
SS 2023
MVCMP-1

245

Part II: Solids at Low Temperatures

6. Phonons

► solids are elastic, isotropic homogenous continua
► excitations: sound waves with linear dispersion  
► Bose-Einstein distribution

6.1 Specific heat

assumptions: 

－ Debye model:

internal energy: cut-off frequency         Debye frequency  

168 6 Phonons

are treated as homogeneous and isotropic media. Consequently, the phonons
can be considered as a gas of free bosons. In contrast to the atoms of a
real gas, the number of phonons is not conserved. As a result, their chemical
potential vanishes, i.e., µ = 0. Though phonons are not real particles, we may
use the density of states D(q) of free particles (see Sect. 3.1) to calculate the
internal energy of solids. There is a simple reason for this correspondence:
in both cases the allowed wave vectors q are determined by the geometrical
boundary conditions (3.4). Hence, the density of phonons in momentum space
is the same as for free particles. The dispersion relation, which depends on
the nature of the particles being considered, does not play a role.

We rewrite (3.6) using the abbreviation q for the wave vector of phonons
and find D(q) = q2V/2π2. From this expression, the density of states D(ω)
in frequency space follows directly from the relation

D(ω) = D(q)
dq

dω
, (6.1)

if the dispersion relation ω(q) is known. In the Debye model, the linear re-
lation ω = vq is assumed, where v represents the velocity of sound. With
this relation the famous ω2 dependence of the Debye density of states follows
directly from (6.1):

D(ω) dω =
V ω2

2π2v3
dω . (6.2)

In monatomic solids there exist three phonon branches, namely a longi-
tudinal and two transverse branches. In the Debye model, this fact is taken
into account by introducing the Debye velocity vD through the relation
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So, we finally obtain for the Debye density of states the expression
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For a rough estimate of vD we may put v! ≈ 2 vt resulting in vD ≈ 1.12 vt,
meaning that the Debye velocity and hence the Debye density of states is
mainly determined by transverse sound waves.

The density of states is normalized to 3N , the total number of modes, by
introducing the cutoff frequency ωD, i.e.,

3N =
ωD∫

0

D(ω) dω . (6.5)
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6.1 Specific Heat – Debye Model 169

Through this integral, the Debye frequency ωD is defined leading to the ex-
pression

ωD = vD
3

√
6π2 N

V
=

vD

a
3
√

6π2 . (6.6)

The last term holds for simple cubic crystals with the lattice constant a,
because in this case N/V = a3. In Fig. 6.1 the dispersion relation used in
the Debye model is compared with that of a linear chain. Obviously, the
maximum values of the wave vector are different in these two models. In the
case of a linear chain qm = π/a is determined by the size of the Brillouin
zone, whereas for the Debye model qD = 3

√
6π2/a ≈ 3.9/a follows from (6.6).

Typical numerical values are: a = 0.2 nm, vD = 3000 m/s, and hence ωD ≈
1014 s−1.
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Fig. 6.1. Comparison between the linear
dispersion relation of the Debye model
(full line) and the ‘real’ dispersion of a
linear chain (dashed line). Note that the
dispersion curves end at different values
of the wave vector

The internal energy of the lattice vibrations is given by

U(T ) =
!ωD∫

0

!ωD(ω) f(ω, T ) dω . (6.7)

Inserting the Bose–Einstein distribution function f(ω, T ) and using the ab-
breviations x = !ω/kBT and xD = !ωD/kBT , we find for the specific heat1
of dielectric crystals the expression

CV =
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where the Debye temperature Θ is defined by kBΘ = !ωD.
1 In general, we do not explicitly distinguish between heat capacity, specific heat,

molar specific heat, etc., because in most cases the exact meaning follows from
the context in which it is used.
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6.1 Specific Heat

► perfect agreement with theory
► only small temperature range
► Debye temperature 

Limiting cases:

(i)

(ii)

Dulong-Petit law
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Fig. 6.2. Specific heat of solid argon
at temperatures below 2 K plotted ver-
sus T 3. The full line reflects the predic-
tion of the Debye model with the Debye
temperature Θ = 92 K [253]

the comparison between the two spectra makes it clear that the specific heat
is rather insensitive to the shape of the density of states. It is determined
by the mean behavior of the vibrational states and not by details of the
vibrational spectrum.

