

Testbed for the generation of excitations and the critical velocity

type of ions:

▶ electrons (–) : zero-point motion \longrightarrow bubbles r = 19 Å

▶ 4 He $^+$, H $_2$ $^+$ (+) : attract He atoms \longrightarrow snowballs $r \approx 7 \text{ Å}$

▶ other ions (-, +) : properties depend on wave function

Electrons in liquid He

electrons need energy to be emerged in helium ~ 1 eV, which means they need more that 1 eV of kinetic energy to enter liquid He.

bubble formation

comment:

similar to work function of electrons in metals

Energy of bubble

$$E_{\rm b} = \frac{h^2}{8mr^2} + 4\pi r^2 \alpha + \frac{4}{3}\pi r^3 \, p$$
 volume zero-point energy surface tension
$$\alpha = 3.41 \, \mu \rm J/cm^2$$

bubble size:

$$\frac{\partial E}{\partial r} = 0$$
 \longrightarrow $r_{\min}(p=0) = 19 \text{ Å}$

size depends on pressure

exploding bubbles at negative pressure

Creation of negative pressure and observation of bubbles

Pulse Repetition Period

Time (µs)

Generation of Bubbles and Cavitation Processes

Sonoluminescence

Sonoluminescence in water

Generation of Bubbles and Cavitation Processes

Collapsing bubbles are of great technical importance

Extracorporeal shockwave therapy using cavitation processes

Acceleration of ions in constant field

constant drift velocity is reached

 $\overline{v}_{\rm d} = \frac{q\mathcal{E}}{6\pi\eta r}$

constant electrical field ${\cal E}$

mobility:

$$\mu = rac{\overline{v}_{
m d}}{\mathcal{E}} = rac{q}{6\pi\eta r}$$
 snowball (electrons 4π)

Stokes law of viscos friction

collision partners: phonons, rotons, ³He, ...

impurities, which at some level are always present

0.7 K < T < 1.8 K: rotons should dominate however, difficult to observe because of other excitations / impurities

mobility for roton scattering

$$\mu \propto \frac{1}{\eta} \propto \frac{1}{\tau} \propto \frac{1}{n_{\rm r}}$$

$$\eta = \frac{1}{3} \varrho v^2 \tau = \frac{1}{3} \varrho v \ell$$

in ultra-pure He-II under pressure ions can be accelerated up to Landau velocity

- negative ions accelerated in electric field under high pressure
- drag is measured by time-of-flight method
- in He-I: drag proportional to velocity
- ▶ in He-II: drag is not observable until critical velocity is reached

- $lacktriangleright v_{
 m L} \ \widehat{=} \ v_{
 m c}$ Landau velocity
- roton pair production
- $p\uparrow \longrightarrow v_{
 m L}\downarrow {
 m since} \ \Delta_{
 m r}(p)$ decreases with pressure

T < 0.3 K

no thermal rotons are excited

phonons mean free path becomes very large ------ several cm!

$$v_{\mathrm{c}}
ightarrow 238 \, rac{\mathrm{m}}{\mathrm{s}} \,$$
 ?

experimental answer: no! $\overline{v}_d = 10 \dots 100 \text{ cm/s}$

in addition: $v_{
m d}$ decreases with energy of ions, which means

it decreases with accelerating field

Experiment by Rayfield and Reif 1964

measurement of ion velocity by time of flight

explanation:

- creation of vortex rings and trapping of ions
- experiment observes motion of vortex rings

vortex rings

kinetic energy of vortex ring: He-II $\,arrho
ightarrow \,arrho_{
m S}$

$$E_{\rm vr} = \int \frac{1}{2} \varrho_{\rm s} v_{\rm s}^2 dV = \frac{1}{2} \varrho_{\rm s} \kappa^2 r \left[\ln \left(\frac{8r}{a_0} \right) - \frac{7}{4} \right] \propto r$$

momentum of vortex ring $p_{
m vr}=\pi arrho_{
m s} \kappa r^2$

$$ightharpoonup v_{
m vr} = rac{\partial E}{\partial p_{
m vr}} = rac{\kappa}{4\pi r} \left[\ln \left(rac{8r}{a_0}
ight) - rac{1}{4}
ight]$$

$$ightharpoonup p_{
m vr} \propto r^2 \propto E_{
m vr}^2$$
 and $v_{
m vr} \propto 1/E$

$$lacksquare$$
 $E_{
m vr} \propto \sqrt{p_{
m vr}}$

 $p_{
m vr}$ as observed

dispersion of vortex ring

Explanation of the experiment by Rayfield and Reif

- generation of vortex rings
- ions are captured by vortex ring
- field increases kinetic energy of vortex ring

$$v_{
m vr} \propto rac{1}{r} \propto rac{1}{E_{
m vr}}$$

► theory line with $a_0 = 1.2 \text{ Å}$

let's revisit the flow experiments through capillaries

because of $E_{\rm vr} \propto \sqrt{p_{\rm vr}}$, largest possible vortex is has minimal critical velocity

for capillary with diameter d

$$v_{\mathrm{c,vr}} = \frac{\hbar}{m_4 d} \left[\ln \left(\frac{4d}{a_0} \right) - \frac{1}{4} \right] \propto \frac{1}{d}$$

qualitative agreement with flow experiments in capillaries

flow experiments to determine the critical velocity

how does the critical velocity depend on d?

