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metals, no superconductors, no semiconductors

7.2 Electrical Conductivity

Boltzmann equation                  kinetic gas theory

► starting point:  equilibrium distribution without external fields

► with field: stationary non-equilibrium value of

► expand             -                   in linear order + relaxation ansatz for collisions  

Fermi-Dirac distribution

linearized Boltzmann equation

electric fieldscattering time
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scattering time determined by: 

7.2 Electrical Conductivity

► defect scattering
► phonon scattering
► magnon scattering (in ferromagnets)

► electron-electron scattering  (can be neglected in most cases)
a ) defect scattering

local charge density variations

local strain fields  (less important)

Local charge variations

7.2 Electrical Conductivity 215
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Fig. 7.5. Residual resistivity !de of cop-
per alloyed with elements having a dif-
ferent number of valence electrons. The
resistivity is normalized to an impurity
content of one atomic per cent [308]

Concentration Dependence

Alloying two metals usually leads to an increase of the resistivity because
of the loss of periodicity. Provided that the two components are completely
miscible, as is the case in disordered alloys, the concentration dependence of
the resistivity can be described with Nordheim’s rule [309].

This rule can be made plausible by simple considerations: We start with
the reasonable assumption that for the binary mixture AxB1−x an average
potential with amplitude U0 = xUA + (1 − x)UB exists, where UA and UB

represent the potentials of the atoms A and B, respectively. Deviation from
the average potential is given by (U0 − UA) = (1 − x)(UB − UA) at the sites of
atoms A, and (U0 − UB) = x(UA − UB) at the atoms B. These deviations give
rise to the above-mentioned electron scattering. As a crude approximation,
the probabilities wA and wB for the scattering of the conduction electrons
are given by

wA = (1 − x)2
∣∣∣∣
∫

ψ∗(k) (UB − UA)ψ(k′) d3k′
∣∣∣∣
2

(7.18)

and

wB = x2

∣∣∣∣
∫

ψ∗(k) (UA − UB)ψ(k′) d3k′
∣∣∣∣
2

=
x2

(1 − x)2
wA . (7.19)

From (7.16) and (7.17) it follows that the resistivity can be expressed by
"de ∝ xwA + (1 − x)wB since scattering probability and scattering cross sec-
tion are proportional to each other. Inserting (7.18) and (7.19) leads directly
to Nordheim’s rule

"de ∝ x(1 − x) . (7.20)

This concentration dependence has been confirmed by measurements of
the resistivity of many disordered alloys. In particular, a maximum is ob-
served at x = 0.5, since at this composition the disorder has its maximum.

► Rutherford scattering on ionic cores of impurity atoms
► scattering cross section :
► resistivity

► residual resistance of copper with 1 at% impurities

► agrees well with: 

with different valence electrons configurations 
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1930   Meissner and Voigt observe a resistance minimum 
           for Au and Cu with magnetic impurities 

7.4 Kondo Effect 225

sistivity minimum, i.e., the resistivity rises again at low temperature. As an
example, we show in Fig. 7.15 the resistivity of copper containing 440 ppm Fe.
While the residual resistivity of pure copper stays constant at low temper-
atures, a pronounced minimum is found at about 27 K in the iron-doped
sample. Above that minimum, the temperature variation of the resistivity of
the two samples is nearly identical.

In 1964, it was shown by Kondo that this phenomenon reflects the spin-
dependent scattering of the conduction electrons by the magnetic moments of
impurity atoms [316]. Typical systems that show this effect are simple metals
containing a small amount of a transition metal. With decreasing temperature
the exchange interaction between the conduction electrons and the localized
d-electrons of the impurity atoms becomes more and more significant, result-
ing in a rising electrical resistivity. Together with the T 5-dependent resistiv-
ity due to the electron–phonon interaction this specific scattering mechanism
leads to the above-mentioned minimum. In this section, we want to sketch
the theory describing this effect and show experimental results supporting
these ideas.
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Fig. 7.15. Reduced electrical
resistivity of pure copper and
copper doped with 440 ppm Fe.
!4.2, !273, and !min represent
the resistivity at helium temper-
ature, room temperature, and
at the minimum of the resis-
tance curve, respectively. The
full lines connect the data
points [315]