At what temperatures do we expect noticeable deviations of the exper-
iment from the Debye approximation? At ‘very low’ temperatures, i.e., for
T < Θ/100 only phonons with long wavelength are thermally excited, the
dispersion of which is linear. In this case, the density of states of crystalline
solids is proportional to ω2, as assumed in the Debye model. Similarly, at high
temperatures (T > Θ/4) details of the phonon spectrum become unimportant
and the prediction of the Debye model approaches the classical limit. In the
intermediate range significant deviations may exist, but even so, very often
the Debye approximation is used. Deviations of the temperature dependence
of the specific heat from (6.8) are expressed in terms of Θ varying with tem-
perature. As an example of this procedure, Θ(T ) is shown in Fig. 6.4 for NaI.
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Fig. 6.3. Density of states D(ω) of di-
amond. For comparison, the density of
states in the Debye approximation with
Θ = 2230 K is also drawn [254]
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6.1 Specific Heat – Debye Model 173

Table 6.1. Debye temperature Θ of various elements in the limit T → 0. The Debye
temperature of elements marked by (∗) was determined at T ≈ Θ/2. After [257,258]

Element Θ (K) Element Θ (K) Element Θ (K) Element Θ (K)

Ar 92 Cu 347 Mn 409 Sc 346

Ac∗ 100 Er 118 Mo 423 Se 152

Ag 227 Fe 477 N∗ 70 Si 645

Al 433 Ga 325 Na 156 Sm 169

Am 121 Gd 182 Nb 276 Sn 199

As 282 Ge 373 Nd 163 Sr 147

Au 162 H (para) 122 Ne 75 Ta 245

B 1480 H (orth) 114 Ni 477 Tb 176

Ba 111 3He 19–33 Np 259 Te 152

Be 1481 Hf 252 O∗ 90 Th 160

Bi 120 Hg 72 Os 467 Ti 420

C (Dia.) 2250 Ho 190 Pa 185 Tl 78

C (Gra.) 413 I 109 Pb 105 Tm 200

Ca 229 In 112 Pd 271 U 248

Cd 210 Ir 420 Pr 152 V 399

Ce 179 K 91 Pt 237 W 383

Cl∗ 115 Kr 72 Rb 56 Xe 64

Cm 123 La 145 Re 416 Y 248

Co 460 Li 344 Rh 512 Yb 118

Cr 606 Lu 183 Ru 555 Zn 329

Cs 40 Mg 403 Sb 220 Zr 290

Table 6.2. Debye temperature Θ of several compounds in the limit T → 0. The
Debye temperature of elements marked by (∗) was determined at T ≈ Θ/2. After
[258–260]

Compound Θ (K) Compound Θ (K) Compound Θ (K)

AgBr∗ 140 Cr2Cl∗3 360 MgO∗ 800

AgCl∗ 180 FeS∗
2 630 MoS∗

2 290

As2O
∗
3 140 KBr 173 RbBr 131

As2O
∗
5 240 KCl 235 RbCl 165

AuCu3 285 KI 131 RbI 103

BN∗ 600 InSb 206 SiO2 (Quartz) 470

CaF2 508 LiF 736 TiO∗
2 (Rutile) 450

CrCl∗2 80 LiCl 422 ZnS 315

6.1 Specific Heat



SS 2023
MVCMP-1

248

6.1 Specific Heat – Debye Model 173

Table 6.1. Debye temperature Θ of various elements in the limit T → 0. The Debye
temperature of elements marked by (∗) was determined at T ≈ Θ/2. After [257,258]

Element Θ (K) Element Θ (K) Element Θ (K) Element Θ (K)

