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4.2 Relevance of the Two-Fluid Model

a) Flow through thin capillaries

example: 3He-B: flow through 1000 parallel channels, 
diameter            , length     

104 4 Superfluid 3He

The resonant frequency in the superfluid A phase is higher than the one
in the solid phase. The temperature-dependent shift is rather large. From this
we can conclude that there must be a large additional magnetic field present
in the superfluid phase that is absent in the case of normal-fluid 3He. In 1972
Leggett showed that the frequency shift originates from the magnetic dipole–
dipole interaction between the spins and that the macroscopic coherence in
the superfluid state leads to a large enhancement of this additional magnetic
field [155]. Note that a corresponding frequency shift of the transverse res-
onance is absent in the B phase. At the A–B phase transition, the shifted
line abruptly disappears. This striking difference has helped to identify the
microscopic nature of the two superfluid phases.

Longitudinal rf Fields

A further remarkable effect occurs in the nuclear resonance of 3He. In the su-
perfluid state there exists a resonant absorption at a well-defined frequency
with the rf magnetic field applied parallel to the dc magnetic field. In this
case, the energy splitting of the spin states is modulated by the rf field. In
normal-fluid 3He the application of an rf field results in relaxation processes
for the spin system to reach the momentary equilibrium. In 3He-A, how-
ever, no relaxation is observed, instead a resonant effect occurs. As we will
see in Sect. 4.5, this so-called longitudinal resonance is also a result of the
magnetic dipole–dipole interaction. A longitudinal resonance with somewhat
higher frequency is also observed in 3He-B. We will discuss the origin of these
phenomena in Sect. 4.5.

4.2 Relevance of the Two-Fluid Model

We have seen in Chap. 2 that the two-fluid model successfully describes many
properties of helium II. In this section we discuss some basic experiments
indicating that the superfluid phases of 3He can be described, at least to some
extent, with the phenomenological two-fluid model introduced in Sect. 2.2.
For low frequencies in the so-called macroscopic limit, a two-fluid model for
superfluid 3He has been derived based on a microscopic picture [156].

4.2.1 Flow Experiments

The anomalous behavior of liquid 4He flow through thin capillaries below Tλ

was historically an important indication for the superfluidity of helium II.
Figure 4.7 shows the result of corresponding experiments with 3He-B. In
this measurement the flow through 1000 parallel channels with a diameter of
0.8µm and a length of 10µm was investigated.

According to the Hagen–Poiseuille law (2.1) one would expect the mass
current js to depend linearly on the pressure gradient along the channels.
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Fig. 4.7. Mass flow density js of
3He-B through 1000 thin parallel
capillaries with a diameter of 0.8 µm
and a length of 10µm as a function
of the pressure gradient ∆p at dif-
ferent temperatures [157]

In contrast, the flow of 3He-B is nearly constant, similar to the behavior of
helium II. This can be explained by the frictionless flow of the superfluid com-
ponent, which is limited by a critical velocity. It is remarkable that even at
the lowest pressures a significant mass flow occurs. With decreasing temper-
ature the mass flow increases, as expected from the two-fluid model, because
the ratio !s/! becomes larger upon cooling. In addition, the temperature
dependence of js is influenced by the variation of the critical velocity.

4.2.2 Normal-Fluid Density

The central tenet of the two-fluid model is that the properties of the super-
fluid can be described in terms of interpenetrating normal-fluid and superfluid
components. Numerous studies of superfluid 3He have been performed to de-
termine the densities of these two components. For example, we shall discuss
in Sect. 4.8 the determination of !s/! by fourth-sound measurements.

0.0 0.5 1.0
Temperature T / T c

0.0

0.5

1.0

ρ n
/ρ

3He-B

Fig. 4.8. Normalized normal-fluid den-
sity !n/! of 3He-B as a function of the
reduced temperature T/Tc [158]

► significant flow without pressure
► js depends only weakly on pressure (as for He-II)
► js increases with decreasing temperature 

rises with decreasing temperature   (as for He-II)

temperature dependence of the critical velocity vc(T)
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b) Normalfluid density
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Andronikashvili-type experiment 3He-B 

►          increases with temperature (as for He-II)
► detailed temperature dependence different

106 4 Superfluid 3He

In an Andronikashvili-type experiment involving a torsional oscillator,
the temperature dependence of the normal-fluid density !n of 3He-B has
been measured. The results of this measurement are shown in Fig. 4.8. As
expected from the two-fluid model, below Tc the normal-fluid component
decreases monotonically with decreasing temperature and vanishes for T → 0.
However, there is an obvious difference in the temperature dependence of
!n/! compared to helium II. We will discuss the reason for this difference in
Sect. 4.7. The results of analogous experiments with 3He-A are much more
complex, since one finds a pronounced anisotropy (see Sect. 4.4.3).

4.2.3 Viscosity

The viscosity of the normal-fluid component of 3He-B has also been inves-
tigated in a number of different experiments. At the transition tempera-
ture, the viscosity is very high, but below Tc it drops quite rapidly (see
Fig. 3.5). Figure 4.9a shows the temperature dependence of the shear viscos-
ity of the normal-fluid component ηn as determined in different experiments
at pressures of about 20 bar. The solid line represents a curve calculated for
bulk 3He. The data taken with different apparatus agree only at high tem-
peratures T/Tc > 0.6. In this range, the theoretical curve also fits very well.
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Fig. 4.9. (a) Normalized viscosity of the normal-fluid component ηn of 3He-B as a
function of the reduced temperature T/Tc. The solid line represents a theoretical
curve for bulk 3He [159] without taking surface effects into account. The data
have been obtained in different experiments [160, 161]. (b) Normalized effective
shear viscosity of the normal-fluid component of superfluid 3He-B at 20 bar versus
reduced temperature T/Tc. The dashed line depicts the prediction for bulk 3He, the
solid lines have been calculated including slip effects, considering (1) diffusive and
(2) diffusive and Andreev scattering (for the latter process see Sect. 4.7.3) [162]. The
data (open circles) have been obtained using a torsional oscillator with a spacing
of 135µm [163]
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4.2 Relevance of the Two-Fluid Model

c) Viscosity

106 4 Superfluid 3He
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► theory for bulk 3He-B fits well above 0.5 T/Tc

► deviations below 0.5 T/Tc 

► --- theory for bulk 3He-B
► (1) diffusive scattering
► (2) diffusive scattering and Andreev reflection

interaction with wall dominates

3He-A: much more complicated behavior: 
influence of magnetic fields, vessel geometry, textures, velocity fields, …
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4.3 Quantum States of Superfluid 3He

Cooper pairs:  

3He pairs:       strong magnetic exchange interaction   (pairs of quasi particles)

108 4 Superfluid 3He

3He atoms. As discussed in Sects. 3.2 and 3.3, the Landau Fermi-liquid theory
is an adequate description of the normal-fluid phase 3He-N. Although it is
not possible to obtain the superfluid ground state by slowly switching on the
interactions between the particles – as in the case of the Fermi-liquid theory –
it is still possible to describe the superfluid state of 3He as occurring from
the formation of pairs of quasiparticles. The strongly repulsive core poten-
tial, together with the exchange interaction, favors a parallel alignment of the
spins in pairs of quasiparticles. We can roughly picture the attractive inter-
action between two quasiparticles in the following way: As we have seen in
Chap. 3, the nuclear magnetic susceptibility of normal 3He is extraordinarily
high at very low temperatures. This means that below about 100 mK, 3He
is magnetically soft and a nuclear spin can easily polarize its surrounding
ferromagnetically. Thus, parallel alignment of the quasiparticles in pairs is
energetically favored.

In contrast to conventional BCS superconductors, in which the Cooper
pairs have total spin S = 0, quasiparticle pairs are formed with S = 1 in
superfluid 3He. Since the spin wave function with S = 1 is symmetric upon
the exchange of the two particles, the exclusion principle only allows for
fermions odd quantum numbers for the orbital momentum (L = 1, 3, . . . ).
In superfluid 3He the pairs have S = 1 and L = 1. This type of pair formation
is known as spin triplet or odd parity pairing .

4.3.1 Spin-Triplet Pairing

The spin state of the quasiparticle pairs is determined by |S, Sz〉. Since
the z-component of a spin system with S = 1 has three possible values,
Sz = 0, ± 1, there are three different spin states:

|1,+1〉 = |↑↑〉 , (4.1a)

|1, 0 〉 =
1√
2

[
|↑↓〉 + |↓↑〉

]
, (4.1b)

|1,−1〉 = |↓↓〉 . (4.1c)

The most general wave function of the quasiparticle pairs in superfluid 3He
can be represented by a linear superposition of all three spin states.

Furthermore, since the angular momentum of the pair is a well-defined
quantity, the pair wave function can be expanded in terms of the three states
Lz = 0,±1 of the L = 1 manifold. The general expression for the wave
function can thus be written as a linear combination of 3 × 3 = 9 terms.
The amplitudes of the terms are complex-valued, since each has a magni-
tude and phase. In other words, the wave function of quasiparticle pairs in
superfluid 3He is determined by 2(2S + 1)(2L + 1) = 18 real-valued para-
meters. Therefore, the order parameter of superfluid 3He is not described by
a complex scalar, as in the case of helium II or in the case of conventional
superconductors, but by a 3 × 3 matrix with complex-valued components.

symmetric anti-symmetric

spin-triplet pairing
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not possible to obtain the superfluid ground state by slowly switching on the
interactions between the particles – as in the case of the Fermi-liquid theory –
it is still possible to describe the superfluid state of 3He as occurring from
the formation of pairs of quasiparticles. The strongly repulsive core poten-
tial, together with the exchange interaction, favors a parallel alignment of the
spins in pairs of quasiparticles. We can roughly picture the attractive inter-
action between two quasiparticles in the following way: As we have seen in
Chap. 3, the nuclear magnetic susceptibility of normal 3He is extraordinarily
high at very low temperatures. This means that below about 100 mK, 3He
is magnetically soft and a nuclear spin can easily polarize its surrounding
ferromagnetically. Thus, parallel alignment of the quasiparticles in pairs is
energetically favored.

In contrast to conventional BCS superconductors, in which the Cooper
pairs have total spin S = 0, quasiparticle pairs are formed with S = 1 in
superfluid 3He. Since the spin wave function with S = 1 is symmetric upon
the exchange of the two particles, the exclusion principle only allows for
fermions odd quantum numbers for the orbital momentum (L = 1, 3, . . . ).
In superfluid 3He the pairs have S = 1 and L = 1. This type of pair formation
is known as spin triplet or odd parity pairing .

4.3.1 Spin-Triplet Pairing

The spin state of the quasiparticle pairs is determined by |S, Sz〉. Since
the z-component of a spin system with S = 1 has three possible values,
Sz = 0, ± 1, there are three different spin states:

|1,+1〉 = |↑↑〉 , (4.1a)

|1, 0 〉 =
1√
2

[
|↑↓〉 + |↓↑〉

]
, (4.1b)

|1,−1〉 = |↓↓〉 . (4.1c)

The most general wave function of the quasiparticle pairs in superfluid 3He
can be represented by a linear superposition of all three spin states.

