
SS 2023
MVCMP-1

356

10.2 Microscopic Theory

BCS Theory 1957

BCS ground state

pair state

John Bardeen          Leon N. Cooper    Robert P. Schrieffer

1961

10.3 Microscopic Theory of Superconductivity 381

The wave function (10.64) that describes Cooper pairs tells us that it is not
possible to relate well-defined wave vectors to the electrons of a Cooper pair.
The wave function contains all wave vectors between the energy range EF

and EF +!ωD. From (10.71) it follows that the weighting factor Ak is largest
for states with an energy z = !2k2/2m comparable to EF. Of course, the
results obtained above are also valid for two electrons scattered from states
below the Fermi surface to states above. Although their kinetic energy rises,
the gain in potential energy predominates so that the electron pair is again
in a bound state.

Until now we have not taken into account the fact that electrons are in-
distinguishable fermions with antisymmetric wave functions. Since (10.63) is
symmetric in the position coordinates (r1, r2), the spin part of the wave func-
tion has to be antisymmetric. This requires the opposite orientation of their
spins, resulting in a spin-singlet state. Therefore, we symbolize a Cooper pair
from now on by (k↑,−k↓). The Cooper pairs with angular momentum L = 0
and total spin S = 0 behave like bosons and are able to condense into a com-
mon quantum-mechanical ground state. This possibility does not exist for
single electrons, because their antisymmetric wave function does not allow
multiple occupation of the same state.

If the exchange interaction is more complex than phonon exchange, the
spins of the Cooper pair can be aligned, leading to so-called spin-triplet pair-
ing . To fulfill the symmetry requirements, the orbital part of the wave func-
tion must then be antisymmetric. As we have already seen in our discussion of
superfluid 3He (see Chap. 4), pairs with spin S = 1 exhibit p-state symmetry.
There is also the possibility that spin-singlet pairs possess a finite angular
momentum, as in high-Tc superconductors, where L = 2. We will discuss such
unconventional superconductors in Sect. 10.5.

10.3.2 BCS Ground State

In the previous section, it was shown that an attractive interaction between
two quasifree electrons may lead to a reduction of their potential energy and
thus to the formation of bound pairs. In a superconductor there are many
pairs all residing in a common ground state. A theoretical description of
this so-called BCS ground state is mathematically more involved than the
treatment of a single pair because there is a subtle interplay between Cooper
pairs and the remaining Fermi sea. Here, we only summarize the theoretical
ideas, display the results, and try to make them plausible.

First, we consider the energy reduction due to the formation of the
BCS ground state. The Hamiltonian H is taken as the kinetic energy of
all the electrons, together with the interaction (10.69). The wave function
is constructed so that if one member (k ↑) of a Cooper pair is present, so
is (−k ↓). With |1〉k we indicate that the pair (k ↑,−k ↓) is occupied, and
with |0〉k that it is unoccupied. The general form of the wave function of a
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pair is the superposition of the two states |1〉k and |0〉k, and has therefore
the form

|ψ〉k = uk|0〉k + vk|1〉k , (10.76)

with the real coefficients uk and vk. The state |1〉k is occupied with the
probability wk = v2

k, while the probability for an unoccupied state is given
by u2

k = 1 − wk.
In BCS theory, the superconducting ground state |Ψ〉 is a common state

of all Cooper pairs and is constructed by superimposing the wave functions
of all pairs states, thus neglecting an interaction between the pairs. The wave
function Ψ of the ground state is thus expressed by the product of the wave
function of the individual Cooper pairs, i.e., by

|Ψ〉 =
∏

k

|ψ〉k =
∏

k

(
uk|0〉k + vk|1〉k

)
. (10.77)

The coefficients uk and vk can be determined by minimizing the energy of
the BCS ground state via the variation method.

