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3.3 Sound Propagation in 3He: Zero Sound

normal (first) sound: quasi particles reach local equilibrium by collisions 

frequency of sound wave
zero sound: collision-less propagation of sound 

3He: particle density fluctuations in one region lead to
        density fluctuations in neighboring regions 

propagation of sound-like modes              zero sound

9.1 Two-Level Tunneling Systems 289

To shorten the expression we have introduced the derivative of the Fermi–
Dirac distribution f = (eE/kBT + 1)−1 as an abbreviation.4

The dielectric function ε and dielectric susceptibility χ are connected via
the relation ε = ε′ + iε′′ = 1 + χ. Accordingly, the contribution of the defect
systems to the variation δε of the dielectric function can be expressed with
the help of (9.17) and (9.21) by

δε =
−4N
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Splitting δε into real and imaginary parts yields the variation δε′ of the
dielectric constant, namely,

δε′ =
−4Np2
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and the loss angle

tan δ =
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Note that the sign of ∂f/∂E is negative, meaning that δε′ and tan δ are pos-
itive quantities. The frequency-dependent terms describe the so-called Debye
relaxator , well known in the physics of dielectrics. The typical frequency vari-
ation of the dielectric function is illustrated in Fig. 9.2.
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Fig. 9.2. Response of a Debye relaxator versus logarithm of ωτ . (a) Real part with
an inflexion point at ωτ = 1. (b) Imaginary part with a maximum at ωτ = 1

4 The relation ∂(∆N)/∂E = −2N ∂f/∂E holds for an ensemble of two-level sys-
tems. More complicated expressions have to be used if more levels are involved.
The general treatment of the relaxation phenomenon, however, does not depend
on the specific details of the level scheme.
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Debye relaxation process  (transition from hydrodynamic regime to collision-less regime)

systems cannot follow 

real part imaginary
part
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3.3 Sound Propagation in 3He: Zero Sound

► high T :                                      hydrodynamic regime:  first sound    

► low  T :                                      collision-less regime:    zero sound,  longitudinal
transversal

   collision-less spin waves
compare with classical gas

mean free path   >   wavelength             no sound propagation     

but 3He

► strongly interacting particles
► force on quasiparticle does not stem from direct neighbors, but from all atoms
► density fluctuations can propagate without collisions

► transversal modes are also possible 

General theoretical description of zero sound is rather complicated            here only results 

collective modes  with                                zero sound 

2 different sound modes (similar to first sound) and collision-less spin waves
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3.3 Sound Propagation in 3He: Zero Sound

longitudinal sound:

difference of zero and first sound:

intermediate temperatures:

sound attenuation:

limiting cases:

3.3 Zero Sound 93
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Fig. 3.9. Absorption coeffi-
cient α and sound velocity v of
liquid 3He as a function of tem-
perature at 15.4 and 45.5 MHz.
The data agree very well with
the prediction of the Landau
theory. The straight solid lines
represent the proportionalities
T 2 and 1/T 2 at low and high
temperatures, respectively [134]

The transition from normal sound to zero sound can be recognized easily.
The damping on the low-temperature side of the absorption maximum is
independent of frequency, whereas the damping on the high-temperature side
is proportional to ω2, as expected from (3.44) and (3.45). The velocity of zero
sound is about 6 m s−1 higher than the velocity of normal sound, as predicted
by the Landau Fermi-liquid theory.

3.3.2 Transverse Sound Propagation

In classical fluids and gases, the propagation of transverse sound waves is
impossible, because no restoring force exists for transverse atomic displace-
ments. In contrast, in liquid 3He such sound modes are observed. In the
hydrodynamic regime ωτ ! 1 only diffusive shear vibrations are found that
decay rapidly as in ordinary liquids. For ωτ " 1, theory predicts the occur-
rence of transverse sound waves. The rather complicated expression for the
dispersion relation has a real solution for F1 > 6. A look at Table 3.2 shows
that under normal pressure no transverse zero sound is expected to exist
since F1 is too small. Under pressure, however, the parameter F1 increases
and reaches a value of about 15 at the melting point.