Furthermore, since the angular momentum of the pair is a well-defined
quantity, the pair wave function can be expanded in terms of the three states
Lz = 0,±1 of the L = 1 manifold. The general expression for the wave
function can thus be written as a linear combination of 3 × 3 = 9 terms.
The amplitudes of the terms are complex-valued, since each has a magni-
tude and phase. In other words, the wave function of quasiparticle pairs in
superfluid 3He is determined by 2(2S + 1)(2L + 1) = 18 real-valued para-
meters. Therefore, the order parameter of superfluid 3He is not described by
a complex scalar, as in the case of helium II or in the case of conventional
superconductors, but by a 3 × 3 matrix with complex-valued components.

general wave function: linear combinations                                    terms each with amplitude and phase 

real components

order parameter:            matrix  with complex values
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usual representation in case of 3He (a bit hard to see through)

order parameter representation by vector 
represents the pair amplitude in direction 

special properties of    :

►  are described by complex-valued parameters and transform like vectors under rotation
► pair amplitude: 
► spatial orientation of spin wave function:   

► direction of                                      at any point of Fermi surface
► if     has only real components 
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general spin wave function expressed using    :
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association with superfluid phases

3He-A1

3He-A

3He-B

(exist only in magnetic fields)

spins align parallel to applied magnetic field                                   only pairs 
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For mathematical convenience, Balian and Werthamer introduced a vec-
tor representation d(k̂) for this order parameter. Since this notation is widely
used in the literature, we also adopt it. The vector d(k̂) represents the pair
amplitude for a particular direction k̂ defining a point on the Fermi surface –
or in other words, it defines the amplitude of the quasiparticle condensate
for a point on the Fermi surface. The components dx, dy and dz are each
described by three complex-valued parameters and transform under rotation
like a vector. The direction of d is such that its projection onto the direction
of the spin of the quasiparticle pairs is zero for any point of the Fermi surface,
i.e., d ·S = 0. We would like to point out that this not only defines the plane
in which d lies, but fully determines the direction of d, because d is a vec-
tor with complex components. Furthermore, we note that, in the case where
d has only real-valued components, the expectation value of S is zero. The
definition of d implies that it represents a unique direction in spin space, as
well as the amplitude of the quasiparticle pairs for a particular direction k̂.
Using d the general pair wave function can be written as

|Ψ〉 = dx

[
|↓↓〉 − |↑↑〉

]
+ idy

[
|↓↓〉 + |↑↑〉

]
+ dz

[
|↑↓〉 + |↓↑〉

]

= − (dx − idy) |↑↑〉 + (dx + idy) |↓↓〉 + dz

[
|↑↓〉 + |↓↑〉

]
. (4.2)

In principle, the internal degrees of freedom of the spin-triplet pairing al-
lows for many different quasiparticle pair states and hence superfluid phases.
Of the different states, the one with the lowest energy for a given set of ex-
ternal parameters will be realized. Using the general wave function (4.2) as
a starting point, we will discuss the pair states of the different superfluid
phases of 3He that have actually been observed.

3He-A1

The simplest case is that of 3He-A1, which only exists in magnetic fields. The
spins are aligned parallel to the applied magnetic field (Sz = +1) that means
only pairs in the state |↑↑〉 exist and that the components of d must obey
the relations dx + idy = 0 and dz = 0. In this case, the pair wave function
reduces to

|ΨA1〉 = −2 dx |↑↑〉 . (4.3)

3He-A

The wave function of the A phase is a linear combination of the states
Sz = ±1 and thus the dz component must be zero. This corresponds to a pair
state predicted by Anderson, Brinkman and Morel [167,168] and is therefore
often referred to as the ABM state. The wave function of this state is given
by

|ΨA〉 = −(dx − idy) |↑↑〉 + (dx + idy) |↓↓〉 . (4.4)

ABM state Anderson, Brinkman, 
Morel 1961, 1963

general expression of wave function quasi isotropic!  total momentum: 

BW state

Bailian, Werthammer
1963
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at the phase transition 3 symmetries are (partially) broken at once

gauge  (phase)                          superfluidity
spin momentum                         ferromagnets
orbital momentum                      liquid crystals

group theory: symmetry of 3He

special orthogonal
non-Ablian
rotational group

unitary Ablian 
rotational group

example: ferromagnet                 magnetization 

above Tc  :     isotropic  (paramagnet)
below Tc  :     one direction selected, but still rotational symmetry about axis of magnetization

only partially broken   

residual symmetry
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Two-dimensional model

4.3 Quantum States of Pairs of Coupled Quasiparticles 111

Spin degree

of freedom

Orbital angular

momentum degree

of freedom

(a) (b) (c)

(d) (e)

Fig. 4.10. Illustration of disorder and long-range order of a two-dimensional model
fluid with an orbital and a spin degree of freedom. After [170]

As we shall see in Sect. 4.4.1, the intrinsically preferred alignment of d, rep-
resenting the spin space, is parallel to the orbital angular momentum vector l
of the quasiparticle pairs.

In contrast, as illustrated in Fig. 4.10e, in the B phase none of the degrees
of freedom exhibit a long-range order, but the relative orientation of spin and
orbital moments of a pair is fixed. Therefore, one refers to this as a broken
relative spin-orbit symmetry. The fixed angle between the spin and orbital
moments is determined by the small magnetic dipole interaction in 3He-B as
first pointed out by Leggett [155]. This angle is often referred to as the Leggett
angle. Generally speaking, a broken relative symmetry occurs if a system is
invariant under transformations given by a certain linear combination of two
symmetry operations, but is not invariant under any deviation from this linear
combination. An intriguing point here is that such a system will respond in
ways characteristic of a system breaking both symmetries, but mixes up one
and the other. For 3He-B, this means that its response to mechanical rotations
is, within certain limits, indistinguishable from its response to magnetic fields,
representing spin-space rotation. For example, one can mechanically generate
spin waves and NMR in the B phase or, vice versa, magnetically induce shear
instabilities.

In the A phase, the relative gauge-orbit symmetry is broken, which allows
the system, for example, to change the phase of the macroscopic wave function
by mechanical rotation. It also has interesting consequences for the mass
flow of 3He-A. Superfluid mass current and superfluid velocity vs are not
necessarily parallel, because the superfluid mass current explicitly depends
on the direction of the orbital angular momentum l (see Sect. 4.6.1).

a) isotope paramagnetic fluid
b) liquid ferromagnet
c) nematic liquid crystal

d) 3He-A, 3He-A1

e) 3He-B
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Suprafluid 3He – a Model System for „all“ Physics
2 INTRODUCTION: GUT AND ANTI-GUT
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Fig. 1.1. Grand Unification and anti-Grand-Unification schemes in the Stan-
dard Model and in superfluid 3He.

U(1)×SU(2)×SU(3). Below about 200 GeV the electroweak symmetry U(1)×
SU(2) is violated, and only the group of electromagnetic and strong interactions,
U(1) × SU(3), survives (see Fig. 1.1 and Sec. 12.2).

The less traditional view is quite the opposite: it is argued that starting from
some energy scale (probably the Planck energy scale) one finds that the higher
the energy the poorer are the symmetries of the physical laws, and finally even the
Lorentz invariance and gauge invariance will be smoothly violated (Froggatt and
Nielsen 1991; Chadha and Nielsen 1983). From this point of view, the relativistic
quantum field theory (RQFT) is an effective theory (Polyakov 1987; Weinberg
1999; Jegerlehner 1998). It is an emergent phenomenon arising as a fixed point in
the low-energy corner of the physical vacuum whose nature is inaccessible from
the effective theory. In the vicinity of the fixed point the system acquires new
symmetries which it did not have at higher energy. It is quite possible that even
such symmetries as Lorentz symmetry and gauge invariance are not fundamental,
but gradually appear when the fixed point is approached. From this viewpoint it
is also possible that Grand Unification schemes make no sense if the unification
occurs at energies where the effective theories are no longer valid.

Both scenarios occur in condensed matter systems. In particular, superfluid
3He-A provides an instructive example. At high temperature the 3He gas and at
lower temperature the normal 3He liquid have all the symmetries that ordinary
condensed matter can have: translational invariance, global U(1) group and two
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U(1)×SU(2)×SU(3). Below about 200 GeV the electroweak symmetry U(1)×
SU(2) is violated, and only the group of electromagnetic and strong interactions,
U(1) × SU(3), survives (see Fig. 1.1 and Sec. 12.2).

The less traditional view is quite the opposite: it is argued that starting from
some energy scale (probably the Planck energy scale) one finds that the higher
the energy the poorer are the symmetries of the physical laws, and finally even the
Lorentz invariance and gauge invariance will be smoothly violated (Froggatt and
Nielsen 1991; Chadha and Nielsen 1983). From this point of view, the relativistic
quantum field theory (RQFT) is an effective theory (Polyakov 1987; Weinberg
1999; Jegerlehner 1998). It is an emergent phenomenon arising as a fixed point in
the low-energy corner of the physical vacuum whose nature is inaccessible from
the effective theory. In the vicinity of the fixed point the system acquires new
symmetries which it did not have at higher energy. It is quite possible that even
such symmetries as Lorentz symmetry and gauge invariance are not fundamental,
but gradually appear when the fixed point is approached. From this viewpoint it
is also possible that Grand Unification schemes make no sense if the unification
occurs at energies where the effective theories are no longer valid.

Both scenarios occur in condensed matter systems. In particular, superfluid
3He-A provides an instructive example. At high temperature the 3He gas and at
lower temperature the normal 3He liquid have all the symmetries that ordinary
condensed matter can have: translational invariance, global U(1) group and two
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Energy gap

maximal gap orbital momentum
rotation of spin coordinates
relative to vector of pair 
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3He−B
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He−A3

E

l

∆

F

A

Fig. 4.11. Schematic illustration of the
energy gap (tinted grey) in 3He-A (left)
and 3He-B (right)

gap of the A phase is anisotropic, the gap ∆B of the B phase is quasi-isotropic,
just as it is in conventional s-wave superconductors. It is referred to as quasi-
isotropic, because the small magnetic dipole interaction leads to a rotation of
the spin coordinates relative to the orbital coordinates by an angle Θ ≈ 104◦

in 3He-B. This rotation of d̂ about an axis n̂ is described by d̂ =
↔
R (n̂,Θ)k̂,

where
↔
R represents the rotation tensor. The definition of the energy gap of

the B phase corresponding to (4.6) is given by

d(k) = ∆B(T ) d̂ = ∆B(T )
↔
R (n̂,Θ) k̂ . (4.7)

In the weak coupling limit the energy gap of the B phase should be given by
∆B ≈ 1.76 kB Tc for T → 0.

