Testbed for the generation of excitations and the critical velocity
type of ions:

» electrons (—) : zero-point motion — bubbles r=19 A
» “Het, H,* (+) : attract He atoms —*snowballs r=~7 A

» otherions (—, +) : properties depend on wave function

Electrons in liquid He

electrons need energy to be emerged in helium ~ 1 eV, which means they
need more that 1 eV of kinetic energy to enter liquid He.

bubble formation

S relaxtion in new state

| N N

~~He ™~ Bubble

comment:

similar to work function of
electrons in metals
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exploding bubbles at negative pressure
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Creation of negative pressure and observation of bubbles
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Sonoluminescence

Sonoluminescence in water
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Collapsing bubbles are of great technical importance

Extracorporeal shockwave therapy using cavitation processes

kidney stones
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Acceleration of ions in constant field

q€ constant electrical field £

mmm) constant drift velocity is reached vyq =
6mnr

Uq
mobility: \

Stokes law of
viscos friction

v

snowball (electrons 47) t

/ impurities, which at some

o level are always present
collision partners: phonons, rotons, 3He, ...

0.7 K< T < 1.8 K: rotons should dominate however, difficult to observe because of other excitations / impurities

mobility for roton scattering K1

/
AN

v
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in ultra-pure He-Il under pressure ions can be accelerated up to Landau velocity

vV v vy

negative ions accelerated in electric field under high pressure

in He-ll: drag is not observable until critical velocity is reached

> Landau velocity
» roton pair production

> DT —> since
decreases with pressure

drag is measured by time-of-flight method
in He-l: drag proportional to velocity
pressure dependence of v,
[ [ [
_ 51| —
|
£ 50 Hell
—l
>
> 49 + —
S
o 48 =
>
S a7l -
© e —
| | |
12 16 20 24

Pressure p / bar
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T<0.3K

no thermal rotons are excited

phonons mean free path becomes very large —— > several cm! 7

experimental answer: no! U4 = 10 ... 100 cm/s

in addition: Ud decreases with energy of ions, which means

it decreases with accelerating field

Experiment by Rayfield and Reif 1964
210pg acceleration free flying

N :

He-l
oV

mmm) measurement of ion
velocity by time of flight

120 m
T ® Positive charge
g O Negative charge
L 80
N
2
(3]
o
o 40
>
0 | | | |
0 10 20 30 40 50
Energy E/ eV
explanation:

» creation of vortex rings and trapping of ions
» experiment observes motion of vortex rings
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vortex rings

kinetic energy of vortex ring: He-ll

momentum of vortex ring

—

dispersion of vortex ring

and

Q — Os

8r
aop

8r
ap

1

as observed

~ Energy E

/US
/UVI‘
2a0—> -«
direction of motion
T
Vg
v
[
Rotons

|
Po
Momentum p
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Explanation of the experiment by Rayfield and Reif

I I I I
120 -
» generation of vortex rings T e Positive charge
. . g O Negative charge
» ions are captured by vortex ring S s} _
- N : >
» field increases kinetic energy of vortex ring = T =280 mK
8
T 40
>
» theory line with ap= 1.2 A 00 20 30 a0 50
Energy E/ eV
let’s revisit the flow experiments through capillaries 14 | |
because of largest possible vortex is T, 120 d=012um .
has minimal critical velocity £ 4
O 10 He -
N
for capillary with diameter d 2 8L d=079 um .
S
4d Q 6| _
— =4
%o 4l //,_‘_’f_f"_g,&”_‘——— i
" . . " . . . I I I
mmm) qualitative agreement with flow experiments in capillaries 2 0.00 0.05 0.10 0.15

Pressure p / mbar
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flow experiments to determine the critical velocity

how does the critical velocity depend on d ?