Since the pair states are either occupied or unoccupied, we may use the
analogy with two-state systems, and write

|1〉k =
(

1
0

)

k

and |0〉k =
(

0
1

)

k

. (10.78)

The corresponding creation and destruction operators σ+
k and σ−

k can be
expressed with the Pauli spin matrices σx and σy:

σ+
k =

1
2

(σx
k + iσy

k) =
(

0 1
0 0

)

k

,

σ−
k =

1
2

(σx
k − iσy

k) =
(

0 0
1 0

)

k

. (10.79)

The effect of these operators can easily be demonstrated by inserting (10.79)
into the definition of the pair states (10.78). As expected, we find

σ+
k |1〉k = 0 , σ+

k |0〉k = |1〉k ,

σ−
k |1〉k = |0〉k , σ−

k |0〉k = 0 . (10.80)

With the help of some algebraic transformations, it can be shown that
in the formalism of second quantization (occupation number formalism), the
Hamiltonian H takes the form

H =
∑

k

2ηk σ+
k σ−

k − V0

V

∑

k,k′

σ+
k σ−

k′ . (10.81)

The first term represents the kinetic energy of the Cooper pairs. As abbrevi-
ation we have introduced here ηk = !2k2/2m − EF, representing the kinetic
energy of a single electron with respect to the Fermi energy. The factor of 2
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generation and annihilation of Cooper pairs
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k |0〉k = 0 . (10.80)

With the help of some algebraic transformations, it can be shown that
in the formalism of second quantization (occupation number formalism), the
Hamiltonian H takes the form

H =
∑

k

2ηk σ+
k σ−

k − V0

V

∑

k,k′

σ+
k σ−

k′ . (10.81)

The first term represents the kinetic energy of the Cooper pairs. As abbrevi-
ation we have introduced here ηk = !2k2/2m − EF, representing the kinetic
energy of a single electron with respect to the Fermi energy. The factor of 2
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where we have used the abbreviation
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The quantity ∆0 generally depends on k, but this dependence does not appear
here because of the above assumption Vkk′ = −V0 = const. As we will see,
this simplification is not applicable to unconventional superconductors that
we consider in Sect. 10.5.
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The significance of ∆0 and Ek will become clear during the course of the
following discussions. In terms of these two quantities, the minimum condition
(10.83) takes the simple form
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Inserting relation (10.87) into (10.86), we obtain for the probability wk that
the pair state (k ↑,−k ↓) is occupied:
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This expression is the counterpart of the Fermi function for one-electron
states that is plotted in Fig. 10.28 for T = Tc, and compared with wk at
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The quantity ∆0 generally depends on k, but this dependence does not appear
here because of the above assumption Vkk′ = −V0 = const. As we will see,
this simplification is not applicable to unconventional superconductors that
we consider in Sect. 10.5.
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The significance of ∆0 and Ek will become clear during the course of the
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This expression is the counterpart of the Fermi function for one-electron
states that is plotted in Fig. 10.28 for T = Tc, and compared with wk at
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Fig. 10.28. Probability wk for the oc-
cupation of pair states versus kinetic
energy ηk at T = 0 (full line). For
comparison the Fermi function (dashed
line) at T = Tc is also drawn

T = 0. Both curves drop steeply at EF. The width is roughly determined
by ∆0 in both cases. The shape of the function (10.89) demonstrates that the
interaction of the electrons with virtual phonons gives rise to an occupation
of states above the Fermi energy, resulting in a kinetic energy of the system
higher than in the normal state.

Even though the kinetic energy of the electrons is enhanced, energy is
gained by the transition from the normal to the superconducting state due
to the lowering of the potential energy. The difference between the (free)
energy of the superconducting and the normal conducting state is the so-
called condensation energy . It has already been introduced in Sect. 10.2.1,
where it was shown that it is proportional to B2

c . Its value at T = 0 can be
found by subtracting the internal energy W n

0 = 2
∑

|k|<kF
ηk of the normal

conductor from (10.88). After some algebraic manipulations, one obtains
Wcon

V
=

W0 − W n
0

V
= −1

4
D(EF)∆2

0 . (10.90)

This result indicates that the quantity ∆0 is a measure of the condensation
energy, and that ∆0 ∝ Bc(0).