The most prominent feature of (4.6) is that the energy for breaking pairs
becomes zero at two particular points in momentum space, at k = ±kFl̂. This
has consequences for many properties of 3He-A (see Sect. 4.7). Consider, for
example, a massive object moving in the liquid with velocity v. It will always
be able to break pairs even if it moves with an arbitrarily low velocity. Thus,
it experiences a frictional force in the liquid. Nevertheless, the A phase is still
superfluid since it can flow without friction! At least metastable persistent
mass currents have been observed experimentally in 3He-A.

The possibility of easily breaking pairs does not necessarily prevent su-
perflow. The emitted fermionic quasiparticles of broken pairs, so-called Bo-
goliubov quasiparticles, fill all the negative energy levels Ek − k · v < 0, and
after that, further emission stops due to the Pauli exclusion principle. Here,
Ek is given by Ek =

√
η2

k + ∆2
A(k), where ηk represents the kinetic energy

of an unpaired quasiparticle relative to the Fermi energy (see Sects. 10.3.2
and 10.5). For a moving massive object this is not the case, since it occupies
only a finite part of the volume of the liquid. The quasiparticles created by
the moving object cannot fill all the negative energy levels. As a result, the
emission process by a massive object is continuous and such an object will
experience a frictional force in the liquid.

In contrast, 3He-B – like helium II – is superfluid in both senses: it sus-
tains persistent flow without friction and an external body can also move
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gap of the A phase is anisotropic, the gap ∆B of the B phase is quasi-isotropic,
just as it is in conventional s-wave superconductors. It is referred to as quasi-
isotropic, because the small magnetic dipole interaction leads to a rotation of
the spin coordinates relative to the orbital coordinates by an angle Θ ≈ 104◦

in 3He-B. This rotation of d̂ about an axis n̂ is described by d̂ =
↔
R (n̂,Θ)k̂,

where
↔
R represents the rotation tensor. The definition of the energy gap of

the B phase corresponding to (4.6) is given by

d(k) = ∆B(T ) d̂ = ∆B(T )
↔
R (n̂,Θ) k̂ . (4.7)

In the weak coupling limit the energy gap of the B phase should be given by
∆B ≈ 1.76 kB Tc for T → 0.

The most prominent feature of (4.6) is that the energy for breaking pairs
becomes zero at two particular points in momentum space, at k = ±kFl̂. This
has consequences for many properties of 3He-A (see Sect. 4.7). Consider, for
example, a massive object moving in the liquid with velocity v. It will always
be able to break pairs even if it moves with an arbitrarily low velocity. Thus,
it experiences a frictional force in the liquid. Nevertheless, the A phase is still
superfluid since it can flow without friction! At least metastable persistent
mass currents have been observed experimentally in 3He-A.

The possibility of easily breaking pairs does not necessarily prevent su-
perflow. The emitted fermionic quasiparticles of broken pairs, so-called Bo-
goliubov quasiparticles, fill all the negative energy levels Ek − k · v < 0, and
after that, further emission stops due to the Pauli exclusion principle. Here,
Ek is given by Ek =

√
η2

k + ∆2
A(k), where ηk represents the kinetic energy

of an unpaired quasiparticle relative to the Fermi energy (see Sects. 10.3.2
and 10.5). For a moving massive object this is not the case, since it occupies
only a finite part of the volume of the liquid. The quasiparticles created by
the moving object cannot fill all the negative energy levels. As a result, the
emission process by a massive object is continuous and such an object will
experience a frictional force in the liquid.

In contrast, 3He-B – like helium II – is superfluid in both senses: it sus-
tains persistent flow without friction and an external body can also move

BCS theory

isotropicnon-isotropic

► in A phase pairs can be broken at arbitrarily 
      small energy  …. still it is a superfluid!
                  metastable persistent flow  

► but: massive objects cannot be moved 
without friction in 3He-A

► like He-II            stable persistent flow  

► massive objects can be moved 
without friction in 3He-B for

4.3 Quantum States of Pairs of Coupled Quasiparticles 111

Spin degree

of freedom

Orbital angular

momentum degree

of freedom

(a) (b) (c)

(d) (e)

Fig. 4.10. Illustration of disorder and long-range order of a two-dimensional model
fluid with an orbital and a spin degree of freedom. After [170]

As we shall see in Sect. 4.4.1, the intrinsically preferred alignment of d, rep-
resenting the spin space, is parallel to the orbital angular momentum vector l
of the quasiparticle pairs.

In contrast, as illustrated in Fig. 4.10e, in the B phase none of the degrees
of freedom exhibit a long-range order, but the relative orientation of spin and
orbital moments of a pair is fixed. Therefore, one refers to this as a broken
relative spin-orbit symmetry. The fixed angle between the spin and orbital
moments is determined by the small magnetic dipole interaction in 3He-B as
first pointed out by Leggett [155]. This angle is often referred to as the Leggett
angle. Generally speaking, a broken relative symmetry occurs if a system is
invariant under transformations given by a certain linear combination of two
symmetry operations, but is not invariant under any deviation from this linear
combination. An intriguing point here is that such a system will respond in
ways characteristic of a system breaking both symmetries, but mixes up one
and the other. For 3He-B, this means that its response to mechanical rotations
is, within certain limits, indistinguishable from its response to magnetic fields,
representing spin-space rotation. For example, one can mechanically generate
spin waves and NMR in the B phase or, vice versa, magnetically induce shear
instabilities.

In the A phase, the relative gauge-orbit symmetry is broken, which allows
the system, for example, to change the phase of the macroscopic wave function
by mechanical rotation. It also has interesting consequences for the mass
flow of 3He-A. Superfluid mass current and superfluid velocity vs are not
necessarily parallel, because the superfluid mass current explicitly depends
on the direction of the orbital angular momentum l (see Sect. 4.6.1).
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Fig. 4.10. Illustration of disorder and long-range order of a two-dimensional model
fluid with an orbital and a spin degree of freedom. After [170]

As we shall see in Sect. 4.4.1, the intrinsically preferred alignment of d, rep-
resenting the spin space, is parallel to the orbital angular momentum vector l
of the quasiparticle pairs.

In contrast, as illustrated in Fig. 4.10e, in the B phase none of the degrees
of freedom exhibit a long-range order, but the relative orientation of spin and
orbital moments of a pair is fixed. Therefore, one refers to this as a broken
relative spin-orbit symmetry. The fixed angle between the spin and orbital
moments is determined by the small magnetic dipole interaction in 3He-B as
first pointed out by Leggett [155]. This angle is often referred to as the Leggett
angle. Generally speaking, a broken relative symmetry occurs if a system is
invariant under transformations given by a certain linear combination of two
symmetry operations, but is not invariant under any deviation from this linear
combination. An intriguing point here is that such a system will respond in
ways characteristic of a system breaking both symmetries, but mixes up one
and the other. For 3He-B, this means that its response to mechanical rotations
is, within certain limits, indistinguishable from its response to magnetic fields,
representing spin-space rotation. For example, one can mechanically generate
spin waves and NMR in the B phase or, vice versa, magnetically induce shear
instabilities.

In the A phase, the relative gauge-orbit symmetry is broken, which allows
the system, for example, to change the phase of the macroscopic wave function
by mechanical rotation. It also has interesting consequences for the mass
flow of 3He-A. Superfluid mass current and superfluid velocity vs are not
necessarily parallel, because the superfluid mass current explicitly depends
on the direction of the orbital angular momentum l (see Sect. 4.6.1).
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experimental determination of anisotropy of gap of 3He-A

114 4 Superfluid 3He

within this fluid without dissipation below a certain critical velocity. For pair
breaking, the critical velocity is given by vc = ∆B/kF.

The anisotropy of the energy gap in 3He-A has been nicely demonstrated
in ultrasound experiments [173]. It was found in these experiments that it
is possible to orient the direction of the orbital angular momentum l by a
rather small magnetic field, typically around 2 mT. In this way, it was easy to
vary the angle between the direction of the sound propagation and the orbital
angular momentum. Figure 4.12 shows the velocity of longitudinal zero sound
and its attenuation as a function of the angle φ between an external magnetic
field B and the wave vector q of the sound wave. The observed variation
agrees with the expected anisotropy.
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Fig. 4.12. (a) Velocity and (b) atten-
uation of longitudinal zero sound in
3He-A at 20.24 MHz as a function of
the angle φ between the wave vector q
of the sound wave and the external
magnetic field B [173]. The experi-
ment has been performed at a pres-
sure of 26 bar and a temperature of
just 48µK below Tc

4.4 Order-Parameter Orientation – Textures

As we have already seen, 3He-A shows an anisotropic behavior in many exper-
iments. In the discussion of the orientational dependence of the properties of
the A phase, one has to consider not only internal forces that determine the
directions of l and d, but also external electric and magnetic fields, velocity
fields and the influence of the container walls. As a first step, we discuss the
relative orientation of l and d without external fields as determined by the
magnetic dipole–dipole interaction of the nuclear spins of the quasiparticle
pairs. Later, we shall see that d and l are responsive to various external influ-
ences such as the boundary conditions that, in general, lead to a nonuniform
alignment of the order parameter. The resulting spatial structure of the order
parameter is called a texture. The concept of textures was originally intro-
duced by de Gennes to describe orientational effects in liquid crystals [174].

propagation of longitudinal zero sound 

► in this experiment    is oriented by a small magnetic field 1.8 mT

►    is the angle between       and  

► expected anisotropy is clearly observed

wave vector of sound wave
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4.4 Orderparameter Orientation － Textures

Textures:

► this term was introduced by de Gennes (similar to liquid crystals)
► denotes orientational effects of     and
► texture depends on many things: dipole-dipole interaction,

► often no uniform texture            texture domains
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Fig. 4.10. Illustration of disorder and long-range order of a two-dimensional model
fluid with an orbital and a spin degree of freedom. After [170]

As we shall see in Sect. 4.4.1, the intrinsically preferred alignment of d, rep-
resenting the spin space, is parallel to the orbital angular momentum vector l
of the quasiparticle pairs.

In contrast, as illustrated in Fig. 4.10e, in the B phase none of the degrees
of freedom exhibit a long-range order, but the relative orientation of spin and
orbital moments of a pair is fixed. Therefore, one refers to this as a broken
relative spin-orbit symmetry. The fixed angle between the spin and orbital
moments is determined by the small magnetic dipole interaction in 3He-B as
first pointed out by Leggett [155]. This angle is often referred to as the Leggett
angle. Generally speaking, a broken relative symmetry occurs if a system is
invariant under transformations given by a certain linear combination of two
symmetry operations, but is not invariant under any deviation from this linear
combination. An intriguing point here is that such a system will respond in
ways characteristic of a system breaking both symmetries, but mixes up one
and the other. For 3He-B, this means that its response to mechanical rotations
is, within certain limits, indistinguishable from its response to magnetic fields,
representing spin-space rotation. For example, one can mechanically generate
spin waves and NMR in the B phase or, vice versa, magnetically induce shear
instabilities.