T T T T |
100 A
T=14K °
(\'Icn 102 |- -
=
O — —
» potted is: Ucd vs d S
" . =107 -
» critical velocity .
» expected I |
. k 10'6 1 | 1 | 1 | 1 |
> reason Is unknown 108 10°® 1074 102 10°
d/cm
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Properties near T, are determined by quantities that go to zero like
the order parameter and quantities that diverge like susceptibilities

Landau theory of continuous phase transitions (1937, 1965)

» idea: expansion of free energy in 7T'in terms of the order parameter

» near 7, one should find the following laws with the reduced temperature

Landau type theories: - van der Waals theory for liquid — gas transition
— Curie-Weiss theory of ferromagnetism

— Ginzburg-Landau theory of superconductivity
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Problem: fluctuations are not included, but they are increasingly important towards 7
=) cvery Landau-type theory breaks down near T,

Ginzburg criterion

The condition under which a Landau-type theory holds is that fluctuations
of the order parameter are small in comparison of the mean value of the order parameter

for He-1l: coherence length is very small —— Ginzburg criterion is "always” violated

Renormalization group

Despite of the short-comings of the Landau universal theory of phase transitions,
it was realized that it is possible to assign different physical systems to
universality classes, characterized by a set of critical exponents

The larger framework is: renormalization group and quantum field theory

Kenneth G. Wilson

different classes are defined by:  dimension of system d,

degrees of freedom of order parameter #,
interaction length compared to coherence length
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a few examples: Ising 3 D
d=3
n=1

in this universality class liquid-solid
transition fall as well

s
«—
——
—_—

Heisenberg 2 D d
n

~NET

2
3

at each lattice point each spin

T / T /! can point in 3 direction

x-y 3D d=3

He-Ii n=2

superconductors magnitude and phase of wave
function

each universality class is described by a set of critical exponents
and are connected by sum rules like
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critical exponents expected for X-Y 3D model:

0 ¢— § = 4.780(2)
] —

v = 1.3177(5) n = 0.0380(4)

N
(¢

Experiments near T,

a) specific heat

N
o

— —
o o

Specific heat C/Jg K
[6)]

scale going from K to yK 0

[ R N R | | |
-1 0 1 4 -2 0 2 4 -20 0 20

(T-Ty) / K (T-T) / mK (T-Ty) / uK
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[
power law in the vicinity of 7, ? 100 L |
- *He
S,
~— .\
data plotted a Vs NoBOF T . T<Th -
| 6’0 »,
) [ ha VY =,
data can be approximated by = “ e,
S 60 s _
-~ T> T}\' .*.‘\ op
@) ~ ~
logarithmic divergences? 40 - ""'-.\\—
. . | | | |
comparison with RGT 0% 107 10° 10° 10% 107
| T/ T —1|
expected scaling for He-lI
A, B and D are constants
with critical exponent expected
mmm)  expansion in o expansion justified because of small a

experimental result 0.013+0.003
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Higher precision experiments near T, are needed

measurement on earth

Problems:

gravitation — level height dependence

walls of vessel — first layer solid and healing
length diverges with diverges
near T, with
with

measurement on space shuttle

Problems:
cosmic rays — time varying background
(heating of thermometer)

Data shown, after sophisticated analysis

— still somewhat noisy

-
N
o

100

Specific heat C/ J mol 'K
(o]
o

120

—
o
o

Specific heat C,,/ J mol 'K ™"
3

-0.2

-0.2  -0.1 0.0 0.1 0.2
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comparison between space shuttle data and different calculations of o

=) discrepancy between data and theory outside error bars: reason unknown
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b) Order parameter
amplitude of wave function

Wy = \/0s

(1) = o ")

Density pg, pn

expected:

with

00 05 10 15 20 25
Temperature T/ K

. . 0.1
determined with second sound o
S
0.01
=) excellent agreement
0.001
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c) Healing length Helmholtz resonator

again, second sound measurements

and measurements on thin films _ He-Il
\
expected: N
Nuclepore filters
with
3 ' T T LI LI — T

107
£o=28+05A I G

10% - '
v = 0.63 d

& A

second sound vanishes
for £€>d

=) excellent agreement
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