At the end of this section we calculate the magnitude of ∆0. For this
purpose, we write down (10.84) once again, use (10.85) and (10.86), and
obtain

∆0 =
V0

V

∑

k

ukvk =
1
2
V0

V

∑

k

∆0

Ek
=

1
2
V0

V

∑

k

∆0√
η2

k + ∆2
0

. (10.91)

Replacing the sum by an integral and assuming, as in the derivation of
(10.73), that the density of states at the Fermi energy is constant, we find

1 =
V0

2

!ωD∫

−!ωD

D(EF)
2

dη√
η2 + ∆2

0

=
V0 D(EF)

2
arc sinh

(
!ωD

∆0

)
. (10.92)

Consequently, ∆0 is given by

► occupation of a pair at T = 0 resamples

► when forming Cooper pairs electrons gain kinetic energy 

the Fermi function at  T = Tc 

T = 0 

T = Tc 
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weak coupling
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explains isotope effect
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Fig. 10.29. Excitation energy of quasipar-
ticles close to the Fermi energy. Hole-like
states are left of the origin, electron-like
states to the right side

with the second electron of the pair with the wave vector −k. Similarly, the
electron now being in state k′, interacts with the hole at −k′.

As mentioned above, the common ground state of the Cooper pairs is
separated from the quasiparticle states by the energy gap ∆0. The quasi-
particle density of states Ds(Ek) follows directly from the density of the
normal state since no state is lost in the superconducting transition, i.e.,
Ds(Ek) dEk = Dn(ηk) dηk, where Dn(ηk) represents the electronic density of
states in the normal conductor. In the vicinity of the Fermi energy, we may
put Dn(ηk) ≈ Dn(EF) = const., and we obtain

Ds(Ek) = Dn(ηk)
dηk

dEk
=





Dn(EF)

Ek√
E2

k − ∆2
0

for Ek > ∆0

0 for Ek < ∆0 .
(10.97)

In Fig. 10.30a, the predicted density of states Ds(Ek) of the quasiparticles
is drawn. At Ek = ∆0, the density of states is expected to diverge. For
ηk # ∆0, the quasiparticle density Ds(Ek) is expected to merge with Dn(ηk)
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Fig. 10.30. (a) Quasiparticle density of states versus excitation energy. (b) Exper-
imentally determined density of states of Pb versus normalized excitation energy.
The measurement was carried out with a Pb/MgO/Mg-tunnel junction [483]
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each state in normal conductor is uniquely 
connected with one in the superconductor 

singularity at   
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Fig. 10.29. Excitation energy of quasipar-
ticles close to the Fermi energy. Hole-like
states are left of the origin, electron-like
states to the right side

with the second electron of the pair with the wave vector −k. Similarly, the
electron now being in state k′, interacts with the hole at −k′.

As mentioned above, the common ground state of the Cooper pairs is
separated from the quasiparticle states by the energy gap ∆0. The quasi-
particle density of states Ds(Ek) follows directly from the density of the
normal state since no state is lost in the superconducting transition, i.e.,
Ds(Ek) dEk = Dn(ηk) dηk, where Dn(ηk) represents the electronic density of
states in the normal conductor. In the vicinity of the Fermi energy, we may
put Dn(ηk) ≈ Dn(EF) = const., and we obtain

Ds(Ek) = Dn(ηk)
dηk

dEk
=
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(10.97)

In Fig. 10.30a, the predicted density of states Ds(Ek) of the quasiparticles
is drawn. At Ek = ∆0, the density of states is expected to diverge. For
ηk # ∆0, the quasiparticle density Ds(Ek) is expected to merge with Dn(ηk)
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Fig. 10.30. (a) Quasiparticle density of states versus excitation energy. (b) Exper-
imentally determined density of states of Pb versus normalized excitation energy.
The measurement was carried out with a Pb/MgO/Mg-tunnel junction [483]
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A typical experimental setup is depicted in Fig. 10.37. First, a thin metal
strip is evaporated on a substrate. Then the surface of this film is oxidized to
make the insulator, and finally the second strip is evaporated. The thickness
of the oxide layer is typically of the order of 2 nm.

Metal strip 1Metal strip 2

I

V

Fig. 10.37. Diagram of a tunnel junc-
tion. Metal strip 1 is oxidized before
evaporating metal strip 2 . The oxide
layer is typically 2 nm thick

We will first consider tunneling between two normal metals with an insu-
lating layer in between. This configuration is often called an ‘NIN junction’.
In Fig. 10.38, the density of states close to the Fermi level of the two metals
is drawn for T = 0, dark areas symbolize occupied states. Note that there are
no states in the insulator between the two metals in the energy range con-
sidered here. Applying a voltage V across the tunnel junction causes a shift
of the Fermi level by the amount eV . As indicated by the arrow, electrons
are now able to tunnel from occupied states of the metal on the left to the
empty states on the right. The resulting current I is proportional to V as in
an ordinary ohmic resistance. Unfortunately, experiments such as this do not
give much information about the electronic states.