In the A phase, the relative gauge-orbit symmetry is broken, which allows
the system, for example, to change the phase of the macroscopic wave function
by mechanical rotation. It also has interesting consequences for the mass
flow of 3He-A. Superfluid mass current and superfluid velocity vs are not
necessarily parallel, because the superfluid mass current explicitly depends
on the direction of the orbital angular momentum l (see Sect. 4.6.1).

magnetic and electric fields, geometry, …
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Soon after the discovery of the A and B phases at
Cornell, low-temperature laboratories all over the world
began a broad effort to explore their properties. Con-
densed matter theorists became very actively involved in
explaining the observed effects and predicting new phe-
nomena. One of the main tasks to be undertaken was
the proper identification of the respective order param-
eters corresponding to 3He A and 3He B. In our experi-
mental group, we adopted the working hypothesis that
3He A corresponded to the p-wave equal spin pairing
state first considered by Anderson and Morel (1961) and
that 3He B corresponded to the state suggested by
Balian and Werthamer (1963). As mentioned in the pre-
vious section, these states were at least consistent with
the Cornell discovery experiments.

Both the Anderson-Morel and the Balian-Werthamer
states of p-wave pairing are states with total L51 and
total S51. The Anderson-Morel state is an orbital m

51 state along some direction l̂ and a spin m50 state
along some direction d̂ . Recall that we introduced d̂ as
the direction of zero spin projection earlier in our dis-
cussion. We express the Anderson-Morel order param-
eter as the product between an orbital part in configu-
ration or momentum space and a part in spin space, i.e.,

cAM5(orbital part)3(spin part).

If we consider only angular dependence, the Anderson-
Morel order parameter is defined as

cAM;e
iwsinuF 1

&
~#"1"# !G ,

where the spherical harmonic Y11;e
iwsinu defines a po-

lar axis l̂ corresponding to the direction of the pair or-

bital angular momentum. In the above expression for
the spin-triplet pair-wave function the spin part appears
along the d̂ axis, so that only the (#"1"#) component
occurs. For the case of the Anderson-Morel state, we see
that the spin part of the order parameter does not de-
pend on any orbital variables but is a constant in orbital
space; i.e., in k space, every point on the Fermi surface
has the same d̂ . We discussed earlier how a classical
argument involving the dipolar interaction combined
with spontaneously broken spin-orbit symmetry would
favor the state for which l̂i d̂ . Taking this into account
we sketch the Anderson-Morel order parameter in k

space in Figure 13(a). The small arrows correspond to
the d̂ vector and the large arrow corresponds to l̂ . One
of the striking features of this order parameter is the
orbital anisotropy, with nodes at u50 and u5p . The
behavior of the BCS energy gap follows that of the or-
der parameter, so that gap nodes also appear at u50
and p as shown in Figure 13(b). The full three-
dimensional picture is obtained by a revolution about
the l̂ axis. The patterns in the orientation of l̂ as a func-
tion of position in the liquid are highly analogous to
patterns found in liquid crystals. These patterns have
been named textures. Ambegaokar, de Gennes and
Rainer (1974) have shown that the l̂ vector will be per-

pendicular to the walls of the containers. This boundary
condition plays an important role in determining the
texture pattern in liquid 3He A. The direction of l̂ is
also sensitive to flow and to the applied magnetic field.

The spin state 1/& ("#1#") can be rotated in spin
space to give the equal spin pairing version of the
Anderson-Morel order parameter,

cAM;e
iwsinu@~ u""&1e

iF
u##&)],

where F is a phase factor, which is helpful in discussing
longitudinal NMR experiments. This representation
shows that the Anderson-Morel order parameter can be
characterized by a spin configuration with only u""& and

FIG. 12. A schematic P-T-H diagram showing the general to-
pology of the phase diagram of the superfluid phases, A , A1
and B of liquid 3He. The A1 phase occurs between the sur-
faces labeled A1 and A2 . The A phase occurs at temperatures
below the boundary labeled A2 . The boundary between
phases A and B is labeled B . The surface labeled S corre-
sponds to the melting curve.

FIG. 13. (a) A three-dimensional representation of the
Anderson-Morel order parameter. The vector l̂ at the center
defines the axis of the order parameter. Along this axis, the
amplitude is zero corresponding to sinu dependence where u is
the polar angle with respect to l̂ . The vector d̂ has the same

direction for all points on the Fermi surface. (b) The aniso-
tropic energy gap is indicated by the shaded region. The two
nodes along l̂ are clearly shown.
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Fig. 4.13. Variation of Fd in (a) 3He-A
and (b) 3He-B

locally at each point of the Fermi surface by an angle Θ about the vector n̂.
The dipolar free energy in the B phase is given by

Fd =
8
5

gd(T )
(

cos Θ +
1
4

)2

, (4.9)

which means that the minimum dipole–dipole energy is for a rotation angle
Θ = arccos (−1/4) ≈ 104◦. The variation of Fd in 3He-B with Θ is plotted
in Fig. 4.13b.

Although this subtle anisotropy caused by the magnetic dipole–dipole in-
teraction leads to textural effects in the B phase, the overall orbital symmetry
of the order parameter is still spherical.

4.4.2 Textures in 3He-A

External fields and boundary conditions change the free energy of 3He-A
and influence the order-parameter orientation. In the presence of container
walls or any type of residual field, the order-parameter alignment will not be
uniform, since the perturbing influences tend to orient the order parameter
locally in different, often competing, ways. A nonuniform orientation of the
order parameter is opposed by the internally preferred alignment, because any
bending of the order-parameter field causes an increase in the free energy of
the system. The competition between orientational and bending forces leads
to a continuous configuration for the order-parameter field, called a texture.

In general, the walls of the container play a very important role in deter-
mining the configuration of the order parameter. The fact that walls have an
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locally at each point of the Fermi surface by an angle Θ about the vector n̂.
The dipolar free energy in the B phase is given by

Fd =
8
5

gd(T )
(

cos Θ +
1
4

)2

, (4.9)

which means that the minimum dipole–dipole energy is for a rotation angle
Θ = arccos (−1/4) ≈ 104◦. The variation of Fd in 3He-B with Θ is plotted
in Fig. 4.13b.

Although this subtle anisotropy caused by the magnetic dipole–dipole in-
teraction leads to textural effects in the B phase, the overall orbital symmetry
of the order parameter is still spherical.

4.4.2 Textures in 3He-A

External fields and boundary conditions change the free energy of 3He-A
and influence the order-parameter orientation. In the presence of container
walls or any type of residual field, the order-parameter alignment will not be
uniform, since the perturbing influences tend to orient the order parameter
locally in different, often competing, ways. A nonuniform orientation of the
order parameter is opposed by the internally preferred alignment, because any
bending of the order-parameter field causes an increase in the free energy of
the system. The competition between orientational and bending forces leads
to a continuous configuration for the order-parameter field, called a texture.

In general, the walls of the container play a very important role in deter-
mining the configuration of the order parameter. The fact that walls have an

3He-A
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u##& states, as mentioned in our earlier discussions. The
A1 phase has the orbital properties including the gap
nodes described by the Anderson-Morel state but has
only u""& spin pairs.

We shall now discuss the Balian-Werthamer state.
The simplest possible Balian-Werthamer state is the
3
P0 state, represented by the wave function

cBW;Y1,21u""&1Y10u"#1#"&1Y11u##&

so that all three spin species are included. Hence we do
not have an equal spin pairing state. Since the 3

P0 state
has total J50, it will be a spherically symmetric state.
When this is taken into account, it is customary to
specify this simple Balian-Werthamer state in terms of
the vector d̂ by d̂(k)5constant3k̂ which has the neces-
sary spherical symmetry. Notice that in contrast to the
Anderson-Morel state, d̂ depends on k̂ .

The simple state discussed above does not perfectly
represent the order parameter of superfluid 3He B. As
far as the most important interactions are concerned, the
energy will not change when the spin and orbital coor-
dinates are rotated with respect to one another. Thus we
could rotate d̂ about some axis n̂ to get d̂5Rk̂ , where
R is an arbitrary rotation about an arbitrary axis n̂ for
superfluid 3He B. This degeneracy is broken when the
small dipolar interaction is taken into account, which
results in a rotation of the spin coordinates relative to
the orbital coordinates by an angle of 104° as discussed
below. This subtle anisotropy allows textures associated
with liquid-crystal-like behavior to be observed in super-
fluid 3He B. Nevertheless the overall orbital symmetry
of the order parameter is still spherical, leading to an
isotropic energy gap similar to that of s-wave supercon-
ductors. Figure 14(a) shows the order parameter with
d̂ twisted about some axis n̂ by 104°, and Figure 14(b)
shows the isotropic energy gap.

I have now outlined the basic properties of the
Anderson-Morel and the Balian-Werthamer states

which were provisionally identified with 3He A and
3He B, respectively. An important question still re-
mained to be addressed. The early studies of the pos-
sible order parameters of p-wave pairing showed that
the Balian-Werthamer state would have a lower free en-
ergy and therefore should always be the preferred state.
On the other hand the existence of an Anderson-Morel-
type state in 3He was firmly established by the experi-
ments. The apparent discrepancy was resolved by
Anderson and Brinkman (1973), who introduced the
idea of spin fluctuation feedback which led to a mecha-
nism for a stable Anderson-Morel phase. (Recall our
previous discussion of the possible role of spin fluctua-
tions by Layzer and Fay.) Since the pairing mechanism
is intrinsic, thus involving the 3He quasiparticles them-
selves, any modification in the status of the helium qua-
siparticles should affect the pairing mechanism, includ-
ing the onset of pairing itself. Anderson and Brinkman
showed that this feedback effect could indeed lead to a
stable Anderson-Morel phase in zero magnetic field,
which was renamed the Anderson-Brinkman-Morel
phase or ABM state. These studies led to the general
acceptance that the Anderson-Brinkman-Morel state
corresponded to 3He A and the Balian-Werthamer state
corresponded to 3He B. More recent comprehensive
studies of a variety of pairing mechanisms conducted by
Rainer and Serene (1976) have not changed this conclu-
sion.

No general discussion of superfluid 3He would be
complete without a treatment of the macroscopic
nuclear dipole interaction and its role in the dramatic
NMR effects observed experimentally. The general
scheme for calculating the dipolar interaction is to take a
quantum mechanical average of the dipolar Hamiltonian
over the pair wave function (order parameter). It can
then be shown that the dipolar free energies are given
by

DFD5H
2 3

5 gD~T !@12~dW •lW!2# , A phase,

4
5 gD~T !H cos u12 cos2 u1

3
4J , B phase,

where

gD'1023S 12
T

Tc

D ergs/cm3.