The first experimental confirmation of the existence of transverse zero
sound in normal-fluid 3He was obtained by Roach and Ketterson in 1976 [135].
Figure 3.10 shows that the damping of transversal zero sound rises propor-
tional to T 2, as expected from theory. Note that the absolute magnitude of
the damping coefficient is extremely high. Both the prefactor of the sound
absorption and the quasiparticle collision time depend on pressure, leading to

excellent agreement with 
Landau theory
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3.3 Sound Propagation in 3He: Zero Sound

transversal sound:

94 3 Normal-fluid 3He

2 3 4
Temperature T / mK

0

1

2

A
bs

or
pt

io
n

co
ef

fic
ie

nt
α

/1
04

dB
cm

−1

29 bar
23
15

8
2

3He

Fig. 3.10. Damping of transverse
zero sound as a function of temper-
ature measured at 12 MHz at differ-
ent pressures. The solid lines corre-
spond to a dependence proportional
to T 2 [135]

the observed variation with pressure. In order to measure the sound propa-
gation in the presence of the extremely high damping, the quartz transducers
for generating and detecting the sound waves were separated from each other
by just 25µm.

3.3.3 Collisionless Spin Waves

For spin transport two different regimes are also observed: For ωτ ! 1,
in the hydrodynamic regime, one finds normal spin diffusion. In the Landau
theory, one has the usual expression for the self-diffusion coefficient (3.19), but
with the additional factor (1 + G0/4). This factor accounts for the exchange
interaction resulting in

Ds =
1
3

τD v2
F

(
1 +

1
4G0

)
. (3.46)

In the case where the quasiparticle collision time τD becomes larger than
the precession period of the nuclear spins in a magnetic field, collisionless spin
waves can propagate. Although this was predicted in 1957 by Silin [136], the
first experimental observation was made in 1984 by a group from Ohio in
NMR studies of normal-fluid 3He [137].

In these experiments, the NMR absorption of 3He was measured in a
magnetic field with a linear field gradient. Above 5 mK one obtains a nearly
rectangular absorption band, as expected from the field distribution over the
sample. At lower temperatures it becomes possible to excite standing spin
waves. The absorption maxima related to these spin waves are superposed
on the normal rectangular absorption band as shown in Fig. 3.11. The results
obtained are in very good agreement with the theoretical expectation for a
Fermi liquid.

ordinary liquids  no transversal sound mode

3He
hydrodynamical regime              diffuse shear mode 

real solution for F1 > 6 
impossible at normal pressure: F1 = 5.2
but F1 depends on pressure 

F1 = 5.2 … 15
melting pressure

attenuation: 

experimental results

► narrow T range, very high damping

► sound transducers spaced by 25 µm
► damping depends on pressure
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3.3 Sound Propagation in 3He: Zero Sound

collision-less spin waves: (predicted by Silin 1957)

spin transport

experimental results

► standing spin waves
► linear magnetic field gradient
► rectangular absorption “line”

► maxima of spin wave resonance on top

normal spin diffusion

collision-less spin waves
3.3 Zero Sound 95
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3He Fig. 3.11. NMR absorption at 2 MHz in a
magnetic field gradient of 44 mTm−1. The
vertical lines indicate the expected posi-
tions for absorption maxima of standing
spin waves [137]

3.3.4 Final Remarks

The original formulation of the theory of Fermi liquids has been developed
further and improved over time. In particular, calculations of the transport
properties have been made more precise and spin fluctuations have been in-
cluded. These spin fluctuations are very strong in liquid 3He because of the
competition between antiparallel alignment of the nuclear spins due to the
Fermi statistics and the parallel alignment favored by the exchange interac-
tion. This causes long-lived local ferromagnetic fluctuations.

Investigations of the excitations in normal-fluid 3He by neutron scatter-
ing experiments have contributed to the further development of the Landau
theory. Such experiments are very difficult to perform since they have to be
carried out at very low temperatures and, moreover, the capture cross section
for neutrons by 3He is extremely large. Results of this kind of measurement
are shown in Fig. 3.12. For phonons, one finds an amazingly sharp dispersion
curve up to large wave vectors. This behavior distinguishes liquid 3He clearly
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Fig. 3.12. Dispersion curve of 3He.
The data points were obtained in
different neutron scattering experi-
ments. The line represents a theo-
retical calculation of the zero sound
dispersion with an improved Landau
model. The grey tinted region indi-
cates the quasiparticle continuum ob-
served in neutron-scattering experi-
ments [138–140]

spin transport
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3.3 Sound Propagation in 3He: Zero Sound

