

Debye relaxation process (transition from hydrodynamic regime to collision-less regime)

- ▶ high $T: \omega \tau \ll 1$ → hydrodynamic regime: first sound
- ▶ low $T: \omega \tau \gg 1 \longrightarrow$ collision-less regime: zero sound, longitudinal

transversal collision-less spin waves

compare with classical gas

mean free path > wavelength ---- no sound propagation

but ³He

SS 2023

MVCMP-1

- strongly interacting particles
- force on quasiparticle does not stem from direct neighbors, but from all atoms
- density fluctuations can propagate without collisions
- transversal modes are also possible

General theoretical description of zero sound is rather complicated — here only results

- collective modes with $\omega \tau \gg 1 \longrightarrow$ zero sound
- 2 different sound modes (similar to first sound) and collision-less spin waves

longitudinal sound:

SS 2023

MVCMP-1

$$v_{1} = \frac{v_{\rm F}}{3} \sqrt{\frac{(1+F_{0})}{(1+\frac{1}{3}F_{1})}} \qquad \omega\tau \ll 1$$
$$v_{0} = v_{1} \left[1 + \frac{2}{5} \left(\frac{1+\frac{1}{5}F_{2}}{1+F_{0}} \right) \right] \qquad \omega\tau \gg 1$$

difference of zero and first sound:
$$\frac{v_0 - v_1}{v_1} = \frac{2}{5} \frac{\left(1 + \frac{1}{5}F_2\right)}{\left(1 + F_0\right)}$$
$$\longrightarrow \quad (v_0 - v_1) \approx 6 \,\mathrm{m \, s^{-1}}$$

intermediate temperatures:

$$\frac{v}{v_1} = 1 + \frac{v_0 - v_1}{v_1} \frac{\omega^2 \tau_{\rm s}^2}{1 + \omega^2 \tau_{\rm s}^2}$$

sound attenuation:

$$\frac{\alpha v}{\omega} = -2 \, \frac{v_0 - v_1}{v_1} \, \frac{\omega \tau_{\rm s}}{1 + \omega^2 \tau_{\rm s}^2}$$

limiting cases:

$$\alpha_1 = A_1 \omega^2 \tau \propto \omega^2 T^{-2}$$

$$\alpha_0 = A_0 \tau^{-1} \propto T^2$$

transversal sound:

SS 2023

MVCMP-1

 $\omega \tau \ll 1$ hydrodynamical regime \longrightarrow diffuse shear mode ³He

 $\omega \tau \gg 1$ real solution for $F_1 > 6$

impossible at normal pressure: $F_1 = 5.2$

but F_1 depends on pressure

 $F_1 = 5.2 \dots 15$

melting pressure

attenuation: $lpha_0 \propto T^2$

experimental results

- narrow T range, very high damping
- sound transducers spaced by 25 μ m
- damping depends on pressure

collision-less spin waves: (predicted by Silin 1957)

spin transport
$$D_{
m s}=rac{1}{3}\, au_{
m D}$$

SS 2023

MVCMP-1

$$D_{
m s} = rac{1}{3} \, au_{
m D} \, v_{
m F}^2 \, \left(1 + rac{1}{4G_0}
ight) \, .$$

 $\omega \tau \ll 1$

 $\omega \tau \gg 1$

spin transport

→ collision-less spin waves

experimental results

- standing spin waves
- ► linear magnetic field gradient 44 mT m⁻¹
- rectangular absorption "line"
- maxima of spin wave resonance on top

SS 2023 MVCMP-1

Dispersion of zero sound modes:

experimental determination very difficult

capture cross section very high

ultralow temperatures T < 20 mK

SS 2023

MVCMP-1

Wavevector transfer Q $(Å^{-1})$

4. Superfluid ³He

4

A model for all physics in our universe?

RAA

SS 2023

MVCMP-1

Douglas Osheroff, Bob Richardson, Dave Lee

indications for several phase transitions in a pressure dependent measurement with a Pomeranchuk cell

Original recordings:

Lab book of Doug Osheroff

April 20, 1972

2:40 am: Have discovered the BCS transition in liquid ³He tonite. The pressure pheonomena associated with B + B' are accompanied on + off the peaks approximately equal to the entire liquid susceptibility.

I checked all the other data I had taken, and then I looked around for someone with whom to share my good news. No one was anywhere to be found in the entire building.

At 4:00 am: I decided to call Dave Lee and Bob Richardson, perhaps a risky move for any graduate student. Both agreed that the identification was a strong one, and at 6:00 am Dave called back for more details.

morning after the discovery

Heidelberg 2010

a) Phase diagram (at ultralow temperatures and without magnetic field)

special points

SS 2023

MVCMP-1

	А	В	PCP	Z
pressure p (bar)	34.3	34.3	21.5	0
temperature T (mK)	2.44	1.90	2.24	0.92

4.1 Basic Properties of superfluid ³He

with magnetic field

SS 2023

MVCMP-1

- A1 phase appears
- for B > 0.65 T no B phase
- PCP point disappears
- **•** small corridor ~ 20 μ K at 38 mT and 10 bar

4.1 Basic Properties of superfluid ³He

b) Specific heat

SS 2023

MVCMP-1

- pressure 28.7 bar
- ▶ jump at T_c ³He-N → ³He-A
 - jump $\Delta C/C_{\rm N} \approx 1.4$ at p = 0 $\Delta C/C_{\rm N} \approx 2$ at p = 34.3 bar (melting pressure)
- anomaly at T_{AB} ³He-A \rightarrow ³He-B
- Transition A → B: latent heat L_{AB} ≈ 1.54 µJ mol⁻¹
 → 1st order phase transition

splitting of A transition in magnetic field

c) Superfluidity

SS 2023

MVCMP-1

is ³He a superfluid? \longrightarrow persistent flow experiments

A phase:

experiments are difficult

- only under pressure possible
- textures are important (more later on this)
 - persistent flow only meta stable and decays slowly

B phase:

persistent current experiments up to 48 h

- no reduction of flow
- $\rightarrow \eta$ drops by 12 orders of magnitude

critical velocity is extremely low: $v_c = 1 \dots 100$ mm/s

reasons: vortex rings and pair breaking

flow of ³He-B through thin capillaries

 $v_{
m c}\,$ drops linear with d : $v_{
m c} \propto d^{-1}$ as expected

compare He-II $\,v_{
m c}\,\propto\,d^{-1/4}$

d) NMR experiments

SS 2023

MVCMP-1

³He: nuclear spin I=1/2, Lamor frequency $\omega_{
m L}=\gamma|m{B}_0|$

- ³He-N calculated Lamor frequency is observed

transverse rf field (normal geometry)

- measurement in Pomeranchuk cell by D. Osheroff
- double line because ³He-A and solid ³He are in cell
- NMR line shifts to higher frequencies with lower T
- empirical relation: $\omega_{\rm t}^2 = \omega_{\rm L}^2 + \Omega_{\rm A}^2(T)$