Therefore, to minimize the free energy, lW and dW must be
parallel for the case of the ABM state (A phase) in
agreement with our earlier qualitative discussion. For
the Balian-Werthamer (BW) state, a simple calculation
shows that the dipole energy is minimized for u
5cos21(2 1

4)5104° justifying our earlier statement.
Making use of the macroscopic dipolar interaction,

Leggett (1975) derived a set of coupled equations giving
a complete description of the spin dynamics of super-
fluid 3He. His equations of motion are

SW
˙

5gSW 3HW 1RD~T !,

FIG. 14. (a) The order parameter for superfluid 3He B show-
ing d̂ vectors (represented by thick lines) rotated by 104°
about a vector n̂ from the radial directions (thin lines) for all
points on the Fermi sphere. The rotation axis n̂ points in the
vertical direction. (b) The isotropic energy gap of the Balian-
Werthamer order parameter is indicated by the shaded region.
Ordinary s-wave superconductors also have isotropic energy
gaps.
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locally at each point of the Fermi surface by an angle Θ about the vector n̂.
The dipolar free energy in the B phase is given by

Fd =
8
5

gd(T )
(

cos Θ +
1
4

)2

, (4.9)

which means that the minimum dipole–dipole energy is for a rotation angle
Θ = arccos (−1/4) ≈ 104◦. The variation of Fd in 3He-B with Θ is plotted
in Fig. 4.13b.

Although this subtle anisotropy caused by the magnetic dipole–dipole in-
teraction leads to textural effects in the B phase, the overall orbital symmetry
of the order parameter is still spherical.

4.4.2 Textures in 3He-A

External fields and boundary conditions change the free energy of 3He-A
and influence the order-parameter orientation. In the presence of container
walls or any type of residual field, the order-parameter alignment will not be
uniform, since the perturbing influences tend to orient the order parameter
locally in different, often competing, ways. A nonuniform orientation of the
order parameter is opposed by the internally preferred alignment, because any
bending of the order-parameter field causes an increase in the free energy of
the system. The competition between orientational and bending forces leads
to a continuous configuration for the order-parameter field, called a texture.

In general, the walls of the container play a very important role in deter-
mining the configuration of the order parameter. The fact that walls have an
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Fig. 4.10. Illustration of disorder and long-range order of a two-dimensional model
fluid with an orbital and a spin degree of freedom. After [170]

As we shall see in Sect. 4.4.1, the intrinsically preferred alignment of d, rep-
resenting the spin space, is parallel to the orbital angular momentum vector l
of the quasiparticle pairs.

In contrast, as illustrated in Fig. 4.10e, in the B phase none of the degrees
of freedom exhibit a long-range order, but the relative orientation of spin and
orbital moments of a pair is fixed. Therefore, one refers to this as a broken
relative spin-orbit symmetry. The fixed angle between the spin and orbital
moments is determined by the small magnetic dipole interaction in 3He-B as
first pointed out by Leggett [155]. This angle is often referred to as the Leggett
angle. Generally speaking, a broken relative symmetry occurs if a system is
invariant under transformations given by a certain linear combination of two
symmetry operations, but is not invariant under any deviation from this linear
combination. An intriguing point here is that such a system will respond in
ways characteristic of a system breaking both symmetries, but mixes up one
and the other. For 3He-B, this means that its response to mechanical rotations
is, within certain limits, indistinguishable from its response to magnetic fields,
representing spin-space rotation. For example, one can mechanically generate
spin waves and NMR in the B phase or, vice versa, magnetically induce shear
instabilities.

In the A phase, the relative gauge-orbit symmetry is broken, which allows
the system, for example, to change the phase of the macroscopic wave function
by mechanical rotation. It also has interesting consequences for the mass
flow of 3He-A. Superfluid mass current and superfluid velocity vs are not
necessarily parallel, because the superfluid mass current explicitly depends
on the direction of the orbital angular momentum l (see Sect. 4.6.1).

3He-B
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u##& states, as mentioned in our earlier discussions. The
A1 phase has the orbital properties including the gap
nodes described by the Anderson-Morel state but has
only u""& spin pairs.

We shall now discuss the Balian-Werthamer state.
The simplest possible Balian-Werthamer state is the
3
P0 state, represented by the wave function

cBW;Y1,21u""&1Y10u"#1#"&1Y11u##&

so that all three spin species are included. Hence we do
not have an equal spin pairing state. Since the 3

P0 state
has total J50, it will be a spherically symmetric state.
When this is taken into account, it is customary to
specify this simple Balian-Werthamer state in terms of
the vector d̂ by d̂(k)5constant3k̂ which has the neces-
sary spherical symmetry. Notice that in contrast to the
Anderson-Morel state, d̂ depends on k̂ .

The simple state discussed above does not perfectly
represent the order parameter of superfluid 3He B. As
far as the most important interactions are concerned, the
energy will not change when the spin and orbital coor-
dinates are rotated with respect to one another. Thus we
could rotate d̂ about some axis n̂ to get d̂5Rk̂ , where
R is an arbitrary rotation about an arbitrary axis n̂ for
superfluid 3He B. This degeneracy is broken when the
small dipolar interaction is taken into account, which
results in a rotation of the spin coordinates relative to
the orbital coordinates by an angle of 104° as discussed
below. This subtle anisotropy allows textures associated
with liquid-crystal-like behavior to be observed in super-
fluid 3He B. Nevertheless the overall orbital symmetry
of the order parameter is still spherical, leading to an
isotropic energy gap similar to that of s-wave supercon-
ductors. Figure 14(a) shows the order parameter with
d̂ twisted about some axis n̂ by 104°, and Figure 14(b)
shows the isotropic energy gap.

I have now outlined the basic properties of the
Anderson-Morel and the Balian-Werthamer states

which were provisionally identified with 3He A and
3He B, respectively. An important question still re-
mained to be addressed. The early studies of the pos-
sible order parameters of p-wave pairing showed that
the Balian-Werthamer state would have a lower free en-
ergy and therefore should always be the preferred state.
On the other hand the existence of an Anderson-Morel-
type state in 3He was firmly established by the experi-
ments. The apparent discrepancy was resolved by
Anderson and Brinkman (1973), who introduced the
idea of spin fluctuation feedback which led to a mecha-
nism for a stable Anderson-Morel phase. (Recall our
previous discussion of the possible role of spin fluctua-
tions by Layzer and Fay.) Since the pairing mechanism
is intrinsic, thus involving the 3He quasiparticles them-
selves, any modification in the status of the helium qua-
siparticles should affect the pairing mechanism, includ-
ing the onset of pairing itself. Anderson and Brinkman
showed that this feedback effect could indeed lead to a
stable Anderson-Morel phase in zero magnetic field,
which was renamed the Anderson-Brinkman-Morel
phase or ABM state. These studies led to the general
acceptance that the Anderson-Brinkman-Morel state
corresponded to 3He A and the Balian-Werthamer state
corresponded to 3He B. More recent comprehensive
studies of a variety of pairing mechanisms conducted by
Rainer and Serene (1976) have not changed this conclu-
sion.

No general discussion of superfluid 3He would be
complete without a treatment of the macroscopic
nuclear dipole interaction and its role in the dramatic
NMR effects observed experimentally. The general
scheme for calculating the dipolar interaction is to take a
quantum mechanical average of the dipolar Hamiltonian
over the pair wave function (order parameter). It can
then be shown that the dipolar free energies are given
by
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Therefore, to minimize the free energy, lW and dW must be
parallel for the case of the ABM state (A phase) in
agreement with our earlier qualitative discussion. For
the Balian-Werthamer (BW) state, a simple calculation
shows that the dipole energy is minimized for u
5cos21(2 1

4)5104° justifying our earlier statement.
Making use of the macroscopic dipolar interaction,

Leggett (1975) derived a set of coupled equations giving
a complete description of the spin dynamics of super-
fluid 3He. His equations of motion are
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FIG. 14. (a) The order parameter for superfluid 3He B show-
ing d̂ vectors (represented by thick lines) rotated by 104°
about a vector n̂ from the radial directions (thin lines) for all
points on the Fermi sphere. The rotation axis n̂ points in the
vertical direction. (b) The isotropic energy gap of the Balian-
Werthamer order parameter is indicated by the shaded region.
Ordinary s-wave superconductors also have isotropic energy
gaps.
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u##& states, as mentioned in our earlier discussions. The
A1 phase has the orbital properties including the gap
nodes described by the Anderson-Morel state but has
only u""& spin pairs.

We shall now discuss the Balian-Werthamer state.
The simplest possible Balian-Werthamer state is the
3
P0 state, represented by the wave function

cBW;Y1,21u""&1Y10u"#1#"&1Y11u##&

so that all three spin species are included. Hence we do
not have an equal spin pairing state. Since the 3

P0 state
has total J50, it will be a spherically symmetric state.
When this is taken into account, it is customary to
specify this simple Balian-Werthamer state in terms of
the vector d̂ by d̂(k)5constant3k̂ which has the neces-
sary spherical symmetry. Notice that in contrast to the
Anderson-Morel state, d̂ depends on k̂ .

The simple state discussed above does not perfectly
represent the order parameter of superfluid 3He B. As
far as the most important interactions are concerned, the
energy will not change when the spin and orbital coor-
dinates are rotated with respect to one another. Thus we
could rotate d̂ about some axis n̂ to get d̂5Rk̂ , where
R is an arbitrary rotation about an arbitrary axis n̂ for
superfluid 3He B. This degeneracy is broken when the
small dipolar interaction is taken into account, which
results in a rotation of the spin coordinates relative to
the orbital coordinates by an angle of 104° as discussed
below. This subtle anisotropy allows textures associated
with liquid-crystal-like behavior to be observed in super-
fluid 3He B. Nevertheless the overall orbital symmetry
of the order parameter is still spherical, leading to an
isotropic energy gap similar to that of s-wave supercon-
ductors. Figure 14(a) shows the order parameter with
d̂ twisted about some axis n̂ by 104°, and Figure 14(b)
shows the isotropic energy gap.

I have now outlined the basic properties of the
Anderson-Morel and the Balian-Werthamer states

which were provisionally identified with 3He A and
3He B, respectively. An important question still re-
mained to be addressed. The early studies of the pos-
sible order parameters of p-wave pairing showed that
the Balian-Werthamer state would have a lower free en-
ergy and therefore should always be the preferred state.
On the other hand the existence of an Anderson-Morel-
type state in 3He was firmly established by the experi-
ments. The apparent discrepancy was resolved by
Anderson and Brinkman (1973), who introduced the
idea of spin fluctuation feedback which led to a mecha-
nism for a stable Anderson-Morel phase. (Recall our
previous discussion of the possible role of spin fluctua-
tions by Layzer and Fay.) Since the pairing mechanism
is intrinsic, thus involving the 3He quasiparticles them-
selves, any modification in the status of the helium qua-
siparticles should affect the pairing mechanism, includ-
ing the onset of pairing itself. Anderson and Brinkman
showed that this feedback effect could indeed lead to a
stable Anderson-Morel phase in zero magnetic field,
which was renamed the Anderson-Brinkman-Morel
phase or ABM state. These studies led to the general
acceptance that the Anderson-Brinkman-Morel state
corresponded to 3He A and the Balian-Werthamer state
corresponded to 3He B. More recent comprehensive
studies of a variety of pairing mechanisms conducted by
Rainer and Serene (1976) have not changed this conclu-
sion.

