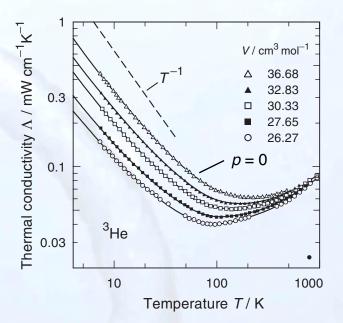


3.1 Ideal Fermi-Gas

(iii) Thermal conductivity

$$\Lambda = \frac{1}{3} C_V v \ell \longrightarrow \Lambda = \frac{1}{3} C_V \tau v_{\rm F}^2$$

- low temperatures: $C \propto T$ $\tau \propto T^{-2}$ $\Lambda \propto T^{-1}$ and paramagnon contributions
- high temperatures: dense classical gas
- ▶ very small absolute value: $\Lambda \approx 10^{-4} \, \mathrm{W \, cm^{-1} K^{-1}}$ at 200 mK



Is ³He a Fermi gas?

	$^{3}\mathrm{He}$	Fermi Gas	Ratio
$C_V / \gamma T$	2.78	1.00	2.78
$v = v_{\rm F} / \sqrt{3} \; ({\rm m s^{-1}})$	188	95	1.92
$\chi/eta^2~(\mathrm{Jm^3})^{-1}$	3.3×10^{51}	3.6×10^{50}	9.1

deviations are not too big, but still significant and in addition differently large for different properties

collective excitations $\hat{=}$ quasi particles

Landau theory of Fermi liquids 1956-1958

prediction of zero sound and collision-less spin waves

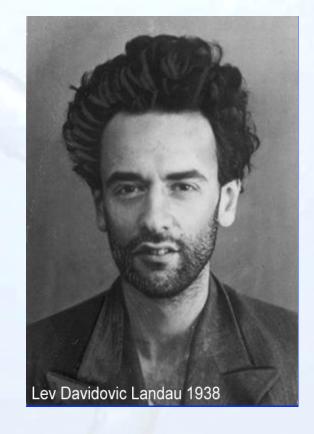
Basic idea

SS 2023

MVCMP-1

- interaction does change the energy of particles, but not momentum!
- plausible since momentum states are given by boundary conditions

for each state in the Fermi gas there is a corresponding state in the liquid, but with modified energy



Quasi-particle concept

SS 2023

MVCMP-1

important: total energy is not given by the sum of all individual states (isolated atoms)

 $U \neq \sum_{i} f_i E_i$

Landau's Gedankenexperiment

consider that the interaction is switched on slowly

number of states does not change

E _j	<u>E</u> i
Ideal Fermi Gas	Fermi Liquid

number of quasi particles per volume analog to Fermi gas

 energy of one quasi particle is defined by the change of energy of the complete system when a quasi particle is added:

$$\delta u = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

$$\delta U = \int E \, \delta f \, \mathrm{d}^3 k$$

energy of one quasi particle is given by the energy of an isolated atom plus, the interaction with all other atoms

quasi particle states are not eigenstates

SS 2023

MVCMP-1

How does the distribution function look like? - does the Fermi distribution still hold?

Yes, as long as the energy levels (states) are well-defined!

ightarrow broadening of levels $\ \delta E pprox \hbar/ au$

collision time, lifetime

quasi particle states are well-defined as long as the uncertainty is small compared to the thermal broadening $\Delta E \approx k_{\rm B}T$

this condition can always be fulfilled at sufficiently low temperatures, since

$$au \propto rac{1}{T^2}$$
 \land $\delta E \propto T^2$

SS 2023

MVCMP-1

some numbers: $\tau \approx 5 \times 10^{-11} \frac{1}{T^2} [s]$

 $au \approx 1 \times 10^{-12} \frac{1}{T^2} [s]$

experimental result

Fermi gas

 $\Delta E \approx k_{\rm B}T \longrightarrow T = 0.1 \, {\rm K}$

Fermi distribution holds $f(E,T) = rac{1}{\mathrm{e}^{(E-\mu)/k_{\mathrm{B}}T}+1}$

Landau theory is good for $T \ll 0.1\,\mathrm{K}$ in case of ³He

What is the dispersion relation ?