EF

nc

D E(    ) E(    )D

nc

EF

nc nc

eV
EF

E

D E(    )

(    )D

Fig. 10.38. Energy-level diagram for an NIN junction. The density of states is
shown in the vicinity of EF. The zero point of the energy is suppressed, occupied
states are represented by dark areas. (a) V = 0, no current can flow. (b) V != 0,
electrons from occupied states tunnel into empty states
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More interesting results are obtained with a superconductor-insulator-
normal metal junction, often called a ‘SIN junction’. The energy-level diagram
for T = 0 is depicted in Fig. 10.39 using the ‘semiconductor representation’
(see Sect. 10.3.3). The energy gap of the superconductor prevents the flow of
quasiparticles through the barrier as long as V < ∆/e. As soon as the applied
voltage exceeds the critical voltage Vc = ∆/e, quasiparticles can cross the
barrier as indicated in Fig. 10.39b. A current is expected, steeply growing
with the voltage because of the rapidly rising number of quasiparticles that
are able to tunnel across the barrier into empty states.

D(      )Ek
E(    )D

sc nc

eV∆2

D(      )Ek

E(    )D

sc nc

∆
eV

2

Fig. 10.39. Energy-level diagram for an SIN junction at absolute zero. (a) V < Vc,
no free states are available for tunneling quasiparticles, (b) V > Vc = eV , quasi-
particles tunnel from the superconductor to the normal conductor

At finite temperatures, the situation is slightly different. As discussed in
Sect. 10.3.3 and shown in Fig. 10.40, quasiparticles are thermally excited,
resulting in populated states above the gap, and empty states below. There-
fore, quasiparticles can tunnel through the barrier at voltages smaller than Vc

and a weak current is observed. The magnitude of the current depends on
the density of states and the occupation numbers. Since quasiparticles move
in both directions, the tunneling current I(V ) is expressed by

I(V ) = I0

∫
Ds(Ek)Dn(E + eV ) [f(E) − f(E + eV )] dE , (10.109)

where I0 is a constant depending on the geometry of the junction [492]. Of
course, this formulation is also valid for other types of junctions if the ap-
propriate densities of states are inserted. For SIN junctions, Dn(E) can be
replaced by Dn(EF), and f(E) by a step function. Carrying out the inte-
gration and differentiating with respect to the voltage, we obtain the simple
relation

dI/dV ∝ Ds(Ek = eV ) . (10.110)

experimental observation using superconducting tunnel junctions

schematic setup
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BCS state at finite temperatures

Cooper pairs              quasi-particles               BCS state weakens             energy gap decreases 

BCS theory  in weak coupling limit

10.3 Microscopic Theory of Superconductivity 389

This equation has to be solved numerically. Before we consider the outcome
of this calculation, we can use the equation to evaluate the transition temper-
ature Tc. Knowing that the energy gap ∆ vanishes at Tc, we insert T = Tc,
and ∆ = 0, to obtain

2
V0 D(EF)

=
!ωD∫

0

dη

η
tanh

(
η

2kBTc

)
. (10.103)

In the weak coupling limit V0 D(EF) ! 1, the numerical solution leads to

kBTc = 1.14 !ωD e−2/V0D(EF) . (10.104)

This relation explains the isotope effect mentioned at the beginning of
this section, since Tc ∝ ωD ∝ M−1/2, where M is the atomic mass. It also
makes it plausible that deviations from this law exist. First, the derivation
of (10.104) was based on the assumption that one-phonon exchange (10.62)
gives a satisfactorily description of the attractive interaction between the
electrons. Secondly, (10.69) drastically simplifies the corresponding expres-
sion, and finally, in all calculations a spherical Fermi surface was assumed.
None of these simplifications are necessarily true for real metals.

