Example for influence of wall and magnetic field Determination of ρ_s/ρ with with a disc like resonator

- ϱ_n is dragged with resonator because of η_n
- mass of ρ_n adds to moment of inertia

 $\varrho_{\mathrm{s}\perp} < \varrho_{\mathrm{s}\parallel}$

SS 2023

MVCMP-1

resonance frequency depends on $\varrho_{\rm n}/\varrho$

 $\rightarrow \varrho_{\rm s}/\varrho$

(i) *B* parallel to wall
$$B_{\parallel} \perp N$$

 $l \parallel N$
 $S \parallel B_{\parallel} \land d \perp B_{\parallel}$ $d \parallel l$ optimal even without
external field
(ii) *B* perpendicular to wall $B_{\perp} \parallel N$
 $l \parallel N$
 $S \parallel B_{\perp} \land d \perp B_{\perp}$ $d \perp L$ not optimal for dipole dipole
interaction
to Pomeranchuk cell

4.5 Spin Dynamics – NMR Experiments

- ▶ static field $B_0 \longrightarrow \omega_L = \gamma |B_0|$ Lamor frequency
- rf pulse \longrightarrow tipping of the magnetization $\langle S \rangle$
- ▶ ³He: coupling of S, d $(d \cdot S = 0)$ \longrightarrow additional restoring force

angle between B_0 and S (tipping angle)

SS 2023

MVCMP-1

- without external influences: state of minimal dipole-dipole energy $d \parallel l$
- any deviation from $d \parallel l$ costs energy proportional to $\sin^2(d, l)$
 - resonance frequency increases

Leggett equations:

SS 2023

MVCMP-1

 $\mathbf{R}_{\mathrm{d}}(T) = rac{6}{5} g_{\mathrm{d}}(T) \left(\boldsymbol{d} \times \boldsymbol{l} \right) \left(\boldsymbol{d} \cdot \boldsymbol{l} \right)$ additional restoring force

$$\frac{\mathrm{d}\boldsymbol{S}}{\mathrm{d}t} = \gamma \boldsymbol{S} \times \boldsymbol{B}_{0} + \boldsymbol{R}_{\mathrm{d}}$$
$$\frac{\mathrm{d}\boldsymbol{d}}{\mathrm{d}t} = \boldsymbol{d} \times \gamma \boldsymbol{B}_{\mathrm{eff}} = \boldsymbol{d} \times \gamma \left(\boldsymbol{B} - \frac{\mu_{0}\gamma \boldsymbol{S}}{\chi_{\mathrm{N}}}\right)$$

comment:

"Bloch equations" for superfluid ³He-A

all predictions from these equations have precisely observed

transversal resonance

$$\mathbf{B}_{\mathrm{rf}}(\omega)$$
 $\mathbf{D} \mathbf{f} \mathbf{B}_0$

small (tipping) angle solution:

$$\omega_{\rm t}^2 = (\gamma B_0)^2 + \frac{\gamma^2 \mu_0 \langle H_{\rm d} \rangle}{\chi_{\rm N}} = \omega_{\rm L}^2 + \Omega_{\rm A}^2(T)$$

spatial mean of dipole-dipole coupling

extended NMR experiments with transvers geometry

small angle measurement

SS 2023

MVCMP-1

- resonance frequency increases proportional to Qs
- temperature dependence of order parameter

tipping angle dependence

- line shows prediction from Leggett equations
- excellent agreement with theory

in ordinary liquids $~~oldsymbol{R}_{
m d}=0$

first Leggett equation

Longitudinal resonance

SS 2023

MVCMP-1

$$\boldsymbol{B}_{\mathrm{rf}}(\omega) \uparrow \left(\begin{array}{c} \\ \end{array} \right) \uparrow \boldsymbol{B}_{0}$$

modulation of static field
$$B_0 \longrightarrow B_z = B_0 + B_{\rm rf}(\omega)$$

oscillation of $d \longrightarrow$ resorting force

because of $(\mathbf{S} \times \mathbf{B})_z = 0 \longrightarrow \mathrm{d}S_z/\mathrm{d}t = R_{\mathrm{d,z}}$