No general discussion of superfluid 3He would be
complete without a treatment of the macroscopic
nuclear dipole interaction and its role in the dramatic
NMR effects observed experimentally. The general
scheme for calculating the dipolar interaction is to take a
quantum mechanical average of the dipolar Hamiltonian
over the pair wave function (order parameter). It can
then be shown that the dipolar free energies are given
by

DFD5H
2 3

5 gD~T !@12~dW •lW!2# , A phase,

4
5 gD~T !H cos u12 cos2 u1

3
4J , B phase,

where
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Therefore, to minimize the free energy, lW and dW must be
parallel for the case of the ABM state (A phase) in
agreement with our earlier qualitative discussion. For
the Balian-Werthamer (BW) state, a simple calculation
shows that the dipole energy is minimized for u
5cos21(2 1

4)5104° justifying our earlier statement.
Making use of the macroscopic dipolar interaction,

Leggett (1975) derived a set of coupled equations giving
a complete description of the spin dynamics of super-
fluid 3He. His equations of motion are

SW
˙

5gSW 3HW 1RD~T !,

FIG. 14. (a) The order parameter for superfluid 3He B show-
ing d̂ vectors (represented by thick lines) rotated by 104°
about a vector n̂ from the radial directions (thin lines) for all
points on the Fermi sphere. The rotation axis n̂ points in the
vertical direction. (b) The isotropic energy gap of the Balian-
Werthamer order parameter is indicated by the shaded region.
Ordinary s-wave superconductors also have isotropic energy
gaps.
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u##& states, as mentioned in our earlier discussions. The
A1 phase has the orbital properties including the gap
nodes described by the Anderson-Morel state but has
only u""& spin pairs.

We shall now discuss the Balian-Werthamer state.
The simplest possible Balian-Werthamer state is the
3
P0 state, represented by the wave function

cBW;Y1,21u""&1Y10u"#1#"&1Y11u##&

so that all three spin species are included. Hence we do
not have an equal spin pairing state. Since the 3

P0 state
has total J50, it will be a spherically symmetric state.
When this is taken into account, it is customary to
specify this simple Balian-Werthamer state in terms of
the vector d̂ by d̂(k)5constant3k̂ which has the neces-
sary spherical symmetry. Notice that in contrast to the
Anderson-Morel state, d̂ depends on k̂ .

The simple state discussed above does not perfectly
represent the order parameter of superfluid 3He B. As
far as the most important interactions are concerned, the
energy will not change when the spin and orbital coor-
dinates are rotated with respect to one another. Thus we
could rotate d̂ about some axis n̂ to get d̂5Rk̂ , where
R is an arbitrary rotation about an arbitrary axis n̂ for
superfluid 3He B. This degeneracy is broken when the
small dipolar interaction is taken into account, which
results in a rotation of the spin coordinates relative to
the orbital coordinates by an angle of 104° as discussed
below. This subtle anisotropy allows textures associated
with liquid-crystal-like behavior to be observed in super-
fluid 3He B. Nevertheless the overall orbital symmetry
of the order parameter is still spherical, leading to an
isotropic energy gap similar to that of s-wave supercon-
ductors. Figure 14(a) shows the order parameter with
d̂ twisted about some axis n̂ by 104°, and Figure 14(b)
shows the isotropic energy gap.

I have now outlined the basic properties of the
Anderson-Morel and the Balian-Werthamer states

which were provisionally identified with 3He A and
3He B, respectively. An important question still re-
mained to be addressed. The early studies of the pos-
sible order parameters of p-wave pairing showed that
the Balian-Werthamer state would have a lower free en-
ergy and therefore should always be the preferred state.
On the other hand the existence of an Anderson-Morel-
type state in 3He was firmly established by the experi-
ments. The apparent discrepancy was resolved by
Anderson and Brinkman (1973), who introduced the
idea of spin fluctuation feedback which led to a mecha-
nism for a stable Anderson-Morel phase. (Recall our
previous discussion of the possible role of spin fluctua-
tions by Layzer and Fay.) Since the pairing mechanism
is intrinsic, thus involving the 3He quasiparticles them-
selves, any modification in the status of the helium qua-
siparticles should affect the pairing mechanism, includ-
ing the onset of pairing itself. Anderson and Brinkman
showed that this feedback effect could indeed lead to a
stable Anderson-Morel phase in zero magnetic field,
which was renamed the Anderson-Brinkman-Morel
phase or ABM state. These studies led to the general
acceptance that the Anderson-Brinkman-Morel state
corresponded to 3He A and the Balian-Werthamer state
corresponded to 3He B. More recent comprehensive
studies of a variety of pairing mechanisms conducted by
Rainer and Serene (1976) have not changed this conclu-
sion.

No general discussion of superfluid 3He would be
complete without a treatment of the macroscopic
nuclear dipole interaction and its role in the dramatic
NMR effects observed experimentally. The general
scheme for calculating the dipolar interaction is to take a
quantum mechanical average of the dipolar Hamiltonian
over the pair wave function (order parameter). It can
then be shown that the dipolar free energies are given
by
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where
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Therefore, to minimize the free energy, lW and dW must be
parallel for the case of the ABM state (A phase) in
agreement with our earlier qualitative discussion. For
the Balian-Werthamer (BW) state, a simple calculation
shows that the dipole energy is minimized for u
5cos21(2 1

4)5104° justifying our earlier statement.
Making use of the macroscopic dipolar interaction,

Leggett (1975) derived a set of coupled equations giving
a complete description of the spin dynamics of super-
fluid 3He. His equations of motion are

SW
˙

5gSW 3HW 1RD~T !,

FIG. 14. (a) The order parameter for superfluid 3He B show-
ing d̂ vectors (represented by thick lines) rotated by 104°
about a vector n̂ from the radial directions (thin lines) for all
points on the Fermi sphere. The rotation axis n̂ points in the
vertical direction. (b) The isotropic energy gap of the Balian-
Werthamer order parameter is indicated by the shaded region.
Ordinary s-wave superconductors also have isotropic energy
gaps.
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states, as mentioned in our earlier discussions. The
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phase has the orbital properties including the gap

nodes described by the Anderson-Morel state but has
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spin pairs.

We shall now discuss the Balian-Werthamer state.
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so that all three spin species are included. Hence we do

not have an equal spin pairing state. Since the
3 P 0

state

has total J50, it will be a spherically symmetric
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When this is taken into account, it is customary to

specify this simple Balian-Werthamer state in terms of
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ˆ (k)5constant3k
ˆ which has the neces-

sary spherical symmetry. Notice that in contrast to the

Anderson-Morel state, d
ˆ depends on k
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The simple state discussed above does not perfectly

represent the order parameter of superfluid
3 He B. As

far as the most important interactions are concerned, the

energy will not change when the spin and orbital coor-

dinates are rotated with respect to one another. Thus we

could rotate d
ˆ about some axis n̂
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ˆ , where
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is an arbitrary rotation about an arbitrary axis n̂
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3 He B. This degeneracy is broken when the

small dipolar interaction is taken into account, which

results in a rotation of the spin coordinates relative to

the orbital coordinates by an angle of 104° as discussed

below. This subtle anisotropy allows textures associated

with liquid-crystal-lik
e behavior to be observed in super-

fluid
3 He B. Nevertheless the overall orbital symmetry

of the order parameter is still
spherical, leading to an

isotropic energy gap similar to that of s-wave supercon-

ductors. Figure 14(a) shows the order parameter with

d
ˆ twisted about some axis n̂

by 104°, and Figure 14(b)

shows the isotropic energy gap.

I have now outlined the basic
properties of the

Anderson-Morel and the Balian-Werthamer states

which were provisionally
identified with

3 He A and

3 He B, respectively. An important question still
re-

mained to be addressed. The early studies of the pos-

sible order parameters of p-wave pairing showed that

the Balian-Werthamer state would have a lower free en-

ergy and therefore should always be the preferred state.

On the other hand the existence of an Anderson-Morel-

type state in
3 He was firmly established by the experi-

ments.
The apparent discrepancy was resolved by

Anderson and Brinkman (1973), who introduced the

idea of spin fluctuation feedback which led to a mecha-

nism
for a stable Anderson-Morel phase. (Recall our

previous discussion of the possible role of spin fluctua-

tions by Layzer and Fay.) Since the pairing mechanism

is intrinsic, thus involving the
3 He quasiparticles them-

selves, any modification in the status of the helium qua-

siparticles should affect the pairing mechanism, includ-

ing the onset of pairing itself. Anderson and Brinkman

showed that this feedback effect could indeed lead to a

stable Anderson-Morel phase in zero magnetic field,

which was renamed the Anderson-Brinkman-Morel

phase or ABM state. These studies led to the general

acceptance that the Anderson-Brinkman-Morel state

corresponded to
3 He A and the Balian-Werthamer state

corresponded to
3 He B. More recent comprehensive

studies of a variety of pairing mechanisms conducted by

Rainer and Serene (1976) have not changed this conclu-

sion.
No general discussion of superfluid

3 He would be

complete without a treatment of the macroscopic

nuclear dipole interaction and its role in the dramatic

NMR effects observed experimentally. The general

scheme for calculating the dipolar interaction is to take a

quantum mechanical average of the dipolar Hamiltonian

over the pair wave function (order parameter). It can

then be shown that the dipolar free energies are given

by
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Therefore, to minimize the free energy, lW and dW must be

parallel for the case of the ABM state (A
phase) in

agreement with
our earlier qualitative discussion. For

the Balian-Werthamer (BW) state, a simple calculation

shows that the dipole energy is minimized for u
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104° justify
ing our earlier statement.

Making use of the macroscopic dipolar interaction,

Leggett (1975) derived a set of coupled equations giving

a complete description of the spin dynamics of super-

fluid
3 He. His equations of motion are

SW
˙ 5gSW 3H
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FIG. 14. (a) The order parameter for superfluid
3 He B show-

ing d
ˆ vectors (represented by thick lines) rotated by 104°

about a vector n̂
from the radial directions (thin lines) for all

points on the Fermi sphere. The rotation axis n̂
points in the

vertical direction. (b) The isotropic energy gap of the Balian-

Werthamer order parameter is indicated by the shaded region.

Ordinary s-wave superconductors also
have isotropic energy

gaps.
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u##&
states, as mentioned in our earlier discussions. The

A 1
phase has the orbital properties including the gap

nodes described by the Anderson-Morel state but has

only u""&
spin pairs.

We shall now discuss the Balian-Werthamer state.

The simplest possible Balian-Werthamer state is the

3 P 0
state, represented by the wave function

c BW
;Y 1,21u
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"#1#"&1Y 11u
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so that all three spin species are included. Hence we do

not have an equal spin pairing state. Since the
3 P 0

state

has total J50, it will be a spherically symmetric
state.

When this is taken into account, it is customary to

specify this simple Balian-Werthamer state in terms of

the vector d
ˆ by d

ˆ (k)5constant3k
ˆ which has the neces-

sary spherical symmetry. Notice that in contrast to the

Anderson-Morel state, d
ˆ depends on k

ˆ .

