 2023

MVCMP-1

371

3

Experimental observation of flux quantization 1961

Josephson effects (1962)

Schrödinger equations

 $\mathrm{i}\hbar\Psi_1 = \mu_1\Psi_1 + \mathcal{K}\Psi_2$

SS 2023

MVCMP-1

 $i\hbar\Psi_2 = \mu_2\Psi_2 + \mathcal{K}\Psi_1$ / \ chemical potential coupling strength

ansatz
$$\Psi_1 = \sqrt{n_{\mathrm{s1}}} \mathrm{e}^{\varphi_1}$$
 and $\Psi_2 = \sqrt{n_{\mathrm{s2}}} \mathrm{e}^{\varphi_2}$

with $n_{
m s}=n_{
m s1}=n_{
m s2}$

Josephson equations

$$\dot{n}_{s1} = \frac{2\mathcal{K}}{\hbar} n_s \sin(\varphi_2 - \varphi_1) = -\dot{n}_{s2}$$
$$\hbar (\dot{\varphi}_2 - \dot{\varphi}_1) = -(\mu_2 - \mu_1) = 2eV$$

 $V = 0 \longrightarrow \mu_1 = \mu_2 \longrightarrow I_s = I_c \sin(\varphi_2 - \varphi_1) \quad \text{dc Josephson effect}$ $V \neq 0 \longrightarrow \mu_2 - \mu_1 = -2eV \longrightarrow I_s = I_c \sin(\omega_J t + \varphi_0) \quad \text{ac Josephson effect}$ $\omega_J = 2eV/\hbar$

Brain Josephson

10.3 Macroscopic Quantum State

Experimental observation of dc Josephson effect

hysteresis parameter: $eta_{
m c}=2\pi I_{
m c}R^2C/\Phi_0$

- hysteretic Josephson junction
- ▶ for I < I_c current is determined by current source
- for $l > l_c$ super current breaks down

overdamped junction (small *R* and *C*)

non-hysteretic Josephson junction

• for $l > l_c$ super current breaks down