7.4.1 Localized Magnetic Moments

When small amounts of transition metals or rare-earth elements are dissolved
in ordinary metals their localized magnetic moments are sometimes retained.
Depending on the position of the ion levels with respect to the Fermi energy
of the host, electrons from the ions might join the conduction electrons or,
vice versa, electrons from the conduction band might drop into lower-lying
ionic levels. In this way, the magnetic moment of the ion may be altered
or even quenched. Furthermore, there is a mixing of the d- and f -levels of
the ions with the degenerate continuum of the conduction-band levels. As
a result, the d-electrons of the impurities are less localized and the charge
distribution of the nearby conduction band levels is changed.

► example: Cu + 440 ppm Fe
► resistance minimum at 27 K

1964   explanation by Kondo by spin dependent scattering
    of electrons on magnetic impurities

a) Influence of conduction electrons on localized magnetic moments

► d-d interaction            splitting and polarization of d-levels, because of crystal field

► interaction of d-electrons with conduction electrons (s)            hybrid states
  

example: d-levels of transition metals in simple metals

width determined by  s ↔ d  transition rate

golden rule:  

matrix element

Density of states of s-electrons at

s

Interaction of Conduction Electrons and 
Localized Magnetic Moments
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d

crystal field splitting U
(magnetic atoms in a solid)

atomic levels

s-d hybrid states

226 7 Conduction Electrons

The starting point for a theoretical treatment of this phenomenon is usu-
ally the Hamiltonian introduced by Anderson in 1961 [317]. However, since
we are not going to address the full theoretical aspects of this phenomenon
here, we proceed now to discuss only some of the results. In a metallic envi-
ronment, the d-levels of impurity atoms with the energy Ed become polarized
and split by the d–d interaction. As mentioned above, the interaction between
localized moments and conduction electrons leads to a hybridization that re-
sults in broadening of the localized levels. With the help of the golden rule
their width W may be expressed by

W

! =
π

! V2 Ds(Edσ) , (7.29)

where V represents the matrix element for transitions between s- and d-states
and thus reflects the coupling strength. Ds(Edσ) stands for the density of
states of the conduction electrons that have an energy Edσ, which is the
energy of the d-resonances with the spin orientation σ. Because of the rather
small spatial extent of the d-orbitals compared to the s-orbitals, there is an
appreciable on-site Coulomb repulsion at the d-site, i.e., the occupation of a
d-orbital with a second electron (of course, allowed by the Pauli principle if
the spins of the d-electrons are opposite) will ‘cost’ an energy U .

The energy of the localized states can be determined by optical experi-
ments. As indicated in Fig. 7.16, the separation between the two levels Ed+

and Ed− is about 4.8 eV in the case of AgMn. The width of the approximately
Lorentzian lines is about 0.5 eV.

The magnetic moment of ions dissolved in metals is preserved if the inter-
action with conduction electrons is not too strong and hence the broadening
of the resonances much smaller than U . For example, the magnetic moments
of the iron group elements from vanadium to cobalt are retained if they are
dissolved in copper, silver, or gold. However, their magnetic moments vanish
in aluminum since the high concentration of conduction electrons leads to
such a large broadening that the magnetic moments are suppressed [319].

Density of states Dd ( E )

E
ne

rg
y

E

EF

Ed−

Ed+

U

Fig. 7.16. Density of states Dd(E)
of the d-resonances in AgMn. The
level splitting U = 4.8 eV and the
linewidth W = 0.5 eV were measured
optically [318]

AgMn:                      

localized moments remain if interaction
(      ) is not too strong  
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7.4 Kondo Effect 227

As mentioned above, the resonant states also act on the conduction-band
electrons and cause a change of their charge distribution. For instance, sup-
pose that all d-states are occupied with ‘up-spins’. In this case, states with
that orientation would no longer be accessible to s-electrons. Interactions
would only be possible with ‘down-spin’ electrons. Thus, the system behaves
as if there is a spin-dependent interaction between the localized spin S of the
impurity ion at the position R and the spin s of the conduction electron at r.
This fact may be expressed by a Hamiltonian containing only the exchange
term of the form

Hsd = −J S · s δ(r − R) . (7.30)

Without justification, we state that in this so-called s-d model the coupling
factor J is approximately given by J ≈ −V2/U . The minus sign indicates
that the antiparallel spin orientation is favored independent of the sign of V.