SS 2023

MVCMP-1

$$T
ightarrow 0$$
 , states at $E_{
m F}$: $p_{
m F} = \hbar \left(3 \pi^2 n
ight)^{1/3}$

general expression for states near Fermi level

dispersion of quasi particles

$$E = E_{\mathrm{F}} + rac{p_{\mathrm{F}}}{m^*} \left(p - p_{\mathrm{F}}
ight)$$

density of states at Fermi level

$$D(E_{
m F}) = rac{m^{*}k_{
m F}}{\pi^{2}\hbar^{2}} = rac{m^{*}}{\pi\hbar^{2}}\sqrt[3]{rac{3n}{\pi}}$$

Central problem: Interaction term

SS 2023

MVCMP-1

- energy of quasi particles depends on the configuration of all quasi particles
- E(p,T) changes when the occupation of states with p' differ by $\delta f(p')$ from the one at T=0

Phenomenological ansatz (without spin term)

cannot be derived

$$E(\mathbf{p},T) = E(\mathbf{p},0) + 2\varrho_k \int h(\mathbf{p},\mathbf{p}') \,\delta f' \,\mathrm{d}^3 p'$$
$$h(\mathbf{p},\mathbf{p}') = \frac{\partial^2 U}{\partial f(\mathbf{p}) \,\partial f'(\mathbf{p}')} \qquad \text{interaction term}$$

• $D(E_{\rm F}) h(\boldsymbol{p}, \boldsymbol{p}')$ corresponds to the scattering amplitude

 $h(\boldsymbol{p}, \boldsymbol{p}') = h(\boldsymbol{\Theta})$

- \blacktriangleright like for a Fermi gas only states at the Fermi surface are important $~~p~pprox~p'~pprox~p_{
 m F}$
 - → h(p, p') depends only on the angle Θ between p' and p

Treatment of interaction term

SS 2023

MVCMP-1

consider new function: $F(\Theta) = D(E_{\rm F}) h(\Theta)$

expansion in terms of Legendre polynomials

$$F(\Theta) = \sum_{i} F_{i} P_{i}(\cos \Theta) = F_{0} + F_{1} \cos \Theta + F_{2} \frac{3\cos^{2} \Theta - 1}{2} + \dots$$

these coefficients can (only) be determined experimentally

general expression with spin term: $\mathcal{F}(\boldsymbol{p},\boldsymbol{s},\boldsymbol{p}',\boldsymbol{s}') = h(\boldsymbol{p},\boldsymbol{p}') + \xi(\boldsymbol{p},\boldsymbol{p}') \ \boldsymbol{s}\cdot\boldsymbol{s}'$ spin term

consider new function for spin term: $G(\Theta) = D(E_{\rm F}) \xi(\Theta)$

expansion in terms of Legendre polynomials

$$G(\Theta) = D(E_{\rm F})\,\xi(\Theta) = \sum_i G_i P_i(\cos\Theta) = G_0 + G_1\cos\Theta + \dots$$

these coefficients can (only) be determined experimentally

3.2 The Landau Fermi-Liquid Theory

4

Application to liquid ³He (not trivial)

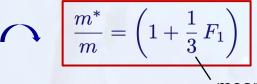
(i) effective mass

SS 2023

MVCMP-1

$$\frac{1}{m} = \frac{1}{m^*} + \frac{p_{\rm F}}{\hbar^3} \int F(\Theta) \cos \Theta \mathrm{d}\Gamma$$

solid angle segment of Fermi surface



mean value of $F_1 \cos \Theta$

experimental results

pure ³He:

1% ³He in ⁴He:

 $rac{m^*}{m} pprox 3$ normal pressure $rac{m^*}{m} pprox 6$ 30 bar $rac{m^*}{m} pprox 2.4$

Landau's Fermi liquid theory can be tested varying pressure and ³He concentration (ii) specific heat