Dispersion of zero sound modes:

3.3 Zero Sound 95
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Fig. 3.12. Dispersion curve of 3He.
The data points were obtained in
different neutron scattering experi-
ments. The line represents a theo-
retical calculation of the zero sound
dispersion with an improved Landau
model. The grey tinted region indi-
cates the quasiparticle continuum ob-
served in neutron-scattering experi-
ments [138–140]

experimental determination very difficult

capture cross section very high

ultralow temperatures  T < 20 mK
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4. Superfluid 3He

A model for all physics in our universe?
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Discovery of superfluid 3He

Douglas Osheroff, Bob Richardson, Dave Lee 

indications for several phase transitions in a pressure dependent measurement
with a Pomeranchuk cell  
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Discovery of superfluid 3He

that it was their turn to use it. I reluctantly agreed to
give up the magnet, but kept my apparatus cold in case
their apparatus leaked, as often happened in those days.

While I was waiting for the verdict on their experi-
ment, I decided to see just how low a temperature I
could reach with my Pomeranchuk cell. We knew our
copper wire NMR thermometer lost thermal contact
with the liquid 3He in the cell below about 2.7 mK, but
I felt we could extrapolate our thermometry to lower
temperatures using the expected slope of the 3He melt-
ing curve, which had already been measured at La Jolla
(Johnson et al., 1970) and by myself to below 3 mK. My
experiment consisted of forming solid 3He at a very
steady rate, and plotting the melting pressure vs. time on
a strip-chart recorder. It is important to note here that I
was using a capacitive pressure transducer of the sort
first developed by Straty and Adams (1969) at the Uni-
versity of Florida. In such a device the hydrostatic pres-
sure flexes a thin metal diaphragm to which one plate of
a parallel plate capacitor was attached, thus changing
the capacitor gap, which was measured with an AC ca-
pacitance bridge. It had far better resolution than any-
thing which had been available before. The parts of my
pressure transducer are shown in Fig. 3.

The first such experiment was carried out on Novem-
ber 24, 1971, the day before the American Thanksgiving
holiday. As I watched, the pressure rose steadily as the
cell cooled. Suddenly, at a temperature I estimated to be
about 2.6 mK, the rate of cooling abruptly dropped by
about a factor of two. I guessed that this decrease in the
cooling rate signaled the onset of heating due to the
plastic deformation of solid 3He by the moving bellows,
and soon decided to terminate the compression. A por-
tion of the resulting pressurization curve first showing
this ‘kink’ is seen in Fig. 4. The hand-written numbers in
the figure were added four days later. After melting the
solid in the cell by decompression, I decided to let the
cell pre-cool to as low a temperature as could be

reached with my dilution refrigerator over the entire
four-day holiday, and then to try the experiment again
on Monday. If I started at 15 mK rather than 20 mK,
there would be 30% less solid in my cell at 2.6 mK than
there had been in the compression on Nov. 24.

On that fateful Monday I got into the lab at about
noon, ate a quick lunch as was my habit, and started the
compression at about 12:35 pm. By 5:50 pm I neared the
pressure at which the sudden decrease in cooling rate
had been seen in the previous run. I did not expect the
kink to occur at the same pressure, if at all. Nonetheless,
I soon saw another kink in the pressurization curve, and
could tell that it was close to the same pressure at which
it had occurred before. My heart sank. I then made a
careful determination of the pressures at which these
‘glitches’ had occurred, and found the two pressures
were the same to within about one part in 50 000!