Using the Hamiltonian Hsd, the generalized susceptibility of the system
can be calculated. In the free-electron model an analytic expression is ob-
tained with a singularity of the second derivative at q = 2kF, where q is
the wave number of the perturbation. A Fourier transformation gives us
the spatial distribution of the magnetization in the neighborhood of local-
ized moments. As shown in Fig. 7.17, the singularity gives rise to a spatial
variation of the magnetization of the form cos(2kFr)/r3, i.e., to a magneti-

A

C

B

Fig. 7.17. Friedel oscillation of the spin polarization. The localized magnetic mo-
ment A causes an oscillation of the spin polarization of the neighboring conduction
electrons, resulting in an indirect exchange interaction between neighboring impu-
rities. Depending on the distance, a ferro- (B) or antiferromagnetic (C) alignment
of the magnetic moments of the impurities is favored. For clarity, only the spin
polarization due to the magnetic moment A is shown
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localized spins conduction electron

Friedel oscillation

(★)

Interaction of Conduction Electrons and 
Localized Magnetic Moments

position of localized spin
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Localized Magnetic Moments

Indirect exchange interaction (d-d)   －   RKKY interaction Ruderman
Kittel
Kusuya
Yosida
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Scattering of Conduction Electrons
on Localized Magnetic Moments

consider  (★)  in “N representation” 

creation operator

annihilation operator

spin states

act on conduction electrons

wave vector of conduction electrons

const. < 0!

electrical resistance
inelastic scattering

elastic scattering Kondo effect

Jun Kondo
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Scattering of Conduction Electrons
on Localized Magnetic Moments

(i) first-order perturbation theory

228 7 Conduction Electrons

zation oscillating with a period given by the wave number 2kF and decaying
proportional to 1/r3. This effect is analogous to the so-called Friedel oscil-
lations of the charge density that are seen near a charged impurity [320].
The induced magnetization causes an indirect exchange interaction between
impurities that has antiferromagnetic or ferromagnetic character depending
on the distance. The so-called RKKY interaction is named after Ruderman,
Kittel, Kasuya and Yosida [321] and is of great importance in our discussion
of the properties of magnetic compounds at the end of this chapter.

7.4.2 Electron Scattering by Localized Moments

We now consider the Kondo problem, i.e., we investigate the scattering of
conduction electrons by localized magnetic moments. In principle, both elas-
tic and inelastic scattering contribute to the electrical resistivity, but only
the elastic scattering is relevant to the Kondo effect. To calculate the scat-
tering amplitude we use the so-called N representation in which the Hamil-
tonian Hsd (7.30) has the form

Hsd = −J
∑

kk′

Sz(c+
k′↑ ck↑ − c+

k′↓ ck↓) + S+c+
k′↓ ck↑ + S−c+

k′↑ ck↓ . (7.31)

Here, c+
k and ck depict the creation and annihilation operators that act on

the free electrons with wave vector k. Furthermore, we have replaced the spin
components Sx and Sy by S+ = Sx + iSy and S− = Sx − iSy.

In the first Born approximation, i.e., in first-order perturbation theory,
the amplitude t(1) for the scattering of an s-electron from state |k ↑〉 into
state |k′ ↑〉 is given by

t(1) = 〈k′ ↑ |Hsd|k↑〉 = −J Sz . (7.32)

This scattering mechanism only contributes to a temperature-independent
residual resistance that adds to the contribution of the impurity scattering
discussed in Sect. 7.2.3. Clearly, the experimentally observed minimum of the
resistivity cannot be explained by first-order perturbation theory and so we
have to proceed to second-order calculations.

