

23 May 1911

SS 2023

MVCMP-1

ιΗ				super	condu	cting	@ p	= 1 bo	ır								² He
³ Li 20	⁴ Be 0.03 superconducting @p >> 1 bar non-superconducting											⁵ B 11	€C	⁷ N	⁸ O 0.6	9F	¹⁰ Ne
¹¹ Na	¹² Mg magnetic ordering												¹⁴ Si 8.5	¹⁵ P 18	¹⁶ S 17	¹⁷ Cl	¹⁸ Ar
¹⁹ K	²⁰ Ca 15	²¹ Sc 0.35	²² Ti 0.4	²³ V 5.3	²⁴ Cr	²⁵ Mn	²⁶ Fe 2.0	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn 0.9	³¹ Ga 1.09	³² Ge 5.4	³³ As 2.7	³⁴ Se 5.6	³⁵ Br 1.4	³⁶ Kr
³⁷ Rb	³⁸ Sr 4.0	³⁹ ү 2.7	⁴⁰ Zr 0.55	⁴¹ Nb 9.2	⁴² Mo 0.923	⁴³ Tc 7.8	⁴⁴ Ru 0.5	⁴⁵ Rh 320 μK	⁴⁶ Pd	47Ag	⁴⁸ Cd 0.55	⁴⁹ In 3.4	⁵⁰ Sn 3.7	⁵¹ Sb 5.6	⁵² Te 7.4	⁵³ 1.1	⁵⁴ Xe
55Cs	⁵⁶ Ba 5.1	⁵⁷ La 5.9	⁷² Hf 0.16	⁷³ Ta 4.4	⁷⁴ W 0.01	⁷⁵ Re 1.7	⁷⁶ Os 0.65	⁷⁷ lr 0.14	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg 4.15	⁸¹ TI 2.4	⁸² Pb 7.2	⁸³ Bi 8.7	⁸⁴ Po	⁸⁵ At	⁸⁶ Pn
⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac	````	⁵⁸ Ce 1.7	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	⁶⁴ Gd	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lu 0.1
			````	⁹⁰ Th 1.37	⁹¹ Pa 1.3	⁹² U 0.2	⁹³ Np	⁹⁴ Pu	⁹⁵ Am 0.8	⁹⁶ Cm	⁹⁷ Bk	98Cf	99Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lw





### **Observations regarding superconductivity**

- small atomic volume appears to favor superconductivity
- metals, semi-metals, semi-conductors (highly doped)
- not superconducting: good conductors Ag, Au, Cu, K, .... and magnetic systems Fe, Ni, Co, ...
- impurities are unimportant, except magnetic impurities
- structural order is unimportant: single crystals, poly crystals, alloys, amorphous solids
- transition temperatures are material dependent and spread over a wide range
- sufficiently large magnetic fields destroy superconductivity

SS 2023







#### Superconductors in magnetic fields

Type-I superconductors (pure metals like Pb, Hg, In, Al, ...

 $B < B_{\rm c}$ 





ġ

Internal field

Type-II superconductors (alloys, metallic glasses, high- $T_c$  sc, ...)

 $-B < B_{c1}$ 

Meißner phase: field fully expelled

>  $B_{c1} < B < B_{c2}$ 

Subnikov phase: magnetic flux in form of vortices penetrate into sample

Important:  $B_{c2}$  can be much higher than  $B_{c1}$ 

## temperature dependence of critical field



 $B_{c2}$ 





### Abrikosov lattice

in perfect crystals (free of inclusions and crystal defects) formation of a regular lattice (pattern)





STM image NbSe₂ at 1.8 K  $T_{\rm c}$  (B = 0) = 7.2 K

pinning effect: inclusions in crystals lead to pinning of vortex lines



to move a pinned vortex one needs to "pay" the condensation energy





magneto-optical image of vortex Lines





NbSe₂ T= 4.3 K, B = 0.3 mT





penetration of magnetic flux into a superconductor



 $25\ \mu m$ 

NbSe₂





### Meißner-Ochsenfeld effect

comparison of ideal conductor and superconductor

Faraday law  $\oint \boldsymbol{\mathcal{E}} \cdot \mathrm{d} \boldsymbol{s} = -\partial \Phi / \partial t$ 