At this moment adrenaline began to flow through my
veins, as I immediately recognized that the probability
that plastic deformation would just begin in my cell at
exactly the same pressure on successive compressions
with very different starting conditions was vanishingly
small. A more logical explanation for this coincidence
was that this glitch signaled some highly reproducible
phase transition in my cell. Had I managed to reach the
temperature of the nuclear magnetic phase transition in
solid 3He? The temperature seemed too high. I then
repeatedly compressed and de-compressed through the
region of the glitch to insure that it was indeed repeat-
able, and to measure its pressure more accurately. The
initial pressurization curve through the ‘glitch’ that day
is shown in Fig. 5. I then found Bob Richardson, and we
discussed the possible nature of the new transition I had
discovered. We agreed that if there were a first order
transition in the solid in which the spin system lost per-
haps 30% of its entropy, we could understand the
change in slope of the pressurization curve. This discus-
sion resulted in a possible magnetic phase diagram for

FIG. 3. Photograph of the ca-
pacitive pressure transducer for
the 3He cell during assembly.
The moving capacitor plate at-
tached to the metal diaphragm
is seen at the left, while the sta-
tionary plate is on the right.

669D. D. Osheroff: Superfluidity in 3He

Rev. Mod. Phys., Vol. 69, No. 3, July 1997

dilution cryostat Pomeranchuk cell:
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Discovery of superfluid 3He

Original recordings: 
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Discovery of superfluid 3He

Lab book of Doug Osheroff

2:40 am: Have discovered the BCS transition in liquid 
3He tonite. The pressure pheonomena associated
with B + B‘ are accompanied on + off the peaks
approximately equal to the entire liquid susceptibility. 

I checked all the other data I had taken, and then I 
looked around for someone with whom to share my
good news. No one was anywhere to be found in the
entire building. 

At 4:00 am: I decided to call Dave Lee and Bob 
Richardson, perhaps a risky move for any graduate
student. Both agreed that the identification was a 
strong one, and at 6:00 am Dave called back for
more details.

April 20, 1972
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Discovery of superfluid 3He

But, thanks to Tony Leggett, we were on the road to
understanding these strange new fluids.

II. UNDERSTANDING

In the next three years almost every low temperature
laboratory with the capability to reach the necessary low

temperatures studied aspects of superfluidity in 3He,
but for much of this time the theorists were ahead of the
experimentalists. Several questions had been raised.
Were these really p-wave BCS states as Leggett had
suggested? What was the pairing mechanism? How
could there be two separate superfluid phases? What
were the microscopic identities of the A and B phases?

FIG. 9. Self-photograph of my-
self taken some time in April,
1972 with my left hand on the
NMR magnet used in our work.
The cryostat, suspended from
above, is inside the glass dewar
seen entering the magnet field
region.

FIG. 10. Sequence of NMR
traces without applied magnetic
field gradient as the tempera-
ture is slowly decreased below
the A transition. As the liquid
cools, a satellite NMR line can
be seen to shift to higher fre-
quencies. The nearly horizontal
line in the traces is the cell pres-
sure, increasing slowly from
trace 1 to 8. Between traces 3
and 4 the capacitance bridge
was rebalanced.

675D. D. Osheroff: Superfluidity in 3He

Rev. Mod. Phys., Vol. 69, No. 3, July 1997

morning after the discovery
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Discovery of superfluid 3He

Heidelberg 2010
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4.1 Basic Properties of superfluid 3He

a) Phase diagram  (at ultralow temperatures and without magnetic field) 

► PCP polycritical point
► 3He-N à 3He-A, 3He-B    A-PCP-Z   

         2nd order phase transition 
► 3He-A à 3He-B    B-PCP 

         1st order phase transition

4.1 Basic Experimental Facts 99

temperatures an antiferromagnetic phase. The transition temperature for the
antiferromagnetic transition – the so-called Néel temperature TN – is about
0.9 mK at melting pressure.

Four points of this phase diagram are specifically indicated by capital
letters: A and B are the transition points of the superfluid phases along the
melting curve. The polycritical point PCP marks the coexistence point of all
three liquid phases. The letter Z labels the transition between 3He-N and
3He-B at zero pressure p = 0. In Table 4.1, we have gathered together the
values for the pressures and temperatures at which these points occur. The
phase transition from normal to superfluid 3He at the line A–PCP–Z is of
second order. In contrast, the phase transition from the A to the B phase,
indicated by the line B–PCP, is a first-order phase transition.