The simple state discussed above does not perfectly

represent the order parameter of superfluid
3 He B. As

far as the most important interactions are concerned, the

energy will not change when the spin and orbital coor-

dinates are rotated with respect to one another. Thus we

could rotate d
ˆ about some axis n̂

to get d
ˆ 5Rk

ˆ , where

R
is an arbitrary rotation about an arbitrary axis n̂

for

superfluid
3 He B. This degeneracy is broken when the

small dipolar interaction is taken into account, which

results in a rotation of the spin coordinates relative to

the orbital coordinates by an angle of 104° as discussed

below. This subtle anisotropy allows textures associated

with liquid-crystal-lik
e behavior to be observed in super-

fluid
3 He B. Nevertheless the overall orbital symmetry

of the order parameter is still
spherical, leading to an

isotropic energy gap similar to that of s-wave supercon-

ductors. Figure 14(a) shows the order parameter with

d
ˆ twisted about some axis n̂

by 104°, and Figure 14(b)

shows the isotropic energy gap.

I have now outlined the basic
properties of the

Anderson-Morel and the Balian-Werthamer states

which were provisionally
identified with

3 He A and

3 He B, respectively. An important question still
re-

mained to be addressed. The early studies of the pos-

sible order parameters of p-wave pairing showed that

the Balian-Werthamer state would have a lower free en-

ergy and therefore should always be the preferred state.

On the other hand the existence of an Anderson-Morel-

type state in
3 He was firmly established by the experi-

ments.
The apparent discrepancy was resolved by

Anderson and Brinkman (1973), who introduced the

idea of spin fluctuation feedback which led to a mecha-

nism
for a stable Anderson-Morel phase. (Recall our

previous discussion of the possible role of spin fluctua-

tions by Layzer and Fay.) Since the pairing mechanism

is intrinsic, thus involving the
3 He quasiparticles them-

selves, any modification in the status of the helium qua-

siparticles should affect the pairing mechanism, includ-

ing the onset of pairing itself. Anderson and Brinkman

showed that this feedback effect could indeed lead to a

stable Anderson-Morel phase in zero magnetic field,

which was renamed the Anderson-Brinkman-Morel

phase or ABM state. These studies led to the general

acceptance that the Anderson-Brinkman-Morel state

corresponded to
3 He A and the Balian-Werthamer state

corresponded to
3 He B. More recent comprehensive

studies of a variety of pairing mechanisms conducted by

Rainer and Serene (1976) have not changed this conclu-

sion.
No general discussion of superfluid

3 He would be

complete without a treatment of the macroscopic

nuclear dipole interaction and its role in the dramatic

NMR effects observed experimentally. The general

scheme for calculating the dipolar interaction is to take a

quantum mechanical average of the dipolar Hamiltonian

over the pair wave function (order parameter). It can

then be shown that the dipolar free energies are given

by
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where
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Therefore, to minimize the free energy, lW and dW must be

parallel for the case of the ABM state (A
phase) in

agreement with
our earlier qualitative discussion. For

the Balian-Werthamer (BW) state, a simple calculation

shows that the dipole energy is minimized for u

5cos2
1 (2

1
4)5

104° justify
ing our earlier statement.

Making use of the macroscopic dipolar interaction,

Leggett (1975) derived a set of coupled equations giving

a complete description of the spin dynamics of super-

fluid
3 He. His equations of motion are

SW
˙ 5gSW 3H

W 1R D
~T !,

FIG. 14. (a) The order parameter for superfluid
3 He B show-

ing d
ˆ vectors (represented by thick lines) rotated by 104°

about a vector n̂
from the radial directions (thin lines) for all

points on the Fermi sphere. The rotation axis n̂
points in the

vertical direction. (b) The isotropic energy gap of the Balian-

Werthamer order parameter is indicated by the shaded region.

Ordinary s-wave superconductors also
have isotropic energy

gaps.
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u##& states, as mentioned in our earlier discussions. The

A1 phase has the orbital properties including the gap

nodes described by the Anderson-Morel state but has

only u""& spin pairs.

We shall now discuss the Balian-Werthamer state.

The simplest possible Balian-Werthamer state is the

3
P0 state, represented by the wave function

cBW;Y1,21u""&1Y10u"#1#"&1Y11u##&

so that all three spin species are included. Hence we do

not have an equal spin pairing state. Since the 3
P0 state

has total J50, it will be a spherically symmetric state.

When this is taken into account, it is customary to

specify this simple Balian-Werthamer state in terms of

the vector d̂ by d̂(k)5constant3k̂ which has the neces-

sary spherical symmetry. Notice that in contrast to the

Anderson-Morel state, d̂ depends on k̂ .

The simple state discussed above does not perfectly

represent the order parameter of superfluid 3He B. As

far as the most important interactions are concerned, the

energy will not change when the spin and orbital coor-

dinates are rotated with respect to one another. Thus we

could rotate d̂ about some axis n̂ to get d̂5Rk̂ , where

R is an arbitrary rotation about an arbitrary axis n̂ for

superfluid 3He B. This degeneracy is broken when the

small dipolar interaction is taken into account, which

results in a rotation of the spin coordinates relative to

the orbital coordinates by an angle of 104° as discussed

below. This subtle anisotropy allows textures associated

with liquid-crystal-like behavior to be observed in super-

fluid 3He B. Nevertheless the overall orbital symmetry

of the order parameter is still spherical, leading to an

isotropic energy gap similar to that of s-wave supercon-

ductors. Figure 14(a) shows the order parameter with

d̂ twisted about some axis n̂ by 104°, and Figure 14(b)

shows the isotropic energy gap.

I have now outlined the basic properties of the

Anderson-Morel and the Balian-Werthamer states

which were provisionally identified with 3He A and

3He B, respectively. An important question still re-

mained to be addressed. The early studies of the pos-

sible order parameters of p-wave pairing showed that

the Balian-Werthamer state would have a lower free en-

ergy and therefore should always be the preferred state.

On the other hand the existence of an Anderson-Morel-

type state in 3He was firmly established by the experi-

ments. The apparent discrepancy was resolved by

Anderson and Brinkman (1973), who introduced the

idea of spin fluctuation feedback which led to a mecha-

nism for a stable Anderson-Morel phase. (Recall our

previous discussion of the possible role of spin fluctua-

tions by Layzer and Fay.) Since the pairing mechanism

is intrinsic, thus involving the 3He quasiparticles them-

selves, any modification in the status of the helium qua-

siparticles should affect the pairing mechanism, includ-

ing the onset of pairing itself. Anderson and Brinkman

showed that this feedback effect could indeed lead to a

stable Anderson-Morel phase in zero magnetic field,

which was renamed the Anderson-Brinkman-Morel

phase or ABM state. These studies led to the general

acceptance that the Anderson-Brinkman-Morel state

corresponded to 3He A and the Balian-Werthamer state

corresponded to 3He B. More recent comprehensive

studies of a variety of pairing mechanisms conducted by

Rainer and Serene (1976) have not changed this conclu-

sion.
No general discussion of superfluid 3He would be

complete without a treatment of the macroscopic

nuclear dipole interaction and its role in the dramatic

NMR effects observed experimentally. The general

scheme for calculating the dipolar interaction is to take a

quantum mechanical average of the dipolar Hamiltonian

over the pair wave function (order parameter). It can

then be shown that the dipolar free energies are given

by
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Therefore, to minimize the free energy, lW and dW must be

parallel for the case of the ABM state (A phase) in

agreement with our earlier qualitative discussion. For

the Balian-Werthamer (BW) state, a simple calculation

shows that the dipole energy is minimized for u

5cos21(21
4)5104° justifying our earlier statement.

Making use of the macroscopic dipolar interaction,

Leggett (1975) derived a set of coupled equations giving

a complete description of the spin dynamics of super-

fluid 3He. His equations of motion are

SW
˙

5gSW 3H
W 1RD~T !,

FIG. 14. (a) The order parameter for superfluid 3He B show-

ing d̂ vectors (represented by thick lines) rotated by 104°

about a vector n̂ from the radial directions (thin lines) for all

points on the Fermi sphere. The rotation axis n̂ points in the

vertical direction. (b) The isotropic energy gap of the Balian-

Werthamer order parameter is indicated by the shaded region.

Ordinary s-wave superconductors also have isotropic energy

gaps.
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u##& states, as mentioned in our earlier discussions. The

A1 phase has the orbital properties including the gap

nodes described by the Anderson-Morel state but has

only u""& spin pairs.

We shall now discuss the Balian-Werthamer state.

The simplest possible Balian-Werthamer state is the

3
P0 state, represented by the wave function

cBW;Y1,21u""&1Y10u"#1#"&1Y11u##&

so that all three spin species are included. Hence we do

not have an equal spin pairing state. Since the 3
P0 state

has total J50, it will be a spherically symmetric state.

When this is taken into account, it is customary to

specify this simple Balian-Werthamer state in terms of

the vector d̂ by d̂(k)5constant3k̂ which has the neces-

sary spherical symmetry. Notice that in contrast to the

Anderson-Morel state, d̂ depends on k̂ .

The simple state discussed above does not perfectly

represent the order parameter of superfluid 3He B. As

far as the most important interactions are concerned, the

energy will not change when the spin and orbital coor-

dinates are rotated with respect to one another. Thus we

could rotate d̂ about some axis n̂ to get d̂5Rk̂ , where

R is an arbitrary rotation about an arbitrary axis n̂ for

superfluid 3He B. This degeneracy is broken when the

small dipolar interaction is taken into account, which

results in a rotation of the spin coordinates relative to

the orbital coordinates by an angle of 104° as discussed

below. This subtle anisotropy allows textures associated

with liquid-crystal-like behavior to be observed in super-

fluid 3He B. Nevertheless the overall orbital symmetry

of the order parameter is still spherical, leading to an

isotropic energy gap similar to that of s-wave supercon-

ductors. Figure 14(a) shows the order parameter with

d̂ twisted about some axis n̂ by 104°, and Figure 14(b)

shows the isotropic energy gap.

I have now outlined the basic properties of the

Anderson-Morel and the Balian-Werthamer states

which were provisionally identified with 3He A and

3He B, respectively. An important question still re-

mained to be addressed. The early studies of the pos-

sible order parameters of p-wave pairing showed that

the Balian-Werthamer state would have a lower free en-

ergy and therefore should always be the preferred state.