We need to distinguish between two processes. In the direct process (see
Fig. 7.18a) the incoming electron |k↑〉 is first scattered into the empty inter-
mediate state |k′′σ〉, and subsequently emitted into the final state |k′ ↑〉. Since
fk′′ is the occupation number of the intermediate state, the factor (1 − fk′′)
describes the probability that the state |k′′σ〉 was empty before the scattering
event. In the exchange process (Fig. 7.18b) first an electron in |k′′σ〉 scatters
into |k′σ〉. Subsequently, an electron in |kσ〉 jumps into |k′′σ〉 that is now
empty. These two processes lead to the scattering amplitude

t(2) =
∑

k′′, σ

1
E(k) − E(k′′)

[
(1 − fk′′)〈k′ ↑ |Hsd|k′′σ〉 〈k′′σ|Hsd|k↑〉

+ fk′′ 〈k′′σ|Hsd|k↑〉〈k′ ↑ |Hsd|k′′σ〉
]

. (7.33)
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scattering amplitude
temperature independent constant

(ii) second-order perturbation theory: two possible process 
direct process   (normal order)

exchange process  (reverse order)

direct process exchange process

processes without spin flip
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direct and exchange processes together 

without spin flip                    small temperature independent contribution (only terms with Sz contribute)

with spin flip                         Kondo effect               

Kondo resistance 

algebraic calculation leads to

in addition: step function (T = 0)230 7 Conduction Electrons

provided that D ! |EF − E(k)|. D is not well defined but is expected to be
of the same order as the Fermi energy. Adding (7.32) and (7.35) we obtain
for the total scattering amplitude

t(1) + t(2) = −JSz + 2J2 Sz D(EF) ln
D

|EF − E(k)|

= −JSz

[
1 − 2J D(EF) ln

D
|EF − E(k)|

]
. (7.36)

The scattering probability w(k ↑,k′ ↑) is proportional to the square of
the scattering amplitude. Neglecting terms of the order O(J4), we find

w(k ↑,k′ ↑) ∝ J2 S2
z

[
1 − 4J D(EF) ln

D
|EF − E(k)|

]
. (7.37)

To obtain a final expression for the scattering probability an integration over
all wave vectors or over all energies should be carried out. Since only electrons
with the energy E(k) ≈ EF ± kBT can be scattered we may simply write for
the resistivity !(T ) owing to magnetic impurities in an otherwise nonmagnetic
metal:

!(T ) ∝ !0

[
1 − 4J D(EF) ln

D
kBT

]
. (7.38)

Here, we have used the abbreviation !0 for the temperature-independent
residual resistivity obtained in the first-order calculation. Since J is negative
the second term leads to an increase of the resistivity with decreasing tem-
perature. Adding the lattice contribution !ph = aT 5, we obtain for the total
resistivity the expression

! = aT 5 + c!0 + c!1 ln
D

kBT
, (7.39)

where c stands for the concentration of the magnetic impurities, and !1 is a
positive constant. As observed in experiments, a characteristic minimum is
predicted at

Tmin =
(c!1

5a

)1/5
. (7.40)

As can be seen in Fig. 7.19a, the position of the minimum depends rather
weakly on the impurity concentration. Although the iron concentration varies
by a factor four, the resistivity minimum is only shifted by about 35%. The
predicted logarithmic temperature variation of the resistivity below the min-
imum is clearly visible in Fig. 7.19b for the three gold samples with different
impurities.