Table 4.1. Some special points from the temperature–pressure phase diagram of
liquid 3He. Note that we have listed the values according to the new Provisional
Low Temperature Scale PLTS-2000 (see Table 12.3). However, such an adaptation
was not performed for the temperatures given in the remaining text of this book

A B PCP Z

pressure p (bar) 34.3 34.3 21.5 0

temperature T (mK) 2.44 1.90 2.24 0.92

Even small magnetic fields have a great influence on the phase diagram of
liquid 3He, as illustrated in Fig. 4.2. An additional superfluid phase, 3He-A1,
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Fig. 4.2. Pressure–temperature–magnetic field phase diagram of liquid 3He in the
temperature range 0.5 K to 3 mK. After [133]

special points

98 4 Superfluid 3He

an antiferromagnetic state of solid 3He, they believed that the phase tran-
sitions occurred in solid 3He and published their results in a paper entitled:
‘Evidence for a New Phase in Solid 3He’ [141]. But only a few months later
they were able to show in beautiful NMR experiments that the phase transi-
tions they had observed were actually taking place in the liquid [142]. Later
it became clear that three different superfluid phases of 3He exist.

Superfluid 3He is an extraordinarily complex fluid, that shows a great
variety of exotic phenomena (for recent monographs see [133, 143, 144]). In
this chapter we will give a brief introduction to some of these properties.

4.1 Basic Experimental Facts

In this section, we briefly discuss some basic experimental observations that
have been made on superfluid 3He. It is not possible, however, to cover all
the important aspects of the large amount of experimental data available for
superfluid 3He. The selection of observations we present in this introductory
section has been made with the intention of introducing some basic properties
of this fascinating liquid.

4.1.1 Phase Diagram

First, we take a look at the phase diagram of 3He at very low temperatures.
As shown in Fig. 4.1, in the absence of magnetic fields, liquid 3He can exist
in three different phases, namely in a normal-fluid phase 3He-N and in two
superfluid phases 3He-A and 3He-B.

The bcc phase of solid 3He is divided into two regions depending on
the behavior of the nuclear spins: a paramagnetic phase and at very low
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Fig. 4.1. Pressure–temperature
phase diagram of 3He below 3 mK
in the absence of magnetic fields
[145]. The superfluid phases are
grey tinted
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► A1 phase appears

► for B > 0.65 T no B phase

► PCP point disappears

► small corridor ∼ 20 µK at 38 mT and 10 bar

with magnetic field

100 4 Superfluid 3He

occurs. The temperature range in which this phase exists depends on the
magnitude of the magnetic field. It increases with the applied field and is
0.5 mK wide at 10 T. The A phase also widens with increasing magnetic field
and above 0.65 T it displaces the B phase completely. In addition, the poly-
critical point PCP disappears in finite magnetic fields and the A phase exists
in a small temperature range between 3He-N and 3He-B. At low tempera-
tures and low fields this range is extremely small. As shown in Fig. 4.3, the
A phase has a width of only about 20µK at B = 38mT and p = 10 bar.
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Fig. 4.3. Pressure–temperature phase
diagram of liquid 3He below 2.6 mK in
a magnetic field of 38 mT [146]

4.1.2 Specific Heat

The temperature dependence of the specific heat of liquid 3He below 2 mK
at saturated vapor pressure has already been shown in Fig. 1.3. At the phase
transition from the normal to the superfluid state, the specific heat exhibits
a jump. The relative change of the specific heat ∆C/CN at the transition
depends on the applied pressure. The magnitude of ∆C/CN increases with
increasing pressure, starting from ∆C/CN ≈ 1.4 at p = 0, and reaching
∆C/CN ≈ 2 at the melting pressure. These values roughly agree with the
expected theoretical values 1.426 and 2.029 for the weak coupling and the
strong coupling BCS limits, respectively (see Sect. 10.3). To illustrate the
behavior at high pressures the temperature dependence of the specific heat
at 28.7 bar is shown in Fig. 4.4a. The jump in the specific heat at Tc is, in this
case, ∆C/CN ≈ 1.9. At the transition from the A phase to the B phase at the
temperature TAB, only a small variation of the temperature dependence of C
is visible, but no such jump is seen at Tc. This transition is accompanied,
however, by the occurrence of latent heat, consistent with the fact that this
phase transition is of first order. With LAB ≈ 1.54µJ mol−1 at the melting
pressure, the latent heat is rather small [147]. Substantial supercooling can
occur at the A–B transition, whereas only modest superheating effects have
been observed [148]. At pressures below the polycritical point PCP and at
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Low Temperature Scale PLTS-2000 (see Table 12.3). However, such an adaptation
was not performed for the temperatures given in the remaining text of this book

