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10.1 Phenomenological Description

London theory,  Fritz und Heinz London 1935

idea: Maxwell equations and the properties of ideal conductor and ideal diamagnet

electrical conductivity:

ideal conductor
with  

insert in Maxwell equation  

magnetic flux is constant for
ideal conductors, but Meißner effect
demands  const. = 0, therefore 
not                           but  

1st London equation

2nd London equation
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10.1 Phenomenological Description

application of London theory: penetration depth

fields enter a „little bit“, otherwise

screening current

Maxwell equation  

insert in 2nd London equation

special geometry: 

► superconductor fills half space x > 0

► magnetic field in z-direction 
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Penetration Depth

One of the most important applications of the second London equation is in
describing the screening behavior of superconductors in the Meissner state.
Until now we have argued that the magnetic field is completely expelled
from a type I superconducting, as demonstrated by the Meissner–Ochsenfeld
effect. If this were correct, infinitely high shielding currents would have to be
present at the sample surface. In reality, the magnetic field penetrates the
surface of the superconductor. To treat this phenomenon, we assume that a
superconductor occupies the half-space x > 0, and the magnetic field B0 is
applied in the z-direction, as shown in Fig. 10.17. By inserting (10.20) in the
Maxwell equation curlB = µ0j, we obtain the differential equation

d2Bz(x)
dx2

− µ0nse2
s

ms
Bz(x) = 0 (10.21)

for the given geometry. This equation can easily be solved and we obtain

Bz(x) = B0 e−x/λL , (10.22)

where the London penetration depth λL is given by

λL =
√

ms

µ0nse2
s

. (10.23)

Inserting the solution in the Maxwell equation curlB = µ0j, we find for the
spatial variation of the screening current

js,y(x) = j0 e−x/λL . (10.24)

Both magnetic field and current density decrease exponentially with the char-
acteristic length λL. Furthermore, applied field and current are connected via
the relation B0 = µ0 λL j0.

Vacuum Superconductor

λL

B0

Bz

x

e− x / λL

Fig. 10.17. Magnetic field inside a su-
perconductor. The exponential decay is
determined by the London penetration
depth λL
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10.1 Phenomenological Description

insert in Maxwell equation  screening current
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some numbers:    ns ≈ 1023 cm-3   = 30 nm
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experimental observation:    susceptibility of thin lead cylinders

temperature dependence

364 10 Superconductivity

The penetration depth λL depends on temperature since the density of
the superconducting carriers varies with temperature. Without justification,
we mention that the two-fluid model of superconductors predicts that the
density of the superconducting carriers varies with temperature according to
the relation ns ∝ 1 − (T/Tc)4 [455]. Inserting this relation into (10.23), we
find that the penetration depth is expected to vary with temperature as

λL(T ) =
λL(0)√

1 − (T/Tc)
4

. (10.25)

As temperature approaches the transition temperature Tc, the penetration
depth diverges since the carrier density goes to zero. Well below Tc, the pene-
tration depth becomes temperature independent. Assuming that the density
of superconducting carriers is of the order of one electron per atom, λL is
expected to be of the order of 30 nm.

The validity of (10.25) can be examined by measuring the diamagnetic
behavior of superconducting particles. In order to obtain a favorable ratio
between the field-free volume and the penetration depth, these measurements
are often carried out with very small spheres. As an example, we show in
Fig. 10.18 the measurement made on thin lead cylinders where very good
agreement with expectation was obtained.
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Fig. 10.18. Temperature depen-
dence of the penetration depth λ of
lead [475]. The full line represents
the prediction by the two-fluid model
[455]

As mentioned above, the shielding current is proportional to the applied
magnetic field. Consequently, a critical current density jc exists that is di-
rectly connected with the critical magnetic field Bc. As early as 1916, Sils-
bee [476] formulated the hypothesis that superconductivity breaks down as
soon as the current density passes a critical value that is independent of the
origin of the current, i.e., it does not matter whether the current is due to
shielding effects or due to an external current source.

