

a) Poiseuille flow

SS 2023

MVCMP-1

N-processes are visible in heat transport experiments under special circumstances

- ultralow temperatures (no umklapp processes) and low defect scattering
 - phonon flow in a thin crystal can be described like viscose flow of atoms in capillaries

condition:

$$d \ll \ell_{\rm R}$$
 $\ell_{\rm R}^{-1} = \ell_{\rm U}^{-1} + \ell_{\rm D}^{-1}$

classical gas: Hagen-Poiseuille law

 $\ell_{\rm N} \ll$

analog equation for phonon transport (phonon gas)

$$-\frac{\dot{m}}{\pi r^2} \frac{1}{|\nabla p|} = \frac{\varrho}{8} \frac{r^2}{\eta} = \frac{3}{8} \frac{1}{\overline{v}_{\rm th}} \frac{r^2}{\ell_{\rm g}}$$
$$\searrow \eta = \frac{1}{3} \varrho \, \overline{v}_{\rm th} \, \ell_{\rm g}$$

parabolic velocity profile

 $\ell_q < r$

scattering with walls

$$-\frac{\dot{Q}}{\pi r^2} \frac{1}{|\nabla T|} = \Lambda = \frac{1}{3} C_V v \ell_{\text{eff}}$$

$$\dot{Q} = \dot{Q} \cdot \dot{Q} + \frac{1}{|\nabla T|} = \Lambda = \frac{1}{3} C_V v \ell_{\text{eff}}$$

 $Q \cong \dot{m}$ $\Delta T \cong \Delta p$

effective mean free path for N-processes for heat transport

Interpretation: heat resistance by scattering at the surface, but each phonon has to travel the statistical path $l_{\rm eff} \approx r^2/\ell_{\rm N}$ because of very frequent N-processes before it reaches the surface

the observed mean free path in transport measurements are longer than the sample diameter

exact calculation

SS 2023

MVCMP-1

$$\Lambda = \frac{1}{3} C_V v \frac{5 d^2}{32 \ell_N} \longrightarrow \Lambda \propto T^8$$

$$\bigwedge_{\propto T^3} \ell_N \propto T^{-5}$$

 $\ell_{\rm eff} = \frac{2\Lambda}{v\ell}$ d d $d_{\rm U} \propto e^{-T/2\Theta}$

3 phonon process $\sigma \propto \prod_{i} \omega_{i} \propto \omega_{1} \omega_{2} \omega_{3} \propto T^{3}$ $D(\omega) \propto \omega^{2} \propto T^{2}$ $\longrightarrow \ell_{N} \propto T^{-5}$

experimental evidence

SS 2023

- steeper than T^3 temperature dependence observed
- temperature dependence is T^6 instead of T^8
- only small temperature range

- A,B,C crystals with different densities
- D contains 100 ppm ⁴He
- slightly steeper temperature dependence as T^3

analysis of ⁴He data

SS 2023

MVCMP-1

- separation of $\ell_{
 m N}$ and $\ell_{
 m U}$
 - $\ell_{
 m N} \propto T^{-3}$ instead of $\ell_{
 m N} \propto T^{-5}$
- possible explanation: influence of dislocations reduces the temperature dependence

Why is the Poiseuille flow not always observed?

 $\ell_{\rm N} < d \longrightarrow$ means high temperature, can be fulfilled easily in addition: momentum must be carried to wall \longrightarrow random walk $r \approx \sqrt{p} \, \ell_{\rm N}$ crystal radius number of s

261

at the same time no scattering processes leading to heat resistance should occur

$$\rightarrow \ell_{\rm R} > p \, \ell_{\rm N}$$

$$\ell_{\rm R}^{-1} = \ell_{\rm U}^{-1} + \ell_{\rm D}^{-1}$$

$$(i)$$

SS 2023

MVCMP-1

and
$$\ell_{\rm R} > \ell_{\rm eff} \approx r^2/\ell_{\rm N}$$
 \land $\ell_{\rm R} > r^2/\ell_{\rm N}$ (ii) \land mean free path for Poiseuille flow

conditions (i) and (ii) are difficult to fulfill at the same time

b) Second sound

second sound in "phonon gas" $\hat{=}$ first sound in classical gas

density wave in classical gases $\ \ell < \lambda_{
m sound}$: $v_{
m s} pprox rac{1}{\sqrt{3}} \, \overline{v}_{
m th}$

sound velocity

analog for phonon gas:

$$v_2 \approx \frac{1}{\sqrt{3}} v_{\rm s}$$

velocity of second sound

conditions:

