6. Phonons

SS 2023

MVCMP-1

- 6.1 Specific heat Debye model:
- assumptions: solids are elastic, isotropic homogenous continua
 - excitations: sound waves with linear dispersion
 - Bose-Einstein distribution

internal energy: $\operatorname{cut-off} \operatorname{frequency} \rightarrow \operatorname{Debye} \operatorname{frequency}$ $U(T) = \int_{0}^{\hbar\omega_{\mathrm{D}}} \hbar\omega \mathcal{D}(\omega) f(\omega, T) \,\mathrm{d}\omega$ $\propto \omega^{2}$

specific heat:

$$C_{V} = \frac{\partial U}{\partial T} = 9Nk_{\rm B} \left(\frac{T}{\Theta}\right)^{3} \int_{0}^{x_{\rm D}} \frac{x^{4}{\rm e}^{x}}{\left({\rm e}^{x}-1\right)^{2}} {\rm d}x$$
$$\Theta = \hbar\omega_{\rm D}/k_{\rm B}$$

6.1 Specific Heat

Limiting cases:

Specific heat $C/mJmol^{-1}K^{-1}$

20

10

0

0

2

τ³ / κ³

6

SS 2023

MVCMP-1

(i) $T \to \infty \longrightarrow x \to 0$

$$\lim_{x \to 0} \int_{0}^{x_{\rm D}} \frac{x^4 \,\mathrm{e}^x}{(\mathrm{e}^x - 1)^2} \mathrm{d}x \approx \int_{0}^{x_{\rm D}} \frac{x^4 \cdot 1}{x^2} \mathrm{d}x = \frac{x_{\rm D}^3}{3} = \frac{1}{3} \left(\frac{\Theta}{T}\right)^3$$

$$(1 + x - 1)^2$$

$$\longrightarrow$$
 $C_V = 3Nk_{\rm B}$ Dulong-Petit law

$$(ii) \quad T \to 0 \quad \longrightarrow \quad x_{\rm D} \to \infty$$

$$C_V = 9Nk_{\rm B} \left(\frac{T}{\Theta}\right)^3 \underbrace{\int\limits_{0}^{\infty} \frac{x^4 e^x}{\left(e^x - 1\right)^2} \mathrm{d}x}_{4\pi^4/15} = \frac{12\pi^4}{5} Nk_{\rm B} \left(\frac{T}{\Theta}\right)^3$$

8

$$\longrightarrow C_V = \frac{12\pi^4}{5} N k_{\rm B} \left(\frac{T}{\Theta}\right)^3$$

- perfect agreement with theory
- only small temperature range
- Debye temperature $\Theta = 92 \,\mathrm{K}$

6.1 Specific Heat

Element	$\Theta\left(\mathrm{K}\right)$	Element	$\Theta\left(\mathrm{K}\right)$	Element	$\Theta\left(\mathrm{K}\right)$	Element	$\Theta(\mathbf{K})$
Ar	92	Cu	347	Mn	409	Sc	346
Ac^*	100	Er	118	Mo	423	Se	152
Ag	227	Fe	477	N^*	70	Si	645
Al	433	Ga	325	Na	156	Sm	169
Am	121	Gd	182	Nb	276	Sn	199
As	282	Ge	373	Nd	163	Sr	147
Au	162	H (para)	122	Ne	75	Ta	245
В	1480	H (orth)	114	Ni	477	Tb	176
Ba	111	³ He	19-33	Np	259	Te	152
Be	1481	Hf	252	O^*	90	Th	160
Bi	120	Hg	72	Os	467	Ti	420
C (Dia.)	2250	Но	190	Pa	185	Tl	78
C (Gra.)	413	Ι	109	Pb	105	Tm	200
Ca	229	In	112	Pd	271	U	248
Cd	210	Ir	420	Pr	152	V	399
Ce	179	Κ	91	Pt	237	W	383
Cl*	115	Kr	72	Rb	56	Xe	64
Cm	123	La	145	Re	416	Y	248
Со	460	Li	344	Rh	512	Yb	118
Cr	606	Lu	183	Ru	555	Zn	329
\mathbf{Cs}	40	Mg	403	Sb	220	Zr	290

SS 2023 MVCMP-1

Compound	Θ (K)	Compound	Θ (K)	Compound	Θ (K)
AgBr*	140	$\mathrm{Cr}_2\mathrm{Cl}_3^*$	360	MgO^*	800
AgCl*	180	FeS_2^*	630	MoS_2^*	290
$As_2O_3^*$	140	KBr	173	RbBr	131
$As_2O_5^*$	240	KCl	235	RbCl	165
$AuCu_3$	285	KI	131	RbI	103
BN^*	600	InSb	206	SiO_2 (Quartz)	470
CaF_2	508	LiF	736	TiO_2^* (Rutile)	450
CrCl_2^*	80	LiCl	422	ZnS	315

low-dimensional systems

SS 2023

MVCMP-1

$$D(\omega) \propto \omega^{d-1} \longrightarrow C_V \propto T^d$$
$$d = 2 \longrightarrow C_V \propto T^2$$

example: ³He atoms on graphite (sub-mono layers)