Ar 92 Cu 347 Mn 409 Sc 346

Ac∗ 100 Er 118 Mo 423 Se 152

Ag 227 Fe 477 N∗ 70 Si 645

Al 433 Ga 325 Na 156 Sm 169

Am 121 Gd 182 Nb 276 Sn 199

As 282 Ge 373 Nd 163 Sr 147

Au 162 H (para) 122 Ne 75 Ta 245

B 1480 H (orth) 114 Ni 477 Tb 176

Ba 111 3He 19–33 Np 259 Te 152

Be 1481 Hf 252 O∗ 90 Th 160

Bi 120 Hg 72 Os 467 Ti 420

C (Dia.) 2250 Ho 190 Pa 185 Tl 78

C (Gra.) 413 I 109 Pb 105 Tm 200

Ca 229 In 112 Pd 271 U 248

Cd 210 Ir 420 Pr 152 V 399

Ce 179 K 91 Pt 237 W 383

Cl∗ 115 Kr 72 Rb 56 Xe 64

Cm 123 La 145 Re 416 Y 248

Co 460 Li 344 Rh 512 Yb 118

Cr 606 Lu 183 Ru 555 Zn 329

Cs 40 Mg 403 Sb 220 Zr 290

Table 6.2. Debye temperature Θ of several compounds in the limit T → 0. The
Debye temperature of elements marked by (∗) was determined at T ≈ Θ/2. After
[258–260]

Compound Θ (K) Compound Θ (K) Compound Θ (K)

AgBr∗ 140 Cr2Cl∗3 360 MgO∗ 800

AgCl∗ 180 FeS∗
2 630 MoS∗

2 290

As2O
∗
3 140 KBr 173 RbBr 131

As2O
∗
5 240 KCl 235 RbCl 165

AuCu3 285 KI 131 RbI 103

BN∗ 600 InSb 206 SiO2 (Quartz) 470

CaF2 508 LiF 736 TiO∗
2 (Rutile) 450

CrCl∗2 80 LiCl 422 ZnS 315

6.1 Specific Heat



SS 2023
MVCMP-1

249

low-dimensional systems

d  = 2

example: 3He atoms on graphite  (sub-mono layers)

► high temperatures and low densities            gas:
► for                                       two-dimensional solid crystals
► increasing density                     increases

► density
► at high temperatures melting of 2d-crystals 

176 6 Phonons

Adsorbed Gases

As we have already mentioned, the wave vectors of phonons that are allowed
in insulating solids are determined by the boundary conditions that, in turn,
depend on the dimensionality d of the system. Within the Debye approxima-
tion, the relation

D(ω) ∝ ωd−1 (6.17)

is found for the phonon density of states. Thus, the proportionality CV ∝ T d

should hold in the low-temperature limit. In particular, for two-dimensional
systems, we expect a quadratic temperature dependence of the specific heat,
i.e., CV ∝ T 2.

As an example of a two-dimensional system, we consider briefly monolay-
ers of helium atoms adsorbed on graphite. The helium atoms are relatively
tightly bound to the surface by Van der Waals forces, but motion parallel to
the surface is possible. At higher temperatures and small surface densities n,
the adsorbed atoms behave like a two-dimensional classical gas exhibiting a
specific heat CV ≈ NkB. With rising vapor pressure the number of adsorbed
atoms increases. For n > 0.078 Å−2, 3He atoms form a two-dimensional solid.
On increasing the coverage further the solid becomes more rigid because of
the rising interaction between the atoms in the layer. As a consequence, the
stiffness of the layer, and hence the Debye temperature increases. The spe-
cific heat of 3He layers with different areal densities is shown in Fig. 6.5. As
expected, a variation proportional to T 2 is found at low temperatures. At
higher temperatures, melting of the two-dimensional crystals occurs, lead-
ing to deviations from the quadratic temperature variation of C. Of course,
similar effects are also observed with other gases and other substrates.
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Fig. 6.5. Specific heat of 3He
adsorbed on graphite as a func-
tion of T 2. Starting from the left
side, the density of helium atoms
per Å2 is given by: 0.078, 0.079,
0.080, 0.082, 0.087 and 0.092. The
full lines correspond to fits with
the indicated Debye temperatures
[263]
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