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3.1 Ideal Fermi-Gas

(iii) Thermal conductivity

3.1 Ideal Fermi Gas – Comparison with Liquid 3He 85

classical gas and the self-diffusion coefficient increases with temperature. The
transition from a Fermi gas to a classical gas is marked by a minimum of the
self-diffusion coefficient, which is found at about 0.5 K.

Thermal Conductivity

The thermal conductivity Λ of liquid 3He also exhibits a minimum at about
0.2 K. Experimental data for Λ are shown in Fig. 3.7. Normal-fluid 3He is a
very poor heat conductor. At 1 K, for example, the thermal conductivity is
much lower than that of amorphous materials. We find Λ ≈ 10−4 W cm−1K−1

for 3He, and in comparison, a typical value for glasses at this temperature is
5 × 10−3 W cm−1K−1 (see Sect. 9.5).
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Fig. 3.7. Thermal conductiv-
ity Λ of liquid 3He as a function
of the temperatures at differ-
ent molar volumes. At low tem-
peratures and a molar volume
of 36.68 cm3 mol−1 one finds
roughly a 1/T dependence, as
indicated by the dashed line
[130]

The thermal conductivity of a Fermi gas is given by

Λ =
1
3

CV τ v2
F . (3.20)

Since the specific heat CV varies proportional to T , and τ proportional
to T−2, we expect a 1/T dependence for the thermal conductivity. As shown
in Fig. 3.7, the thermal conductivity data of liquid 3He in the absence of
external pressure (36.68 cm3mol−1) indeed do approach such a dependence
at very low temperatures. With increasing pressure, the contribution of spin
fluctuations causes deviations, as we have also seen in the discussion of the
specific heat.

► low temperatures:

► high temperatures:   dense classical gas

► very small absolute value:                                          at 200 mK 

and paramagnon
contributions
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Fig. 3.5. (a) Viscosity of liquid 3He as a function of temperature. With decreasing
temperature viscosity increases drastically [124, 125]. (b) Inverse viscosity of liq-
uid 3He as a function of T 2 at a pressure of 16 bar. Down to the transition into the
superfluid state (sharp increase of η−1) one finds η−1 ∝ T 2 [126]

Self-diffusion Coefficient

Closely related to the viscosity is the self-diffusion coefficient Ds, which
describes the nuclear spin transport. This quantity is usually determined
from nuclear spin echo experiments. For a Fermi gas, the self-diffusion coef-
ficient Ds = η/" is given by

Ds =
1
3
τv2

F . (3.19)

Figure 3.6 shows the result of measurements of Ds. As expected, at low
temperatures the self-diffusion coefficient decreases with increasing tempera-
ture proportional to T−2. At higher temperatures, 3He behaves like a dense
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p = 0

Is 3He a Fermi gas?
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3.1.4 Quantitative Comparison: 3He and Ideal Fermi Gas

We have seen that liquid 3He at low temperatures behaves at least qualita-
tively as a free Fermi gas. We will now look at the quantitative comparison
for a few selected physical properties that we have gathered in Table 3.1.

Table 3.1. Specific heat, sound velocity and magnetic susceptibility of 3He in
comparison to an ideal Fermi gas

3He Fermi Gas Ratio

CV /γ T 2.78 1.00 2.78

v = vF/
√

3 (m s−1) 188 95 1.92

χ/β2 (J m3)−1 3.3 × 1051 3.6 × 1050 9.1

Although the experimental values agree within an order of magnitude with
the expected ones for an ideal Fermi gas, the discrepancies are significant. As
we see in the following section, a better quantitative description is provided
by the Landau Fermi-liquid theory.

3.2 The Landau Fermi-Liquid Theory

As we saw in the preceding section, the properties of liquid 3He below 0.1 K
can qualitatively be described in the Fermi-gas model. Starting from this
simplifying description, Landau developed a model that takes into account
the strong interaction between 3He atoms and that provides a much better
description of the experimental data. An essential aspect of this model is
that, due to the strong interactions, the excitations of individual atoms are
not the proper means to describe the system. Rather, collective excitations of
the atoms must be considered. These elementary excitations can be treated
as quasiparticles with energies and momenta. Within this model, Landau pre-
dicted the so-called zero sound , which was later on experimentally discovered
by Keen, Matthews and Wilks in 1963 [131]. We will discuss this property of
liquid 3He in Sect. 3.3.