SS 2023

MVCMP-1

$$C = \frac{m^*}{m} C_{\rm FG} = \left(1 + \frac{1}{3} F_1\right) C_{\rm FG}$$
$$\bigcirc \quad C \propto T \quad \text{at} \quad T \ll T_{\rm F}^* \qquad \qquad T_{\rm F}^*$$

 $T_{\rm F}^*\approx 0.5\,{\rm K}$

(ii) sound velocity (first sound)

$$v_1^2 = \frac{p_{\rm F}^2}{3m^2} \frac{1+F_0}{1+\frac{1}{3}F_1} = \frac{1}{3} v_{\rm F}^2 \frac{1+F_0}{1+\frac{1}{3}F_1}$$

(iii) magnetic susceptibility

$$\chi = \frac{m^*}{m} \left(\frac{1}{1 + \frac{1}{4}G_0}\right) \chi_{\rm FG}$$

$$-2.8$$

compare to: $v=rac{1}{3}v_{
m F}$ Fermi gas

$$\begin{aligned} \mathcal{V}_{i}^{2} \pm \left(\frac{\partial \rho}{\partial S}\right)_{S} &= N \frac{\partial \mu}{\partial N} \left[\text{orad } \mu = \frac{1}{S} \operatorname{grad} \rho \right] \\ \text{with } \mu = E_{F} = E(\rho_{F}) \\ \text{Since } \rho_{F} = \operatorname{tr} \left(3\pi^{2} \frac{N}{V}\right)^{n/s} \sqrt{\partial \mu} \sqrt{\partial \mu} \\ \mathcal{V}_{i}^{2} &= \frac{\rho_{F}}{3m} \frac{\partial \mu}{\partial \rho_{F}} \\ = \frac{\rho_{F}}{2m} \left[\frac{\rho_{F}}{m} + \frac{2\rho^{2}}{43} \int F(\theta) (1 - \cos \theta) d\Gamma \right] \\ \pi^{1} \operatorname{insect expansion} \\ \mathcal{V}_{i}^{2} &= \frac{\rho_{F}}{3m^{2}} \left(\frac{1 + F_{0}}{1 + \frac{4}{3}F_{0}} \right) \end{aligned}$$

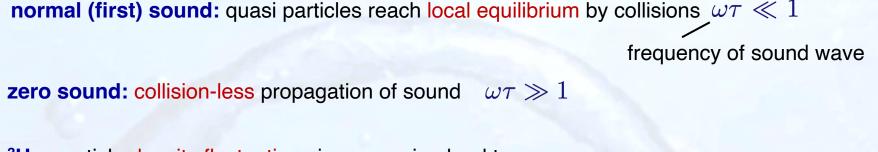
• enhancement of susceptibility $\uparrow\uparrow$ against Fermi statistics $\downarrow\uparrow$

if exchanged interaction larger by a factor 2 $\longrightarrow 1 + \frac{1}{4}G_0 < -1$ and ground state would be ferromagnetic

Landau Fermi liquid parameters for ³He

SS 2023 MVCMP-1

$p~(\mathrm{bar})$	$V_{ m m}~({ m cm}^3)$	F_0	F_1	G_0	m^*/m
0	36.84	9.30	5.39	-2.78	2.80
3	33.95	15.99	6.49	-2.89	3.16
6	32.03	22.49	7.45	-2.93	3.48
9	30.71	29.00	8.31	-2.97	3.77
12	29.71	35.42	9.09	-2.99	4.03
15	28.89	41.73	9.85	-3.01	4.28
18	28.18	48.46	10.60	-3.03	4.53
21	27.55	55.20	11.34	-3.02	4.78
24	27.01	62.16	12.07	-3.02	5.02
27	26.56	69.43	12.79	-3.02	5.2 <mark>6</mark>
30	26.17	77.02	13.50	-3.02	5.50
33	25.75	84.79	14.21	-3.02	5.74



³He: particle density fluctuations in one region lead to density fluctuation in neighboring regions

SS 2023

MVCMP-1

propagation of sound-like modes zero sound

Debye relaxation process (transition from hydrodynamic regime to collision-less regime)