³He-A:
$$R_{
m d}
eq 0$$
 $|\uparrow\uparrow\rangle \longleftrightarrow |\downarrow\downarrow\rangle$

$$\implies \Delta S_z = \frac{\chi}{\mu_0 \gamma} \,\Delta B_0 \,\left(1 - \cos \Omega_{\rm A} t\right)$$

reduced, since 1/3 in $|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle$

³He-B:

$$\longrightarrow \Omega_{\rm B}^2(T) = \Omega_{\rm A}^2(T) \frac{5 \chi_{\rm B}}{2 \chi_{\rm A}} \stackrel{\text{$\widehat{}}}{\longrightarrow} \hat{}^{3}\text{He-N}$$

³He-A₁:

• no effect, since only one spin configuration $|\uparrow\uparrow\rangle$

macroscopic wave function

SS 2023

MVCMP-1

$$\Psi_{\alpha\beta}(\boldsymbol{r}) = \mathcal{A}_{\alpha\beta}(\boldsymbol{r}) e^{\mathrm{i}\varphi(\boldsymbol{r})}$$

18 degrees of freedom

i) quantization of circulation

⁴He circulation is quantized

³He behavior is more complicated

³He-A: \longrightarrow circulation is only irrotational under ideal conditions, which means without external influences

$$\longrightarrow \text{ if } \operatorname{curl} \boldsymbol{v}_{\mathrm{s}} \neq 0 \quad \longrightarrow \quad \boldsymbol{v}_{\mathrm{s}} \neq \frac{\hbar}{2m_3} \nabla \varphi$$

• in general curl
$$\boldsymbol{v}_{\mathrm{s}} = \frac{\hbar}{2m_3r} \, \widehat{\boldsymbol{l}} \cdot \left(\frac{\partial \widehat{\boldsymbol{l}}}{\partial \phi} \times \frac{\partial \widehat{\boldsymbol{l}}}{\partial r} \right)$$

phase can be adjusted by modification of *l* structure of vortices depend on *l*(*r*)

- Vinen-type experiment
- \sim 1 rad/s = 0.16 revolutions /s

experimental problem: rotation at very low temperatures

up to 3 revolutions / s

SS 2023 MVCMP-1

4.6 Macroscopic Quantum Effects

SS 2023

Investigation of vortices in ³He-A with NMR

frequency shift because of localized spin waves in core!

container diameter 2.5 mm

³He-B: only vortices with hard core $\xi_0 \approx 10... 100 \,\mathrm{nm}$

depends on pressure

c) single vortices with A phase in core

d) double vortices with two half-quantum of circulation and normal-fluid core

these vortices exist in distinct parts of the phase diagram

SS 2023 MVCMP-1

³He-B: phase diagram under rotation

spin waves resonances (collision-less)

NMR absorption (a.u.)

first order phase transition

under rotation — larger spacing because additional term in free energy

³He-B: phase diagram under rotation

spin waves resonances (collision-less)

→ 1st order transition

ii) Josephson effects

Josephson frequency

 $\omega_{
m J}=m_{3}\,\Delta p/(arrho\hbar)$

Josephson dc current

 $j = j_{\rm c} \sin(\Delta \varphi)$

DC-SHeQUID: Superfluid He QUantum Interference Devices

SS 2023

MVCMP-1

actual device

 $j_{\rm c} = 2j_{\rm c}^0 \left| \cos\left(\pi \frac{2\boldsymbol{\Omega} \cdot \boldsymbol{A}}{\kappa_3}\right) \right|$

DC-SHeQUID in Earth rotation

angular velocity of rotating system (earth)

, normal vector of loop

SS 2023

MVCMP-1

 $T = 0.8 T_{c}$ $T = 0.8 T_{c}$ He-B 0.5 0.0 -1 $2\Omega \cdot A / \kappa_{3}$

perfect agreement with theoretical expectations

³He-A much more complicated situation!