3.2.1 Quasiparticle Concept

Landau assumed that the interaction between 3He atoms changes their energy
but not their momentum. This assumption is plausible since the allowed
momenta are determined by the geometrical boundary conditions. Therefore,
we can still write for the momentum of the quasiparticles at the Fermi surface

pF = !
(
3π2n

)1/3
. (3.21)

deviations are not too big, but still significant and in addition differently large for different properties
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3.2 The Landau Fermi-Liquid Theory

Landau Two-Fluid Model 

Can picture superfluid 4He as two interpenetrating fluids: 
     Normal: density ρn(T), velocity vn 
     Superfluid: density ρs(T), velocity vs 
 
      ρ = ρn(T)+ ρs(T) 
 
 
Mass current = ρsvs+ρnvn 
Entropy current =  svn   
    :carried by normal fluid only 
  
 
Second sound (collective mode) =  
       counter-oscillating normal and superfluids

 

free Fermi gas            strongly interacting 3He atoms

collective excitations       quasi particles
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Basic idea

► interaction does change the energy 
of particles, but not momentum!

► plausible since momentum states 
are given by boundary conditions

for each state in the Fermi gas  there is a corresponding 
state in the liquid, but with modified energy

Landau theory of Fermi liquids 1956-1958 

prediction of zero sound and collision-less spin waves
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3.2 The Landau Fermi-Liquid Theory

Quasi-particle concept

important: total energy is not given by the sum of 
all individual states (isolated atoms)

Landau’s Gedankenexperiment 

consider that the interaction is switched on slowly
            number of states does not change

2 spin states

energy of one quasi particle is defined by the change of energy of the complete system
when a quasi particle is added: 

number of quasi particles 
per volume analog to Fermi gas 

3.2 The Landau Fermi-Liquid Theory 87

Because of the interaction of the 3He atoms the total energy cannot be written
as a simple sum U =

∑
i fi Ei, where fi and Ei represent the occupation

number and the energy of the i-th state. The energy Ei of a level cannot
unambiguously be related to a certain atom, since its value depends on the
occupation of all other states. Therefore, it is not reasonable to consider the
energy of single atoms but the energy of so-called quasiparticles. Without
interaction, the quasiparticles are identical with the atoms. Switching on the
interaction between the atoms ‘slowly’ does not alter the number of levels but
shifts their energy, as illustrated in Fig. 3.8. The number of quasiparticles is
therefore given by an expression analogous to (3.9)

n = 2!k

∫
f d3k =

∫
D(k) f dk , (3.22)

with f denoting the occupation number, which we will discuss later in more
detail. The factor of two accounts for the possible spin orientations. Landau
defined the energy of the quasiparticles by

δu =
∫

E δf d3k , (3.23)

where δu is the change of the total energy caused by a small change δf in the
distribution function. In other words, the energy E is the energy of a single
atom that interacts with all other particles in the system. This implies that
the quasiparticle states are not eigenstates.

Ei
Ei

’

Ideal Fermi Gas Fermi Liquid

Fig. 3.8. Schematic illustration of the
energies Ei of a degenerate ideal Fermi
gas (left) and for a Fermi liquid of in-
teracting particles (right). For simplic-
ity, the levels of the Fermi gas have been
drawn equidistantly

At this point, the question is: what does the distribution function f look
like? Can we use the Fermi–Dirac distribution as before? This is only the
case if the energy states are well defined. Since the quasiparticle states are
not true eigenstates, transitions between levels occur, which in turn lead to
a level broadening according to the uncertainty principle δE ≈ !/τ . Here,
τ represents the lifetime of the considered state. The energy states are well
defined as long as the uncertainty broadening δE is small compared to the
thermal broadening ∆E ≈ kBT . This condition can always be fulfilled at
sufficiently low temperatures since τ ∝ T−2, and therefore δE ∝ T 2. This
means that the distribution function

small change in occupation when one quasi particle is added

�T ⇡ 0 UR3V

⌘ = 25µP = const URNV

⌘ = 0.2P UkyV

tan↵ =
dz

dr
=

!2r

g
UkRV

rotvs = 0 UkkV

/ 1

d
UkjV

�U

V
Uk9V

4⇡k2dk Uk8V

⌧ / T�2 UkeV

⇤ / T�1 UkdV

vs(R) = N
h

m4

1

2⇡R
Uk3V

"#  ! "" UkNV

log(T/⇥c) log T UjyV

vd =
qE

6⇡⌘r
UjRV

vvr /
1

r
/ 1

Evr
UjkV

%! %s UjjV

v ! vs Uj9V

z =
%n
%

!2

2g
r Uj8V

k



SS 2023
MVCMP-1

171

3.2 The Landau Fermi-Liquid Theory

energy of one quasi particle is given by the energy of an isolated atom 
plus, the interaction with all other atoms

quasi particle states are not eigenstates

How does the distribution function look like?   － does the Fermi distribution still hold?