Although the theory presented here was an important step towards an
understanding of the resistivity of metals with magnetic impurities, the de-
scription is unsatisfactory in several respects. In particular, the logarithmic
divergence of the resistivity for T → 0 not only contradicts experimental
observations, it is also ‘nonphysical’. At first glance, it seems that it could
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!(T ) ∝ !0

[
1 − 4J D(EF) ln

D
kBT

]
. (7.38)

Here, we have used the abbreviation !0 for the temperature-independent
residual resistivity obtained in the first-order calculation. Since J is negative
the second term leads to an increase of the resistivity with decreasing tem-
perature. Adding the lattice contribution !ph = aT 5, we obtain for the total
resistivity the expression

! = aT 5 + c!0 + c!1 ln
D

kBT
, (7.39)

where c stands for the concentration of the magnetic impurities, and !1 is a
positive constant. As observed in experiments, a characteristic minimum is
predicted at

Tmin =
(c!1

5a

)1/5
. (7.40)

As can be seen in Fig. 7.19a, the position of the minimum depends rather
weakly on the impurity concentration. Although the iron concentration varies
by a factor four, the resistivity minimum is only shifted by about 35%. The
predicted logarithmic temperature variation of the resistivity below the min-
imum is clearly visible in Fig. 7.19b for the three gold samples with different
impurities.

Although the theory presented here was an important step towards an
understanding of the resistivity of metals with magnetic impurities, the de-
scription is unsatisfactory in several respects. In particular, the logarithmic
divergence of the resistivity for T → 0 not only contradicts experimental
observations, it is also ‘nonphysical’. At first glance, it seems that it could
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provided that D ! |EF − E(k)|. D is not well defined but is expected to be
of the same order as the Fermi energy. Adding (7.32) and (7.35) we obtain
for the total scattering amplitude

t(1) + t(2) = −JSz + 2J2 Sz D(EF) ln
D

|EF − E(k)|

= −JSz

[
1 − 2J D(EF) ln

D
|EF − E(k)|

]
. (7.36)

The scattering probability w(k ↑,k′ ↑) is proportional to the square of
the scattering amplitude. Neglecting terms of the order O(J4), we find

w(k ↑,k′ ↑) ∝ J2 S2
z

[
1 − 4J D(EF) ln

D
|EF − E(k)|

]
. (7.37)

To obtain a final expression for the scattering probability an integration over
all wave vectors or over all energies should be carried out. Since only electrons
with the energy E(k) ≈ EF ± kBT can be scattered we may simply write for
the resistivity !(T ) owing to magnetic impurities in an otherwise nonmagnetic
metal:

!(T ) ∝ !0

[
1 − 4J D(EF) ln

D
kBT

]
. (7.38)

Here, we have used the abbreviation !0 for the temperature-independent
residual resistivity obtained in the first-order calculation. Since J is negative
the second term leads to an increase of the resistivity with decreasing tem-
perature. Adding the lattice contribution !ph = aT 5, we obtain for the total
resistivity the expression

! = aT 5 + c!0 + c!1 ln
D

kBT
, (7.39)

where c stands for the concentration of the magnetic impurities, and !1 is a
positive constant. As observed in experiments, a characteristic minimum is
predicted at

Tmin =
(c!1

5a

)1/5
. (7.40)

As can be seen in Fig. 7.19a, the position of the minimum depends rather
weakly on the impurity concentration. Although the iron concentration varies
by a factor four, the resistivity minimum is only shifted by about 35%. The
predicted logarithmic temperature variation of the resistivity below the min-
imum is clearly visible in Fig. 7.19b for the three gold samples with different
impurities.

Although the theory presented here was an important step towards an
understanding of the resistivity of metals with magnetic impurities, the de-
scription is unsatisfactory in several respects. In particular, the logarithmic
divergence of the resistivity for T → 0 not only contradicts experimental
observations, it is also ‘nonphysical’. At first glance, it seems that it could
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Fig. 7.19. (a) Temperature variation of the electrical resistivity of copper con-
taining different concentrations of iron. The full lines represent the theoretical
results [322]. (b) Electrical resistivity of gold samples with different magnetic im-
purities. The logarithmic variation of the resistivity below the resistance minimum
is clearly visible [323]

be improved by taking into account higher-order corrections in the calcula-
tion of the scattering amplitude or accounting for the mutual polarization of
neighboring impurity atoms. However, it turns out that the behavior of di-
lute magnetic alloys changes qualitatively in going below the so-called Kondo
temperature TK.

