

a) Flow through thin capillaries

SS 2023

MVCMP-1

example: ³He-B: flow through 1000 parallel channels, diameter $0.8 \ \mu m$, length $10 \ \mu m$

- significant flow without pressure
- j_s depends only weakly on pressure (as for He-II)
- j_s increases with decreasing temperature
 - $\longrightarrow \rho_s/\rho$ rises with decreasing temperature (as for He-II)
 - \rightarrow temperature dependence of the critical velocity $v_{\rm c}(T)$

b) Normalfluid density

Andronikashvili-type experiment ³He-B

- ρ_n/ρ increases with temperature (as for He-II)
- detailed temperature dependence different than for He-II

SS 2023 MVCMP-1

c) Viscosity

- --- theory for bulk ³He-B
- ► (1) diffusive scattering
- (2) diffusive scattering and Andreev reflection
 - interaction with wall dominates

• theory for bulk ³He-B fits well above 0.5 $T/T_{\rm c}$

• deviations below 0.5 $T/T_{\rm c}$

³He-A: much more complicated behavior:

influence of magnetic fields, vessel geometry, textures, velocity fields, ...

- Cooper pairs: S = 0

SS 2023

MVCMP-1

▲ ³He pairs: strong magnetic exchange interaction (pairs of quasi particles)

spin-triplet pairing S = 1 $S_z = 0, \pm 1$

$$|S, S_z\rangle \longrightarrow |1, +1\rangle = |\uparrow\uparrow\rangle,$$

$$|1, 0\rangle = \frac{1}{\sqrt{2}} \Big[|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle\Big]$$

$$|1, -1\rangle = |\downarrow\downarrow\rangle.$$

analog for orbital momentum L = 1 $L_z = 0, \pm 1$

general wave function: linear combinations $\longrightarrow 3 \times 3 = 9$ terms each with amplitude and phase

 \longrightarrow 2(2S + 1)(2L + 1) = 18 real components

 \rightarrow order parameter: 3×3 matrix with complex values

probability to find pairs
$$(\boldsymbol{k}\sigma_1, -\boldsymbol{k}\sigma_2) \longrightarrow \begin{pmatrix} \Delta_{\uparrow\uparrow}(\boldsymbol{k}) & \Delta_{\uparrow\downarrow}(\boldsymbol{k}) \\ \Delta_{\downarrow\uparrow}(\boldsymbol{k}) & \Delta_{\downarrow\downarrow}(\boldsymbol{k}) \end{pmatrix}$$

usual representation in case of ³He (a bit hard to see through)

order parameter representation by vector $oldsymbol{d}(\widehat{oldsymbol{k}})$

 \cdot represents the pair amplitude in direction m k

 $\begin{pmatrix} \Delta_{\uparrow\uparrow}(\boldsymbol{k}) & \Delta_{\uparrow\downarrow}(\boldsymbol{k}) \\ \Delta_{\downarrow\uparrow}(\boldsymbol{k}) & \Delta_{\downarrow\downarrow}(\boldsymbol{k}) \end{pmatrix} = \begin{pmatrix} -d_x(\boldsymbol{k}) + \mathrm{i}d_y(\boldsymbol{k}) & d_z(\boldsymbol{k}) \\ d_z(\boldsymbol{k}) & d_x(\boldsymbol{k}) + \mathrm{i}d_y(\boldsymbol{k}) \end{pmatrix}$

special properties of d :

SS 2023

MVCMP-1

- \blacktriangleright d_x , d_y and d_z are described by complex-valued parameters and transform like vectors under rotation
- pair amplitude: $|\boldsymbol{d}| = \sqrt{d_x^2 + d_y^2 + d_z^2} = \sqrt{n_s}$
- **spatial orientation** of spin wave function: $\hat{d} = d/|d|$
- direction of $d \longrightarrow d \cdot S = 0$ at any point of Fermi surface
- ▶ if d has only real components \longrightarrow $\langle S \rangle = 0$

general spin wave function expressed using d:

SS 2023 MVCMP-1

$$\begin{split} |\Psi\rangle &= d_x \Big[|\downarrow\downarrow\rangle - |\uparrow\uparrow\rangle \Big] + \mathrm{i} d_y \Big[|\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle \Big] + d_z \Big[|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \Big] \\ &= - \left(d_x - \mathrm{i} d_y \right) |\uparrow\uparrow\rangle + \left(d_x + \mathrm{i} d_y \right) |\downarrow\downarrow\rangle + d_z \Big[|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \Big] \\ & / \\ |S_z = +1\rangle \qquad |S_z = -1\rangle \qquad |S_z = 0\rangle \end{split}$$

association with superfluid phases

³He-A₁ (exist only in magnetic fields)

spins align parallel to applied magnetic field $(S_z = +1) \longrightarrow$ only pairs $|\uparrow\uparrow\rangle$

$$\longrightarrow d_x + \mathrm{i} d_y = 0 \qquad d_z = 0$$
$$\longrightarrow |\Psi_{\mathrm{A}_1}\rangle = -2 d_x |\uparrow\uparrow\rangle$$

³He-A

$$S_{z} = \pm 1 \longrightarrow d_{z} = 0$$

$$\longrightarrow |\Psi_{A}\rangle = -(d_{x} - id_{y})|\uparrow\uparrow\rangle + (d_{x} + id_{y})|\downarrow\downarrow\rangle \quad \text{ABM state} \qquad \text{Anderson, Brinkman, Morel 1961, 1963}$$