Yes, as long as the energy levels (states) are well-defined!
but quasi particles aren’t eigen states            transitions occur

broadening of levels 
collision time, lifetime

quasi particle states are well-defined as long as the uncertainty is small 
compared to the thermal broadening 
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3.2 The Landau Fermi-Liquid Theory

this condition can always be fulfilled at sufficiently low temperatures, since   

some numbers: Fermi gas

experimental result

Landau theory is good for                        in case of 3He

Fermi distribution holds
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3.2 The Landau Fermi-Liquid Theory

What is the dispersion relation ?

 ,      states at EF :  

general expression for states near Fermi level

dispersion of quasi particles

density of states at Fermi level

Fermi gas

Fermi liquid
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3.2 The Landau Fermi-Liquid Theory

Central problem:  Interaction term
 
► energy of quasi particles depends on the configuration of all quasi particles

►             changes when the occupation of states with      differ by            from  the one  at

88 3 Normal-fluid 3He

f(E, T ) =
1

e(E−µ)/kBT + 1
, (3.24)

is also applicable to quasiparticles. Therefore, the complication that E is a
function of f is irrelevant at sufficiently low temperatures. In this temperature
range, we may approximate the dispersion relation of the quasiparticles at
the Fermi surface by

E = EF +
(

∂E

∂p

)

F

(p − pF) . (3.25)

Variables with index F relate to quantities at the Fermi surface. For an ideal
Fermi gas it follows from (3.3) that

(
∂E

∂p

)

F

=
pF

m
= vF . (3.26)

This expression is adopted in the Landau theory, but the mass m is replaced
by the effective mass m∗ of the quasiparticles. Using the modified expression
we may rewrite (3.25) in the form

E = EF +
pF

m∗ (p − pF) . (3.27)

Therefore, the density of states of quasiparticles at the Fermi surface differs
from the expression for an ideal Fermi gas only by the appearance of the
effective mass m∗, i.e.,

D(EF) =
m∗kF

π2!2
=

m∗

π!2
3

√
3n

π
. (3.28)

3.2.2 Interaction Function

As mentioned above, the energy of quasiparticles defined by (3.23) depends on
the configuration of the surrounding quasiparticles. In particular, the energy
E(p, T ) of a quasiparticle changes if the occupation of another state p′ differs
from that at T = 0 by δf(p′). The influence of all other states can be described
by the phenomenological formula1

E(p, T ) = E(p, 0) + 2$k

∫
h(p,p′) δf ′ d3p′ . (3.29)

1 Note that in the theory of Fermi liquids h(p, p′) and δf are usually denoted as
f(p, p′) and δn. We have not used this notation here to avoid possible confusion
with other quantities.
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Phenomenological ansatz  (without spin term)

cannot be derived

interaction term

►                           corresponds to the scattering amplitude

► like for a Fermi gas only states at the Fermi surface are important

depends only on the angle       between      and       
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3.2 The Landau Fermi-Liquid Theory

Treatment of  interaction term

consider new function: 

expansion in terms of Legendre polynomials

general expression with spin term:

these coefficients can (only) be determined experimentally 

spin term
consider new function for spin term: 

expansion in terms of Legendre polynomials

these coefficients can (only) be determined experimentally 
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3.2 The Landau Fermi-Liquid Theory

Application to liquid 3He (not trivial)

(i) effective mass

solid angle segment of Fermi surface

mean value of 

pure 3He:     

experimental results

1% 3He  in 4He:     

normal pressure

30 bar
Landau’s Fermi liquid theory can 
be tested varying pressure and 
3He concentration
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3.2 The Landau Fermi-Liquid Theory

(ii) specific heat

at
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(ii) sound velocity (first sound)

compare to:

Fermi gas

(iii) magnetic susceptibility

- 2.8

enhancement of susceptibility against Fermi statistics

if exchanged interaction larger by a factor 2                               <  -1  and ground state would be
                                                                                                               ferromagnetic  
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3.2 The Landau Fermi-Liquid Theory3.3 Zero Sound 91

Table 3.2. Molar volume Vm, experimentally determined values of the Landau
parameters F0, F1 and G0 and effective mass m∗/m of liquid 3He at different
pressures [133]