On the other hand the existence of an Anderson-Morel-

type state in 3He was firmly established by the experi-

ments. The apparent discrepancy was resolved by

Anderson and Brinkman (1973), who introduced the

idea of spin fluctuation feedback which led to a mecha-

nism for a stable Anderson-Morel phase. (Recall our

previous discussion of the possible role of spin fluctua-

tions by Layzer and Fay.) Since the pairing mechanism

is intrinsic, thus involving the 3He quasiparticles them-

selves, any modification in the status of the helium qua-

siparticles should affect the pairing mechanism, includ-

ing the onset of pairing itself. Anderson and Brinkman

showed that this feedback effect could indeed lead to a

stable Anderson-Morel phase in zero magnetic field,

which was renamed the Anderson-Brinkman-Morel

phase or ABM state. These studies led to the general

acceptance that the Anderson-Brinkman-Morel state

corresponded to 3He A and the Balian-Werthamer state

corresponded to 3He B. More recent comprehensive

studies of a variety of pairing mechanisms conducted by

Rainer and Serene (1976) have not changed this conclu-

sion.
No general discussion of superfluid 3He would be

complete without a treatment of the macroscopic

nuclear dipole interaction and its role in the dramatic

NMR effects observed experimentally. The general

scheme for calculating the dipolar interaction is to take a

quantum mechanical average of the dipolar Hamiltonian

over the pair wave function (order parameter). It can

then be shown that the dipolar free energies are given

by
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Therefore, to minimize the free energy, lW and dW must be

parallel for the case of the ABM state (A phase) in

agreement with our earlier qualitative discussion. For

the Balian-Werthamer (BW) state, a simple calculation

shows that the dipole energy is minimized for u

5cos21(21
4)5104° justifying our earlier statement.

Making use of the macroscopic dipolar interaction,

Leggett (1975) derived a set of coupled equations giving

a complete description of the spin dynamics of super-

fluid 3He. His equations of motion are
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FIG. 14. (a) The order parameter for superfluid 3He B show-

ing d̂ vectors (represented by thick lines) rotated by 104°

about a vector n̂ from the radial directions (thin lines) for all

points on the Fermi sphere. The rotation axis n̂ points in the

vertical direction. (b) The isotropic energy gap of the Balian-

Werthamer order parameter is indicated by the shaded region.

Ordinary s-wave superconductors also have isotropic energy

gaps.
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u##& states, as mentioned in our earlier discussions. The
A1 phase has the orbital properties including the gap
nodes described by the Anderson-Morel state but has
only u""& spin pairs.

We shall now discuss the Balian-Werthamer state.
The simplest possible Balian-Werthamer state is the
3
P0 state, represented by the wave function

cBW;Y1,21u""&1Y10u"#1#"&1Y11u##&

so that all three spin species are included. Hence we do
not have an equal spin pairing state. Since the 3

P0 state
has total J50, it will be a spherically symmetric state.
When this is taken into account, it is customary to
specify this simple Balian-Werthamer state in terms of
the vector d̂ by d̂(k)5constant3k̂ which has the neces-
sary spherical symmetry. Notice that in contrast to the
Anderson-Morel state, d̂ depends on k̂ .

The simple state discussed above does not perfectly
represent the order parameter of superfluid 3He B. As
far as the most important interactions are concerned, the
energy will not change when the spin and orbital coor-
dinates are rotated with respect to one another. Thus we
could rotate d̂ about some axis n̂ to get d̂5Rk̂ , where
R is an arbitrary rotation about an arbitrary axis n̂ for
superfluid 3He B. This degeneracy is broken when the
small dipolar interaction is taken into account, which
results in a rotation of the spin coordinates relative to
the orbital coordinates by an angle of 104° as discussed
below. This subtle anisotropy allows textures associated
with liquid-crystal-like behavior to be observed in super-
fluid 3He B. Nevertheless the overall orbital symmetry
of the order parameter is still spherical, leading to an
isotropic energy gap similar to that of s-wave supercon-
ductors. Figure 14(a) shows the order parameter with
d̂ twisted about some axis n̂ by 104°, and Figure 14(b)
shows the isotropic energy gap.

I have now outlined the basic properties of the
Anderson-Morel and the Balian-Werthamer states

which were provisionally identified with 3He A and
3He B, respectively. An important question still re-
mained to be addressed. The early studies of the pos-
sible order parameters of p-wave pairing showed that
the Balian-Werthamer state would have a lower free en-
ergy and therefore should always be the preferred state.
On the other hand the existence of an Anderson-Morel-
type state in 3He was firmly established by the experi-
ments. The apparent discrepancy was resolved by
Anderson and Brinkman (1973), who introduced the
idea of spin fluctuation feedback which led to a mecha-
nism for a stable Anderson-Morel phase. (Recall our
previous discussion of the possible role of spin fluctua-
tions by Layzer and Fay.) Since the pairing mechanism
is intrinsic, thus involving the 3He quasiparticles them-
selves, any modification in the status of the helium qua-
siparticles should affect the pairing mechanism, includ-
ing the onset of pairing itself. Anderson and Brinkman
showed that this feedback effect could indeed lead to a
stable Anderson-Morel phase in zero magnetic field,
which was renamed the Anderson-Brinkman-Morel
phase or ABM state. These studies led to the general
acceptance that the Anderson-Brinkman-Morel state
corresponded to 3He A and the Balian-Werthamer state
corresponded to 3He B. More recent comprehensive
studies of a variety of pairing mechanisms conducted by
Rainer and Serene (1976) have not changed this conclu-
sion.

No general discussion of superfluid 3He would be
complete without a treatment of the macroscopic
nuclear dipole interaction and its role in the dramatic
NMR effects observed experimentally. The general
scheme for calculating the dipolar interaction is to take a
quantum mechanical average of the dipolar Hamiltonian
over the pair wave function (order parameter). It can
then be shown that the dipolar free energies are given
by
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where
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D ergs/cm3.

Therefore, to minimize the free energy, lW and dW must be
parallel for the case of the ABM state (A phase) in
agreement with our earlier qualitative discussion. For
the Balian-Werthamer (BW) state, a simple calculation
shows that the dipole energy is minimized for u
5cos21(2 1

4)5104° justifying our earlier statement.
Making use of the macroscopic dipolar interaction,

Leggett (1975) derived a set of coupled equations giving
a complete description of the spin dynamics of super-
fluid 3He. His equations of motion are

SW
˙

5gSW 3HW 1RD~T !,

FIG. 14. (a) The order parameter for superfluid 3He B show-
ing d̂ vectors (represented by thick lines) rotated by 104°
about a vector n̂ from the radial directions (thin lines) for all
points on the Fermi sphere. The rotation axis n̂ points in the
vertical direction. (b) The isotropic energy gap of the Balian-
Werthamer order parameter is indicated by the shaded region.
Ordinary s-wave superconductors also have isotropic energy
gaps.
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influence on the orientation of l seems obvious if one considers the quasipar-
ticle pairs as molecules of two 3He atoms that orbit each other. Clearly, the
rotation in a plane parallel to the wall is strongly preferred. That this sim-
plified picture is correct was theoretically shown by Ambegaokar , de Gennes
and Rainer in 1974 [175]. Therefore, l will always be oriented perpendicular
to the walls of the container.

The importance of the influence of the different external fields varies sub-
stantially. The preferred orientation and the energy change ∆E that result
from various external fields and boundary conditions are listed in Table 4.2. It
is interesting to ask at what magnitude these external effects become compa-
rable with the intrinsic alignment forces. Here, we note the values at which ex-
ternal fields are equally important for the alignment of d and l as the intrinsic
dipole–dipole interaction: E = 17 V m−1, B = 3.3 mT and vs = 2.4 mm s−1.
As mentioned before, the walls of the container are particularly important and
even very small angles between l and N , the normal vector of the container
wall, result in an effect comparable with the intrinsic magnetic dipole–dipole
interaction.

Table 4.2. Preferred orientation of d and l under the influence of different fields
and the energy penalty ∆E when d and l are not optimally aligned in these fields.
(After [176])

Preferred Alignment ∆E/(1 − T/Tc) (Jm−3)

magnetic dipole interaction d ‖ l −6 × 10−5 (d̂ · l̂ )2

electric field l ⊥ E 2 × 10−7 (̂l · E)2

magnetic field d ⊥ B 5 (d̂ · B)2

mass flow l ‖ vs −10 (̂l · vs)
2

wall alignment l ‖ N −30 (̂l · N̂ )2

Any deviation from a uniform orientation of d and l leads to an increase
of the free energy. This energy change is often called gradient energy , since
it is determined by the gradient of the orientational fields of l and d. It is
invariant with respect to an inversion d̂ → −d̂ or l̂ → −l̂, meaning that
states with parallel and antiparallel alignment of l and d are energetically
equal. Therefore, it is possible that the ground state differs in different parts
of the liquid. For example, in one part a parallel alignment of l and d is
realized and in another part an antiparallel alignment. Between these two
configurations, an interface must exist in which the transition from one con-
figuration to the other takes place. These transition regions are called domain
walls analogous to the interface between ferromagnetic domains. Since two
different orientation fields are relevant, there are different types of domain
walls.

textures in 3He-A
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influence on the orientation of l seems obvious if one considers the quasipar-
ticle pairs as molecules of two 3He atoms that orbit each other. Clearly, the
rotation in a plane parallel to the wall is strongly preferred. That this sim-
plified picture is correct was theoretically shown by Ambegaokar , de Gennes
and Rainer in 1974 [175]. Therefore, l will always be oriented perpendicular
to the walls of the container.

The importance of the influence of the different external fields varies sub-
stantially. The preferred orientation and the energy change ∆E that result
from various external fields and boundary conditions are listed in Table 4.2. It
is interesting to ask at what magnitude these external effects become compa-
rable with the intrinsic alignment forces. Here, we note the values at which ex-
ternal fields are equally important for the alignment of d and l as the intrinsic
dipole–dipole interaction: E = 17 V m−1, B = 3.3 mT and vs = 2.4 mm s−1.
As mentioned before, the walls of the container are particularly important and
even very small angles between l and N , the normal vector of the container
wall, result in an effect comparable with the intrinsic magnetic dipole–dipole
interaction.

Table 4.2. Preferred orientation of d and l under the influence of different fields
and the energy penalty ∆E when d and l are not optimally aligned in these fields.
(After [176])

Preferred Alignment ∆E/(1 − T/Tc) (Jm−3)

magnetic dipole interaction d ‖ l −6 × 10−5 (d̂ · l̂ )2

electric field l ⊥ E 2 × 10−7 (̂l · E)2

magnetic field d ⊥ B 5 (d̂ · B)2

mass flow l ‖ vs −10 (̂l · vs)
2

wall alignment l ‖ N −30 (̂l · N̂ )2

Any deviation from a uniform orientation of d and l leads to an increase
of the free energy. This energy change is often called gradient energy , since
it is determined by the gradient of the orientational fields of l and d. It is
invariant with respect to an inversion d̂ → −d̂ or l̂ → −l̂, meaning that
states with parallel and antiparallel alignment of l and d are energetically
equal. Therefore, it is possible that the ground state differs in different parts
of the liquid. For example, in one part a parallel alignment of l and d is
realized and in another part an antiparallel alignment. Between these two
configurations, an interface must exist in which the transition from one con-
figuration to the other takes place. These transition regions are called domain
walls analogous to the interface between ferromagnetic domains. Since two
different orientation fields are relevant, there are different types of domain
walls.