close to $T_c \ \rho_n$ can approximated by:

$$\varrho_{\mathrm{n},\perp} - \varrho = 2\varrho_{\mathrm{n},\parallel} = -\frac{7}{5}\zeta(3)\frac{m}{m^*}\varrho\left(\frac{\Delta_{\mathrm{m}}}{\pi k_{\mathrm{B}}T_{\mathrm{c}}}\right)^2$$
parallel to orbital momentum
perpendicular to orbital momentum

very low temperatures:

$$arrho_{\mathrm{n},\parallel} = \pi^2 rac{m}{m^*} \, arrho \, \left(rac{k_\mathrm{B} T_{\perp}}{arDelta_\mathrm{m}}
ight)^2 \qquad \propto T^2$$

$$arrho_{\mathrm{n},\perp} = rac{7}{15} \pi^4 \, rac{m}{m^*} \, arrho \, \left(rac{k_\mathrm{B} T_\mathrm{m}}{arDeta_\mathrm{m}}
ight)^4 ~ \propto T^4$$

Specific heat

³He-B
$$C_{\rm B}(T) = \sqrt{2\pi} D(E_{\rm F}) k_{\rm B} \Delta_{\rm B} \left(\frac{\Delta_{\rm B}}{k_{\rm B}T}\right)^{3/2} {\rm e}^{-\Delta_{\rm B}/(k_{\rm B}T)}$$

³He-A

$$C_{\rm A}(T) = rac{7}{5} \, \pi^2 igg(rac{T}{arDeta_{
m m}} igg)^2 \, C_{
m N}(T) \propto T^3$$
 $igcar{}{} igcar{}{} igcar{$

for
$$T\ll \Delta_{
m m}^{-}/k_{
m B}$$
 and $\widehat{m k}=\pm \widehat{m l}$

a) 2nd Sound

SS 2023

MVCMP-1

³He-B

$$v_2 = \sqrt{rac{arrho_{
m s}}{arrho_{
m n}}S^2\left(rac{\partial T}{\partial S}
ight)_{\!arrho}}$$

as in case of He-II

³He-A₁

$$v_2 = rac{\gamma \hbar}{2m^*} \sqrt{rac{arrho}{\chi} \, rac{arrho_{\mathrm{s},\perp}}{arrho_{\mathrm{n},\perp}}}$$

not only entropy wave but also spin wave

higher velocity as in case of ³He-B

4.8 Collective Excitations – Sound Propagation

SS 2023

MVCMP-1

d) order parameter modes

SS 2023

MVCMP-1

- collective excitations of Cooper pairs $\hbar\omega < 2\Delta$
- For the second second
- inner structure of Cooper pairs
- → 18 different order parameter modes
- $\hbar \omega > 2\Delta \longrightarrow$ pair breaking

name	energy $(\hbar\omega/\Delta_{ m m}(T))$
normal flapping	$\propto \sqrt{rac{4}{5}}rac{T}{T_{ m c}}$
clapping	1.23
superflapping	1.56 for $T \rightarrow 0$ 2 for $T \rightarrow T_{\rm c}$

d splits up in two perpendicular components

4.8 Collective Excitations – Order parameter modes

2

³He-A (examples of order parameter modes)

SS 2023

MVCMP-1

- damping of longitudinal zero sound ³He-A
- clapping resonance

4.8 Collective Excitations — Order parameter modes

(classification $\boldsymbol{J} = \boldsymbol{L} + \boldsymbol{S}$, J_z) ³He-B

SS 2023

MVCMP-1

- ħω Pair breaking 2Δ Imaginary squashing $\sqrt{12/5}\Delta$ Zeeman splitting $\sqrt{8/5}$ Δ Real squashing Collisionless Zero sound spin waves First ħ/τ sound Second sound 1/l1/ξ q with fixed sound frequencies, several modes transition into collision-less regime
- dispersion relation

arrows indicated expected peak position

can be excited at different temperatures

since gap decreases with temperature

measurement at higher frequency 60 MHz

SS 2023

MVCMP-1

- ▶ pair breaking just below *T*_c
- extremely sharp resonances at low temperatures

real squashing mode in magnetic field

- ► $J = 2 \longrightarrow$ multiplicity $2J + 1 \longrightarrow 5$ levels
- Zeeman splitting in magnetic field