► penetration depth of lead in the 100 nm range
► solid line: two-fluid model for superconductors
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10.2 Microscopic Theory

superconductivity occurs in many different materials 

low transition temperatures             small energy differences matter              electrons have Fermi energy  !
1950 Fröhlich             interaction between electrons and lattice can mediate attraction between electrons 

(Bardeen)

Isotope effect, discovered 1950

► Tc depends on atomic mass
► for m = 113 u … 123 u             Tc =  3.8 K … 3.66 K
► lattice properties are important for superconductivity 
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10.2 Microscopic Theory

schematic picture
► electron passes through lattice and attracts positive ions
► positive charge density maximum occurs long after electron has passed
► a second electron is attracted, but Coulomb repulsion is small since it is far away from first electron
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Meanwhile, some other developments:

Theory of the effect of lattice vibrations

 on the electron-electron coupling  

(J. Bardeen and D. Pines,

 Phys. Rev 99,1140 (1955).

Theory of the interaction of pairs of electrons 

above a filled Fermi sea,“Cooper pairs” 

(L.N. Cooper, Phys. Rev 104,1189 (1956).

Announcement that Bardeen, Brattain,

 and Shockley had won the Nobel Prize

 for Physics for invention of the transistor

 (October, 1956).

10.2 Microscopic Theory

Cooper pairs 

Leon N. Cooper
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Fig. 10.26. Electron–electron interaction via phonon exchange. The interacting
electrons exchange a virtual phonon with the wave vector q, or −q. The center-of-
mass momentum k1 + k2 = k′

1 + k′
2 = K is conserved

while the average value of (εk1+q − εk1)/kB is only of the order of 5 K. Hence,
on the average, V is negative as demanded. Furthermore, the Coulomb re-
pulsion between the electrons must be taken into account. Depending on the
relative strengths of the two types of interaction, the resulting force can ei-
ther be attractive or repulsive. Note that the attraction is proportional to g2,
therefore strong coupling between electrons and phonons is favorable for su-
perconductivity. This is the explanation for the surprising observation that
metals with high conductivity at room temperature like noble metals, are
not superconducting. In these metals, the Coulomb repulsion exceeds the
attraction caused by the rather weak phonon-exchange interaction.

In the following, we discuss the formation of Cooper pairs at T = 0,
where all one-electron states below the Fermi level are occupied. Under this
condition, only states ε(k) in the energy range EF ≤ ε(k) ≤ EF + !ωD are
involved in the phonon-exchange process, where ωD is the Debye frequency.
In k space, states with these energies are located on the Fermi surface within
a thin spherical shell of thickness δk = (mωD/!kF). Both electrons are sub-
jected to this restriction, as schematically depicted in Fig. 10.27a. As indi-
cated, the wave vectors k1 and k2 must start or end in the dark tinted area of
overlap. Therefore, the effectiveness of the phonon exchange will have a sharp
maximum at the center-of mass momentum !K = 0, because the whole shell
will be accessible to the exchange processes. Thus, we come to the important
conclusion that the center-of-mass momentum of Cooper pairs vanishes. The
wave vectors of the electrons fulfill the condition k1 = −k2 = k, meaning
that the angular momentum of the Cooper pairs vanishes, i.e., L = 0. Using
the nomenclature of atomic physics, such a pair is called an s-state pair . In
the following, we symbolize these pair states by (k,−k).

To describe a Cooper pair, we need to construct an appropriate two-
particle wave function ψ(r1, r2). We use the superposition of two plane waves
with the wave vectors k1 and k2, and write

center of mass motion
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Fig. 10.27. (a) Construction to find the states that are accessible to an interacting
electron pair with the center-of-mass momentum !K . (b) A typical transition oc-
curring in a Cooper pair in which one pair of electrons interacts above a quiescent
Fermi sea. The center-of-mass momentum of the pair is chosen to be zero

ψ(r1, r2) =
1
V

eik1·r1 eik2·r2 =
1
V

ek·r = Ψ(r) , (10.63)

where r = (r1 − r2) is the relative coordinate, and V stands for the volume
of the sample. As depicted in Fig. 10.27b, the two electrons are permanently
scattered into new states with different wave vectors k. We take this fact into
account by superimposing wave functions of the type (10.63), and write for
the wave function of a Cooper pair