Inserting (10.93) in (10.104), we find the important relation

∆0 = 1.76 kBTc , (10.105)

connecting energy gap ∆0 and transition temperature Tc. This simple equa-
tions is expected to hold for all superconductors as long as the simplifications
mentioned above are fulfilled. In Table 10.3, experimental values for the ratio
∆0/kBTc are given. In most cases fair agreement between theory and experi-
ment is found, but in mercury and lead this ratio is considerably higher than
expected. In these metals, the electrons are strongly coupled to phonons, thus
creating pronounced charge clouds in the lattice. In this case, screening and
retardation effects play an important role. These effects are correctly taken
into account by the Eliashberg theory [484]. Good agreement with experimen-
tal results is found, but a treatment of this rather sophisticated theory would
go far beyond the scope of this book.

Table 10.3. ∆0/kBTc for some superconducting elements. After [485]

Al Cd Hg In Nb Pb Zn

∆0/(kBTc) 1.7 1.6 2.3 1.8 1.9 2.15 1.6

The numerical integration of (10.102) supplies us with the theoretical tem-
perature dependence of the energy gap . In Fig. 10.32, the theoretical curve
for the normalized energy gap ∆(T )/∆0 is plotted together with experimental
data. Close to absolute zero, the energy gap is approximately constant. But

energy gap at finite temperatures weak coupling regime
does not really apply
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Fig. 10.34. (a) Specific heat of tin versus temperature without an external mag-
netic field (◦), and with a field B > Bc (•). The dashed-dotted lines represent the
lattice and electronic contribution in the normal conducting state [488]. (b) Normal-
ized specific heat of tin and vanadium after subtracting the phonon contribution.
The full line is the prediction of the BCS theory [489]

Cs

γTc
= 1.34

(
∆0

kBT

)3/2

e−∆0/kBT . (10.107)

In Fig. 10.34b, the logarithm of the normalized specific heat of tin and
vanadium is plotted as a function of the normalized inverse temperature Tc/T .
Both sets of data fall on top of each other and follow the expected exponen-
tial law. The small deviations, observed close to Tc, reflect the temperature
dependence of ∆(T ) and are in agreement with the prediction of BCS theory.
For the jump of the specific heat at Tc, BCS theory predicts the universal
relation (Cs−Cn)/Cn = 1.43. In Table 10.4, experimental values for some su-
perconducting elements are given. The jump is much higher than predicted by
BCS theory in strong-coupling superconductors like mercury or lead. These
deviations can be understood within the framework of the Eliashberg theory
mentioned above [484].

Table 10.4. Normalized jump (Cs − Cn)/Cn of the specific heat at Tc for some
superconductors. After [485]

Al Cd Hg In Nb Pb Zn

(Cs − Cn)/Cn 1.4 1.4 2.4 1.7 1.9 2.7 1.3

Specific heat: 
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Ultraound absorption
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Ultrasonic Absorption

In normal conductors, ultrasonic phonons collide with free electrons. The en-
ergy exchange in these collisions can be arbitrarily small. In superconductors
at absolute zero such processes are impossible, since Cooper pairs cannot
absorb energy because of the energy gap. Of course, pair breaking would be
possible such as in infrared experiments, if phonons fulfilled the condition
!ω > 2∆(T ). But in this case, frequencies of the order of 100 GHz would
be required that are not accessible in classical experiments. Thus, ultrasonic
phonons only interact with quasiparticles, and ultrasonic absorption is ex-
pected to decrease quickly below Tc because of the rapidly falling number of
thermally excited quasiparticles. BCS theory predicts the simple relation

αs

αn
=

2
e∆(T )/kBT + 1

, (10.108)

where αs and αn represent the absorption of the superconducting and normal
conducting states at Tc, respectively.

A measurement of the absorption of longitudinal ultrasonic waves in a
single crystal of aluminum is shown in Fig. 10.35. Good agreement with the
theoretical prediction was obtained, allowing precise measurements of ∆ to
be made. Studies of the ultrasonic absorption are also interesting for another
reason. They allow the energy gap to be determined as a function of the
crystal orientation. In fact, a relatively weak anisotropy of ∆ is found in
many superconductors that is mainly caused by the anisotropy of the Fermi
surface.

Thermal Conductivity

The thermal conductivity Λ of lead in its superconducting and normal con-
ducting state is shown in Fig. 10.36. While the conductivity rises in the nor-
mal conducting state, i.e., in magnetic fields B > Bc, the conductivity falls
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Fig. 10.35. Normalized ultrasonic ab-
sorption in aluminum as a function
of T/Tc. The full line represents the
prediction of BCS theory [490]