Until now, we have discussed the weak coupling regime (T > TK) in which
the impurities carry well-defined moments. Below TK we enter the strong
coupling regime where many-body effects play an important role in causing
a breakdown of perturbation theory. The magnetic moments of the impuri-
ties become screened by the spin polarization of the surrounding conduction
electrons. Thus, a spatially extended correlation between impurity spins and
the spins of the conduction electron develops resulting in a spin-compensated
singlet ground state. The reason for the transition from a magnetic to a non-
magnetic state is the existence of an energy gain per magnetic impurity given
by

kBTK = D e−1/JD(EF) ≈ kBTF e−1/JD(EF) . (7.41)

Conversely, this internal binding energy must be overcome in order to strip
off the spin-compensation cloud. For this reason, a maximum in the specific
heat of Kondo systems is observed at temperatures around TK.

► concentration-dependent minimum 
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be improved by taking into account higher-order corrections in the calcula-
tion of the scattering amplitude or accounting for the mutual polarization of
neighboring impurity atoms. However, it turns out that the behavior of di-
lute magnetic alloys changes qualitatively in going below the so-called Kondo
temperature TK.

Until now, we have discussed the weak coupling regime (T > TK) in which
the impurities carry well-defined moments. Below TK we enter the strong
coupling regime where many-body effects play an important role in causing
a breakdown of perturbation theory. The magnetic moments of the impuri-
ties become screened by the spin polarization of the surrounding conduction
electrons. Thus, a spatially extended correlation between impurity spins and
the spins of the conduction electron develops resulting in a spin-compensated
singlet ground state. The reason for the transition from a magnetic to a non-
magnetic state is the existence of an energy gain per magnetic impurity given
by

kBTK = D e−1/JD(EF) ≈ kBTF e−1/JD(EF) . (7.41)

Conversely, this internal binding energy must be overcome in order to strip
off the spin-compensation cloud. For this reason, a maximum in the specific
heat of Kondo systems is observed at temperatures around TK.

► logarithmic temperature dependence

experimental observations:
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provided that D ! |EF − E(k)|. D is not well defined but is expected to be
of the same order as the Fermi energy. Adding (7.32) and (7.35) we obtain
for the total scattering amplitude

t(1) + t(2) = −JSz + 2J2 Sz D(EF) ln
D

|EF − E(k)|

= −JSz

[
1 − 2J D(EF) ln

D
|EF − E(k)|

]
. (7.36)

The scattering probability w(k ↑,k′ ↑) is proportional to the square of
the scattering amplitude. Neglecting terms of the order O(J4), we find

w(k ↑,k′ ↑) ∝ J2 S2
z

[
1 − 4J D(EF) ln

D
|EF − E(k)|

]
. (7.37)

To obtain a final expression for the scattering probability an integration over
all wave vectors or over all energies should be carried out. Since only electrons
with the energy E(k) ≈ EF ± kBT can be scattered we may simply write for
the resistivity !(T ) owing to magnetic impurities in an otherwise nonmagnetic
metal:

!(T ) ∝ !0

[
1 − 4J D(EF) ln

D
kBT

]
. (7.38)

Here, we have used the abbreviation !0 for the temperature-independent
residual resistivity obtained in the first-order calculation. Since J is negative
the second term leads to an increase of the resistivity with decreasing tem-
perature. Adding the lattice contribution !ph = aT 5, we obtain for the total
resistivity the expression

! = aT 5 + c!0 + c!1 ln
D

kBT
, (7.39)

where c stands for the concentration of the magnetic impurities, and !1 is a
positive constant. As observed in experiments, a characteristic minimum is
predicted at

Tmin =
(c!1

5a

)1/5
. (7.40)

As can be seen in Fig. 7.19a, the position of the minimum depends rather
weakly on the impurity concentration. Although the iron concentration varies
by a factor four, the resistivity minimum is only shifted by about 35%. The
predicted logarithmic temperature variation of the resistivity below the min-
imum is clearly visible in Fig. 7.19b for the three gold samples with different
impurities.