p (bar) Vm (cm3) F0 F1 G0 m∗/m

0 36.84 9.30 5.39 −2.78 2.80

3 33.95 15.99 6.49 −2.89 3.16

6 32.03 22.49 7.45 −2.93 3.48

9 30.71 29.00 8.31 −2.97 3.77

12 29.71 35.42 9.09 −2.99 4.03

15 28.89 41.73 9.85 −3.01 4.28

18 28.18 48.46 10.60 −3.03 4.53

21 27.55 55.20 11.34 −3.02 4.78

24 27.01 62.16 12.07 −3.02 5.02

27 26.56 69.43 12.79 −3.02 5.26

30 26.17 77.02 13.50 −3.02 5.50

33 25.75 84.79 14.21 −3.02 5.74

3.3 Zero Sound

Sound propagation in liquid 3He at moderate temperatures is similar to the
sound propagation in simple ordinary liquids. At very low temperatures, how-
ever, an anomalous sound propagation is observed. This new type of sound
occurs when the collision time τ of the quasiparticles is long compared to the
period of the sound wave. Because of the relation τ ∝ T−2 this condition can
be fulfilled for sound waves of any frequency at sufficiently low temperature.
At first glance, one would not expect any sound propagation under these
circumstances. In the analogous case of dilute gases, for example, where the
mean free path is large compared to the wavelength of the sound wave, the
damping rises drastically with increasing frequency, and finally sound prop-
agation dies out. This is also true for an ideal Fermi gas. However, at low
temperatures liquid 3He is a Fermi liquid of strongly interacting particles, as
we have discussed in the previous sections. Within the Landau model, one
finds normal hydrodynamic sound propagation for ωτ " 1, but this model
also predicts the existence of sound waves for ωτ # 1.

The force that acts on a quasiparticle originates from the interaction
with the complete surrounding and not just with one other collision partner.
Therefore, density fluctuations that occur in one region are transferred to
other regions without direct collisions between quasiparticles. In a theoretical
treatment of the problem one first derives the equation of motion for the
Fermi liquid from the equations for the number density and the mass current
density. The solution of the equation of motion has poles in the plane at
complex frequencies, which can be identified as collective oscillations. We

Landau Fermi liquid parameters for 3He
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3.3 Sound Propagation in 3He: Zero Sound

normal (first) sound: quasi particles reach local equilibrium by collisions 

frequency of sound wave
zero sound: collision-less propagation of sound 

3He: particle density fluctuations in one region lead to
        density fluctuation in neighboring regions 

propagation of sound-like modes              zero sound

9.1 Two-Level Tunneling Systems 289

To shorten the expression we have introduced the derivative of the Fermi–
Dirac distribution f = (eE/kBT + 1)−1 as an abbreviation.4

The dielectric function ε and dielectric susceptibility χ are connected via
the relation ε = ε′ + iε′′ = 1 + χ. Accordingly, the contribution of the defect
systems to the variation δε of the dielectric function can be expressed with
the help of (9.17) and (9.21) by

δε =
−4N

ε0

(
p∆

E

)2 ∂f

∂E

1
1 − iωτ

. (9.22)

Splitting δε into real and imaginary parts yields the variation δε′ of the
dielectric constant, namely,

δε′ =
−4Np2

ε0

(
∆

E

)2 ∂f

∂E

1
1 + (ωτ)2

, (9.23)

and the loss angle

tan δ =
ε′′

ε′
=

−4Np2

ε0ε′

(
∆

E

)2 ∂f

∂E

ωτ

1 + (ωτ)2
. (9.24)

Note that the sign of ∂f/∂E is negative, meaning that δε′ and tan δ are pos-
itive quantities. The frequency-dependent terms describe the so-called Debye
relaxator , well known in the physics of dielectrics. The typical frequency vari-
ation of the dielectric function is illustrated in Fig. 9.2.
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Fig. 9.2. Response of a Debye relaxator versus logarithm of ωτ . (a) Real part with
an inflexion point at ωτ = 1. (b) Imaginary part with a maximum at ωτ = 1

4 The relation ∂(∆N)/∂E = −2N ∂f/∂E holds for an ensemble of two-level sys-
tems. More complicated expressions have to be used if more levels are involved.
The general treatment of the relaxation phenomenon, however, does not depend
on the specific details of the level scheme.
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−4N

ε0

(
p∆

E

)2 ∂f

∂E

1
1 − iωτ

. (9.22)

Splitting δε into real and imaginary parts yields the variation δε′ of the
dielectric constant, namely,

δε′ =
−4Np2

ε0

(
∆

E

)2 ∂f

∂E

1
1 + (ωτ)2

, (9.23)

and the loss angle

tan δ =
ε′′

ε′
=

−4Np2

ε0ε′

(
∆

E

)2 ∂f

∂E

ωτ

1 + (ωτ)2
. (9.24)

Note that the sign of ∂f/∂E is negative, meaning that δε′ and tan δ are pos-
itive quantities. The frequency-dependent terms describe the so-called Debye
relaxator , well known in the physics of dielectrics. The typical frequency vari-
ation of the dielectric function is illustrated in Fig. 9.2.
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Fig. 9.2. Response of a Debye relaxator versus logarithm of ωτ . (a) Real part with
an inflexion point at ωτ = 1. (b) Imaginary part with a maximum at ωτ = 1

4 The relation ∂(∆N)/∂E = −2N ∂f/∂E holds for an ensemble of two-level sys-
tems. More complicated expressions have to be used if more levels are involved.
The general treatment of the relaxation phenomenon, however, does not depend
on the specific details of the level scheme.
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