A B PCP Z

pressure p (bar) 34.3 34.3 21.5 0

temperature T (mK) 2.44 1.90 2.24 0.92

Even small magnetic fields have a great influence on the phase diagram of
liquid 3He, as illustrated in Fig. 4.2. An additional superfluid phase, 3He-A1,
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temperature range 0.5 K to 3 mK. After [133]
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4.1 Basic Properties of superfluid 3He

► pressure 28.7 bar

► jump at Tc 3He-N  à 3He-A

► jump                          at p = 0 

► anomaly at TAB 3He-A  à 3He-B

► Transition A à B: latent heat 

b) Specific heat 4.1 Basic Experimental Facts 101
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Fig. 4.4. (a) Reduced specific heat C/R of 3He at a pressure of 28.7 bar as a
function of temperature. At Tc a clearly visible jump in C exists, while a weak
variation of C occurs at TAB [21]. (b) Specific heat of superfluid 3He at the melting
pressure as a function of the reduced temperature T/Tc in a magnetic field of
0.88 T [147]. The solid lines above TA1 and below TA2 are fits to zero-field data in
3He-N and 3He-A, respectively

zero magnetic field, the transition from normal-fluid to superfluid 3He leads
directly to the B phase and the small variation of the specific heat at TAB

due to the A–B transition disappears.
As discussed above, the A transition splits into two transitions A1 and A2

in an external magnetic field, whereas the B transition moves to lower tem-
peratures. The A2 phase is identical with the A phase at zero magnetic field.
The splitting of the A phase transition is clearly observed in specific heat
measurements. Figure 4.4b shows the temperature dependence of the specific
heat of liquid 3He in a magnetic field of 0.88 T. A discontinuity is found at
each of the transitions, with the A1 jump ∆CA1/CN = 0.74 at the melting
pressure being somewhat smaller than the jump at TA2 . The discontinuities
add up to the jump observed in zero magnetic field. The width of the A1 phase
is just 56 µK at B = 0.88T.

4.1.3 Superfluidity

Persistent currents and frictionless flow are fundamental properties of a su-
perfluid. The superfluidity of 3He in both the A and the B phase has been in-
vestigated in persistent-flow experiments [149–151] using the gyroscope prin-
ciple [152]. If a superfluid circulates in a ring in the xy-plane, a periodic
torque about the x-axis produces oscillations about the y-axis with an am-
plitude proportional to the angular momentum of the circulating superfluid.
One method to generate a persistent supercurrent is to cool the liquid be-
low the superfluid transition temperature and to rotate the cryostat about
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pressure as a function of the reduced temperature T/Tc in a magnetic field of
0.88 T [147]. The solid lines above TA1 and below TA2 are fits to zero-field data in
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zero magnetic field, the transition from normal-fluid to superfluid 3He leads
directly to the B phase and the small variation of the specific heat at TAB

due to the A–B transition disappears.
As discussed above, the A transition splits into two transitions A1 and A2

in an external magnetic field, whereas the B transition moves to lower tem-
peratures. The A2 phase is identical with the A phase at zero magnetic field.
The splitting of the A phase transition is clearly observed in specific heat
measurements. Figure 4.4b shows the temperature dependence of the specific
heat of liquid 3He in a magnetic field of 0.88 T. A discontinuity is found at
each of the transitions, with the A1 jump ∆CA1/CN = 0.74 at the melting
pressure being somewhat smaller than the jump at TA2 . The discontinuities
add up to the jump observed in zero magnetic field. The width of the A1 phase
is just 56 µK at B = 0.88T.

4.1.3 Superfluidity

Persistent currents and frictionless flow are fundamental properties of a su-
perfluid. The superfluidity of 3He in both the A and the B phase has been in-
vestigated in persistent-flow experiments [149–151] using the gyroscope prin-
ciple [152]. If a superfluid circulates in a ring in the xy-plane, a periodic
torque about the x-axis produces oscillations about the y-axis with an am-
plitude proportional to the angular momentum of the circulating superfluid.
One method to generate a persistent supercurrent is to cool the liquid be-
low the superfluid transition temperature and to rotate the cryostat about

at p = 34.3 bar  (melting pressure)

► splitting of A transition in magnetic field

1st order phase transition

A1

A2  ≙  A (B = 0)

B = 0.88 T
p = 34.3 bar
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4.1 Basic Properties of superfluid 3He

c) Superfluidity
persistent flow experiments

A phase:   

experiments are difficult

► only under pressure possible
► textures are important (more later on this)

persistent flow only meta stable 
and decays slowly

is 3He a superfluid?