Although the theory presented here was an important step towards an
understanding of the resistivity of metals with magnetic impurities, the de-
scription is unsatisfactory in several respects. In particular, the logarithmic
divergence of the resistivity for T → 0 not only contradicts experimental
observations, it is also ‘nonphysical’. At first glance, it seems that it could

strong coupling regime

Kondo temperature: 

strong coupling regime

► strong screening through surrounding conduction electrons

► transition from a magnetic to a non-magnetic system
► energy necessary to form the spin-compensated cloud:
► maximum in specific heat of Kondo systems  at
► magnetic moment disappears below   

spin-compensated singlet ground state
coherent Kondo state

CuMn    1 mK

AlMn    1000 K
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For different materials, the numerical value of the Kondo temperature
varies by many orders of magnitude. For example, TK ≈ 1 mK for CuMn,
but TK ≈ 1000 K for AlMn. This means that the Kondo effect need not
necessarily be a low-temperature phenomenon, but its consequences can be
observed most easily at reduced temperatures.

Evidence for the existence of a many-body condensed state has been found
in many experiments. Besides NMR, µSR, and Mössbauer experiments, there
are measurements of the thermoelectric power, specific heat, magnetic sus-
ceptibility, and electrical conductivity. As mentioned above, the formation of
a spin-compensated singlet ground state leads to a quenching of the mag-
netic moment of the impurity atoms. This can be shown experimentally by
measurements of the magnetic susceptibility χimp. At high temperatures, the
magnetic moments of the impurities can be considered to be independent.
Consequently, the temperature variation of χimp follows a Curie–Weiss law.
With decreasing temperature, a deviation from this behavior is expected be-
cause the effective magnetic moments µeff of the impurities are reduced. Thus,
it is reasonable to describe the susceptibility by the Curie law treating µeff

as a temperature-dependent quantity since it reflects the development of the
spin-compensated state:2

χimp =
µ2

eff(T )
3kBT

. (7.42)

Figure 7.20 displays this development in the dilute alloy AuV with a Kondo
temperature of about 300 K. The data convincingly demonstrates the disap-
pearance of the magnetic moments with decreasing temperature.
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1900 ppm Fig. 7.20. Temperature dependence
of the effective magnetic moment of
vanadium in gold, derived from mea-
surements of the magnetic suscepti-
bility [324]

2 In general, the atomic magnetic moment is given by µ2
eff = g2µ2

BJ(J+1), where g
is the Landé factor and J , as customary in atomic physic, the angular momentum
quantum number.
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Fig. 7.19. (a) Temperature variation of the electrical resistivity of copper con-
taining different concentrations of iron. The full lines represent the theoretical
results [322]. (b) Electrical resistivity of gold samples with different magnetic im-
purities. The logarithmic variation of the resistivity below the resistance minimum
is clearly visible [323]

be improved by taking into account higher-order corrections in the calcula-
tion of the scattering amplitude or accounting for the mutual polarization of
neighboring impurity atoms. However, it turns out that the behavior of di-
lute magnetic alloys changes qualitatively in going below the so-called Kondo
temperature TK.

Until now, we have discussed the weak coupling regime (T > TK) in which
the impurities carry well-defined moments. Below TK we enter the strong
coupling regime where many-body effects play an important role in causing
a breakdown of perturbation theory. The magnetic moments of the impuri-
ties become screened by the spin polarization of the surrounding conduction
electrons. Thus, a spatially extended correlation between impurity spins and
the spins of the conduction electron develops resulting in a spin-compensated
singlet ground state. The reason for the transition from a magnetic to a non-
magnetic state is the existence of an energy gain per magnetic impurity given
by

kBTK = D e−1/JD(EF) ≈ kBTF e−1/JD(EF) . (7.41)

Conversely, this internal binding energy must be overcome in order to strip
off the spin-compensation cloud. For this reason, a maximum in the specific
heat of Kondo systems is observed at temperatures around TK.
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