SS 2023

MVCMP-1

- ► T = 9 K → ballistic propagation: τ_N too long
- ► $T > 17 \text{ K} \rightarrow \text{diffusive phonon scattering}$
- ▶ 9 K < T < 17 K \rightarrow indications for second sound

second sound so far observed in: ³He, ⁴He, NaF, Bi

second sound in NaF

Experimental techniques

SS 2023

MVCMP-1

time resolved measurements

$$t_i = d/v_i$$

time of phonon with polarization *i* from heater to detector

position dependent measurement

a) time resolved measurements

SS 2023

MVCMP-1

Example: InSb, investigation of electron-phonon coupling

- samples with different doping level
- electrons interact with phonons via density variation
- ► longitudinal phonons: density variation → strong coupling
- ► transverse phonons: no density variation \rightarrow no coupling

2nd example: GaAs:O, GaAs:Cr, phonon-defect coupling is investigated free electrons are unimportant

SS 2023

- ▶ [110] 3 branches L, FT, ST
- ▶ [100], [111], FT, ST degenerate

- [100] no change
- [111] FT, ST disappear
- ▶ [110] ST disappears, FT reduced
- diffused phonons appear in [110], [111]
- reason: resonant scattering with Cr defects

b) position depended measurements

single crystals are elastically anisotropic

sound waves are propagating not always in direction of

wave vector, but in direction of the group velocity

Sample
$$\mathbf{v} = \mathrm{d}\omega(\boldsymbol{q})/\mathrm{d}\boldsymbol{q}$$

Construction of wave front

SS 2023

example:

four cubic crystals, [111] direction

3-fold symmetry

Phonon Focusing made visible by ⁴He Films

SS 2023

Phonon Focusing

 CaF_2

Nb at 1.8 K

Phonon Focusing

Ge wide-angle measurement y-cut quartz e-beam scanning

Phonon Focusing

TeO₂

experimental technique

isotrop phonon propagation in glass

SS 2023 MVCMP-1

Element	Ŷехр	Ytheo	$m_{ m th}^{st}/m$	Element	Ŷехр	γ_{theo}	$m_{ m th}^{st}/m$
Ag	0.64	0.64	1.00	Cu	0.69	0.50	1.37
Al	1.35	0.91	1.48	Ga	0.60	1.02	0.59
Au	0.69	0.64	1.08	In	1.66	1.26	1.31
Ba	2.70	1.95	1.38	К	2.08	1.75	1.19
Be	0.17	0.49	0.35	Li	1.65	0.75	2.19
Ca	2.73	1.52	1.80	Mg	1.26	1.00	1.26
Cd	0.69	0.95	0.73	Na	1.38	1.3	1.22
Cs	3.97	2.73	1.46	Pb	2.99	1.50	1.99

good qualitative agreement for simple metals

 $\gamma_{
m exp}/\gamma_{
m theo} = m_{
m th}^*/m$ for quantitative agreement

but: transition series metals

example nickel: $m_{\rm th}^* \approx 15\,m$

reason is *d*-electrons contribute, which are not (completely) free

involved in covalent bond, highly oriented no spherical Fermi surface

- *d*-electrons with large density of state dominate at $E_{\rm F}$
- d-electrons are localized

b) metal with heavy electrons

examples: CeCu₂Si₂

cer electronic configuration [Xe] $5d^1 4f^1 6s^2$

- ► T > 15 K, D(E) and m^* are constant
- ▶ T < 15 K, C/T increase strongly with decreasing temperature

Heavy fermion systems

SS 2023

MVCMP-1

- interesting class of solids with strongly correlated electrons
- effective masses m^* up to 2000 m_e observed
- origin: interaction with localized spins

$$\chi = \mu_0 \mu_{\rm B}^2 D(E_{\rm F}) \propto n^{1/3} m^*$$

$$\searrow$$
Wilson ratio:
$$R = \frac{\chi}{\gamma} \frac{\pi^2 k_{\rm B}^2}{\mu_0 \mu_{\rm eff}^2}$$

$$\swarrow$$

$$\gamma \propto n^{1/3} m_{\rm th}^*$$

important: Fermi liquid theory

$$C = rac{m^*}{m} \ C_{
m FG} \ = \left(1 + rac{1}{3} \ F_1
ight) C_{
m FG}$$

analogy to ³He reaches even further

→ some heavy fermion systems show unconventional superconductivity (S \neq 0) : UPt₃, URu₂Si₂...