B phase:   
persistent current experiments up to 48 h   

no reduction of flow

drops by 12 orders of magnitude

82 3 Normal-fluid 3He
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Fig. 3.4. Magnetic susceptibility χ
of liquid 3He at 0.5 bar as a func-
tion of the temperature normalized
to the low-temperature limit χ0. The
solid line indicates the proportional-
ity χ ∝ 1/T at high temperatures
[122,123]

liquid, meaning that the magnetic susceptibility due to the nuclear spins
varies proportionally to 1/T , as expected from the Curie law . At low temper-
atures, the susceptibility becomes independent of temperature. This behavior
is expected for an ideal Fermi gas. In the free-fermion model the magnetic
susceptibility χ at low temperatures is given by

χ = I(I + 1)µ0 µ2
n g2

n
2
3

n

EF
= β2 D(EF) . (3.16)

Here, µn denotes the nuclear magnetic moment, gn the nuclear g-factor, I the
nuclear spin of the 3He atoms and D(EF) the density of states at the Fermi
energy. Note that the expression for the temperature-independent suscep-
tibility of liquid 3He at very low temperatures has the form of the Pauli
susceptibility of the conduction electrons in metals.

3.1.3 Transport Properties

The transport properties of a classical gas can be well described by means
of the Boltzmann equation in the framework of the kinetic theory of gases.
In this approach, the following expressions are found for the viscosity η, the
self-diffusion coefficient Ds, and the thermal conductivity λ:

η =
1
3

% v & , Ds =
1
3

v & , and Λ =
1
3

CV v & .

Here, & represents the mean free path of the gas atoms. The transport prop-
erties of an ideal Fermi gas can be described to a good approximation by the
same relations, but with the replacement of the thermal velocity v by the
Fermi velocity vF = (!/m)(3π2n)1/3. The mean free path is limited by the
scattering of the fermions, i.e., in our case by the scattering of 3He atoms
among each other. The corresponding mean collision time can by expressed
by τ = vF/&. Because of the exclusion principle the phase space for fermion
scattering is rather limited. To show this, we consider a system of fermions at

critical velocity is extremely low:      = 1 … 100 mm/s 

102 4 Superfluid 3He

its symmetry axis well above any critical velocity. After stopping the rota-
tion, the oscillation amplitude about the y-axis is recorded. In this way, the
persistent flow of a superfluid can be monitored.

From the fact that in such experiments no measurable reduction of the
flow of 3He-B could be detected over 48 h, one can conclude that the effective
viscosity of the superfluid component is at least 12 orders of magnitude lower
than the viscosity of normal-fluid 3He at the transition temperature. In the
case of 3He-A, persistent-flow experiments are somewhat problematic, since in
this phase a pronounced anisotropy exists. It seems, however, that persistent
currents are only metastable in the A phase, and thus slowly decay – about
1% per day. It is also found that the persistent currents are destroyed by
crossing the A–B transition line. Although cooling at rest, either from the
normal liquid into the A phase or across the A–B phase boundary, does not
produce a state with vs != 0, warming across TAB leads to the spontaneous
generation of a small persistent current in 3He-A. This flow is independent
of the magnitude and the direction of any persistent current that might have
been present in the B phase before warming.