³He-B

 \longrightarrow general expression of wave function \longrightarrow quasi isotropic! total momentum: J = L + S = 0

$$\longrightarrow |\Psi_{\rm B}\rangle = d_x \Big[|\downarrow\downarrow\rangle - |\uparrow\uparrow\rangle \Big] + \mathrm{i} d_y \Big[|\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle \Big] + d_z \Big[|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \Big] \quad \text{BW state}$$

Bailian, Werthammer 1963

at the phase transition 3 symmetries are (partially) broken at once

gauge (phase)	\longleftrightarrow	superfluidity
spin momentum	\longleftrightarrow	ferromagnets
orbital momentum	\longleftrightarrow	liquid crystals

group theory: symmetry of ³He

SS 2023

MVCMP-1

 $G = SO(3)_L \times SO(3)_S \times U(1)_{\varphi}$ \backslash / \backslash

special orthogonal unitary Ablian non-Ablian rotational group

rotational group

- ferromagnet $SO(3)_S$ magnetization example:
- above T_c : isotropic (paramagnet)
- below T_c : one direction selected, but still rotational symmetry about axis of magnetization $SO(3)_S$ only partially broken $\longrightarrow R = U(1)$

residual symmetry

Two-dimensional model $G = U(1)_L \times U(1)_S$

SS 2023

MVCMP-1

(a)

(b)

(C)

Spin degree of freedom

φ

Orbital angular momentum degree of freedom

- isotope paramagnetic fluid a)
- liquid ferromagnet b)
- nematic liquid crystal C)
- ³He-A, ³He-A₁ d)
- e) ³He-B

Suprafluid ³He – a Model System for "all" Physics

SS 2023

MVCMP-1

Grigory E. Volovik

R

4.3 Quantum States of Superfluid ³He

Suprafluides ³He – a Model System for "all" Physics

Grigory E. Volovik

4.3 Quantum States of Superfluid ³He

- in A phase pairs can be broken at arbitrarily small energy still it is a superfluid!
 metastable persistent flow
- but: massive objects cannot be moved without friction in ³He-A

SS 2023

MVCMP-1

- like He-II stable persistent flow
- massive objects can be moved without friction in ³He-B for $v < v_c$

experimental determination of anisotropy of gap of ³He-A

propagation of longitudinal zero sound

³He–A

• in this experiment l is oriented by a small magnetic field 1.8 mT

ullet ϕ is the angle between $oldsymbol{B}$ and $oldsymbol{q}$

wave vector of sound wave

expected anisotropy is clearly observed

Textures:

SS 2023

MVCMP-1

- this term was introduced by de Gennes (similar to liquid crystals)
- denotes orientational effects of l and d
- texture depends on many things: dipole-dipole interaction,

magnetic and electric fields, geometry, ...

▶ often no uniform texture → texture domains

a) orientation of l, d without external field

SS 2023

MVCMP-1

³He-A: macroscopic orientation dipole-dipole energy is minimal, if $l \parallel d \cong l \perp S$

free energy: dipole-dipole interaction

$$F_{
m d} = -rac{3}{5} g_{
m d}(T) \left[1 - (\widehat{oldsymbol{d}} \cdot \widehat{oldsymbol{l}})^2
ight] = -rac{3}{5} g_{
m d}(T) \sin^2 \Theta$$

 $\bigvee_{g_{
m d}} pprox 10^{-10} (1 - T/T_{
m c}) \, {
m J} \, {
m cm}^{-3} \, \propto \, arrho_{
m s}$

4.4 Orderparameter Orientation — Textures

SS 2023

MVCMP-1

- b) external influences on the orientation of \boldsymbol{l} , \boldsymbol{d}
 - → changes of the texture

textures in ³He-A

SS 2023

MVCMP-1

preferred alignment and relative strength of different influences

	Preferred Alignment	$\Delta E/(1 - T/T_{\rm c}) ~({\rm J}{ m m}^{-3})$
magnetic dipole interaction	$\boldsymbol{d}\parallel\boldsymbol{l}$	$-6 imes 10^{-5}(\widehat{oldsymbol{d}}\cdot\widehat{oldsymbol{l}})^2$
electric field	$l\perp \mathcal{E}$	$2 imes 10^{-7} (\widehat{oldsymbol{l}} \cdot oldsymbol{\mathcal{E}})^2$
magnetic field	$d\perp B$	$5 \ (\widehat{oldsymbol{d}} \cdot oldsymbol{B})^2$
mass flow	$oldsymbol{l} \parallel oldsymbol{v}_{ ext{s}}$	$-10 \; (\widehat{m{l}} \cdot m{v}_{ m s})^2$
wall alignment	$l \parallel N$	$-30 \; (\widehat{\boldsymbol{l}} \cdot \widehat{\boldsymbol{N}})^2$

- most important are walls $l \parallel N$ and mass flow $l \parallel v_s$
- strength compared to intrinsic alignment: $\mathcal{E} = 17 \,\mathrm{V \,m^{-1}}, B = 3.3 \,\mathrm{mT} \text{ and } v_{\mathrm{s}} = 2.4 \,\mathrm{mm \, s^{-1}}$
- ► for in homogenies textures → gradient energy must be considered

111 A TELEVISION AND A TELEVISION

costs energy