Ψ(r) =
∑

k

Ak eik·r . (10.64)

Here, |Ak|2 is a measure of the probability of finding a particular electron pair
in the state (k,−k). As explained above, the only states that are accessible to
electrons are in the thin shell at the Fermi surface, with a thickness defined
by !ωD. Therefore, the expansion coefficient Ak is assumed to be nonzero
only in the corresponding range of wave numbers, i.e.,

Ak

{
"= 0 for kF < k <

√
2m(EF + !ωD)/!2

= 0 otherwise .
(10.65)

To calculate the eigenvalue E of a Cooper pair, we start with the Schrö-
dinger equation

[
− !2

2m
(∆1 + ∆2) + V(r1, r2)

]
ψ(r1, r2) = Eψ(r1, r2) . (10.66)

The potential V(r1, r2) consists of two parts, the attractive part caused by
phonon exchange and the repulsive part due to Coulomb repulsion. Its exact
shape is unknown but for the time being, this is without importance.

The Schrödinger equation is solved as usual by inserting (10.64), multi-
plying from the left-hand side with exp(−ik′ · r), and integrating over the
volume V . This procedure leads to

for                  phase space maximum

phase space phase space
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Cooper pair state
in addition: 
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10.2 Microscopic Theory

two-particle wave function

electrons are scattered constantly into new pair states

probability to find a 
particular pair state

380 10 Superconductivity

!2k2

m
Ak +

1
V

∑

k′

Ak′Vkk′ = EAk , (10.67)

where Vkk′ represents the interaction matrix element

Vkk′ =
∫

V(r1, r2) ei(k−k′)·rd3x . (10.68)

Here, we make a very rough simplification by assuming that Vkk′ is negative
and constant in the whole energy range of interest. Therefore, we write

Vkk′ =
{
−V0 for EF < εk, εk′ < EF + !ωD

0 otherwise , (10.69)

where V0 is a characteristic positive constant. With this simplification, (10.67)
takes the form

(
!2k2

m
− E

)
Ak =

V0

V

∑

k′

Ak′ . (10.70)

Introducing the abbreviation z = !2k2/2m, we obtain

Ak =
V0

V

1
2z − E

∑

k′

Ak′ . (10.71)

To simplify this equation further, we sum over all wave vectors k. Since∑
k Ak =

∑
k′ Ak′ , these sums may be cancelled, resulting in

1 =
V0

V

∑

k

1
2z − E

. (10.72)

Furthermore, we may replace the sum in this equation by an integral. Since
the density of states D(E) in the vicinity of EF is approximately constant,
we put D(E) ≈ D(EF), and write

1 = V0
D(EF)

2

EF+!ωD∫

EF

dz

2z − E
. (10.73)

The factor 1/2 appears because we are considering pair states here.7 Carrying
out the integration, we obtain for the interaction energy the final result:

δE = E − 2EF =
2 !ωD

1 − exp[4/V0D(EF)]
. (10.74)

As expected, the energy of the electron pair is smaller than 2EF. The
energy difference δE may be considered as the binding energy of a Cooper
pair. In the so-called weak coupling limit , i.e., for V0 D(EF) # 1, we may
approximate this quantity by

δE ≈ −2 !ωD e−4/[V0D(EF)] . (10.75)

7 In textbooks on superconductivity this factor 1/2 is often avoided by writing
down the density of states for electrons with definite spin.

insert          , multiplying with                          and integrate

Fourier transform of electron-phonon interaction

stationary Schrödinger equation for two interacting particles

electron-phonon interaction 
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10.2 Microscopic Theory

approximation for electron-phonon interaction

with

with

replacing the sum with an integral, and 

integration

weak couplingenergy reduction per Cooper pair

► for Cu, Ag, K, …       is small, because they are good conductors            no superconductor since small
► Al has small      , but high density of states at Fermi energy            superconductor with Tc ≈ 1 K