The critical velocity at which flow is no longer frictionless is very low in
superfluid 3He, as shown in Fig. 4.5. Typically, one finds critical velocities
in the range 1 to 100 mm s−1. Although the mechanism responsible for these
very low critical velocities has not been unambiguously identified, it seems
clear that the formation of vortex rings and the breaking of quasiparticle
pairs (see Sect. 4.2) play an important role.
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Fig. 4.5. Dependence of the critical
velocity of 3He-B in a superleak on
the size of the pores. The data are
taken at different temperatures and
pressures and have been normalized
to the value at 29 bar and T/Tc = 0.5
[149,150,153,154]

4.1.4 Nuclear Magnetic Resonance (NMR)

An investigation of the nuclear spins of 3He atoms provides a means to
obtain detailed information on the dynamical properties of the liquid. In
a constant magnetic field B0, a spin-1/2 system has only two possible

reasons: vortex rings and pair breaking

flow of 3He-B through thin capillaries

►       drops linear with d :

compare He-II

70 2 Superfluid 4He – Helium II

Figure 2.49 shows the results of experiments with capillaries of different
diameters. In these measurements, the normal-fluid component was blocked
by a fine powder. The data suggest the relation vc ∝ d−1/4 between the
capillary diameter d and the critical velocity vc, although theoretical consid-
erations would favor vc ∝ d−1.
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Fig. 2.49. Product vcd of the criti-
cal velocity and the capillary diame-
ter plotted as a function of the dia-
meter d [107]

Finally, we mention that for extended samples, networks of vortices –
similar to the dislocation networks in solids – play an important role and
have stimulated extensive theoretical work [108].

2.6 Critical Phenomena Near the Lambda Point

We have seen that many of the properties of 4He exhibit a sudden change at
the lambda point at Tλ = 2.17 K. As mentioned before, the origin of these
changes is the continuous phase transition that occurs in liquid helium. The
investigation of phase transitions is of general importance in physics. Since
helium is a very clean substance consisting of extremely simple constituents,
there has been considerable interest in the investigation of the properties of
liquid helium in the vicinity of the phase transition. The hope was that with
such a well-defined system, fundamental questions can be investigated that
are of relevance in a broader context.

2.6.1 Brief Theoretical Background

The behavior near a critical point is determined by quantities that vanish,
such as an order parameter, or by quantities that diverge, such as specific
heat or susceptibility. Qualitative descriptions of the critical behavior of some
special systems were already given around the turn of the 19th century. Ex-
amples are the transition between liquid and gas [109] and the transition

as expected
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4.1 Basic Properties of superfluid 3He

d) NMR experiments
no comparison with He-II possible             still revealing!

3He: nuclear spin  I =1/2,    Lamor frequency   

► 3He-N calculated Lamor frequency is observed
► 3He-A, 3He-B             very surprising effects

transverse rf field  (normal geometry)

4.1 Basic Experimental Facts 103

orientations. In this case, the resonance frequency, or Larmor frequency is
given by ωL = γ|B0|, where γ represents the gyromagnetic ratio.

For isolated 3He atoms and for 3He-N, one finds experimentally the ex-
pected frequency ωL. However, in superfluid 3He several anomalies are ob-
served. We briefly introduce some of the remarkable features. A more detailed
discussion of the spin dynamics in superfluid 3He is presented in Sect. 4.5.

Transverse rf Fields

The first NMR experiments on superfluid 3He were carried out in 1972 to
clarify whether the newly discovered phases occur in liquid or in solid 3He.
Figure 4.6 shows the NMR spectra at different temperatures obtained in these
early investigations. The experiments were performed using a Pomeranchuk
cell (see Sect. 11.5) that contained both liquid and solid 3He. The large, nearly
temperature independent, pair of resonance lines1 are due to the nuclear spins
in solid 3He. At T = Tc, the absorption lines in the solid and the liquid phase
(grey tinted) lie on top of each other. Below Tc, the absorption line of the
nuclear spins in the liquid is shifted towards higher frequency. This frequency
shift grows with decreasing temperature. The total shift at each temperature
is indicated by a double arrow . The line shape of the resonance originating in
the liquid phase did not change significantly with temperature and is similar
to that observed in 3He-N.
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Fig. 4.6. Transverse NMR absorption spectra observed in a mixture of solid and
liquid 3He at the melting pressure for different temperatures [142]. The grey tinted
line corresponds to the absorption line in the liquid phase

1 The origin of the doublet structure of the resonance line of solid 3He is an
experimental artifact and of no interest to our discussion.

► measurement in Pomeranchuk cell by D. Osheroff
► double line because  3He-A and solid 3He are in cell
► NMR line shifts to higher frequencies with lower T

► empirical relation: 