- ightharpoonup potted is: $v_{
 m c} d$ vs d
- lacktriangle critical velocity $v_{
 m c} \propto d^{-1/4}$
- ightharpoonup expected $v_{
 m c} \propto d^{-1}$
- reason is unknown

Properties near T_c are determined by quantities that go to zero like the order parameter and quantities that diverge like susceptibilities

Landau theory of continuous phase transitions (1937, 1965)

- ightharpoonup idea: expansion of free energy in T in terms of the order parameter
- lacktriangle near $T_{
 m c}$ one should find the following laws with the reduced temperature $t=(T-T_{
 m c})/T_{
 m c}$

Quantity	Power Law	Critical Exponent
specific heat	$C_V \propto t ^{lpha}$	lpha=0
order parameter	$arPhi \propto t ^{eta}$	eta=1/2
susceptibility	$\chi \propto t ^{-\gamma}$	$\gamma=1$
correlation length	$\xi \propto t ^{- u}$	u = 1/2

Landau type theories: - van der Waals theory for liquid - gas transition

- Curie-Weiss theory of ferromagnetism

Ginzburg-Landau theory of superconductivity

Problem: fluctuations are not included, but they are increasingly important towards $T_{\rm c}$

 \longrightarrow every Landau-type theory breaks down near $T_{\rm c}$

Ginzburg criterion

The condition under which a Landau-type theory holds is that fluctuations of the order parameter are small in comparison of the mean value of the order parameter

for He-II: coherence length is very small — Ginzburg criterion is "always" violated

Renormalization group

Despite of the short-comings of the Landau universal theory of phase transitions, it was realized that it is possible to assign different physical systems to universality classes, characterized by a set of critical exponents

The larger framework is: renormalization group and quantum field theory

different classes are defined by: dimension of system d,

degrees of freedom of order parameter n,

interaction length compared to coherence length

Kenneth G. Wilson

a few examples:

Ising 3 D

$$d = 3$$
$$n = 1$$

in this universality class liquid-solid transition fall as well

Heisenberg 2 D

$$d = 2$$

$$n = 3$$

at each lattice point each spin can point in 3 direction

x-y 3 D

$$d = 3$$

He-II

$$n = 2$$

superconductors

magnitude and phase of wave function

each universality class is described by a set of critical exponents and are connected by sum rules like $\alpha + 2\beta + \gamma = 2$

JNIVERSALITY CLASS		THEORETICAL MODEL	PHYSICAL SYSTEM	ORDER PARAMETER
d = 2	<i>n</i> = 1	Ising model in two dimensions	Adsorbed films	Surface density
	n = 2	XY model in two dimensions	Helium-4 films	Amplitude of superfluid phase
	n = 3	Heisenberg model in two dimensions		Magnetization
d > 2	<i>n</i> = ∞	"Spherical" model	None	
$d = 3 \qquad n = 0$ $n = 1$ $n = 2$ $n_j = 3$	Self-avoiding random walk	Conformation of long- chain polymers	Density of chain ends	
	Ising model in three dimensions	Uniaxial ferromagnet	Magnetization	
		Fluid near a critical point	Density difference between phases	
		Mixture of liquids near consolute point	Concentration difference	
		Alloy near order- disorder transition	Concentration difference	
	XY model in three dimensions	Planar ferromagnet	Magnetization	
		Helium 4 near super- fluid transition	Amplitude of superfluid phase	
	$\eta_j = 3$	Heisenberg model in three dimensions	Isotropic ferromagnet	Magnetization
$d \le 4 \qquad n = -2$ $n = 32$	n = -2		None	
	n = 32	Quantum chromo- dynamics	Quarks bound in protons, neutrons, etc.	

critical exponents expected for X-Y 3D model:

$$\alpha = -0.0146(8)$$

$$\beta = 0.3485(2)$$

$$\gamma = 1.3177(5)$$

$$\delta = 4.780(2)$$

$$\nu = 0.67155(27)$$

$$\eta = 0.0380(4)$$

Experiments near T_{λ}

a) specific heat

scale going from K to μ K

power law in the vicinity of T_{λ} ?

data plotted a C_V vs $\log t = \log |T/T_{\lambda} - 1|$ data can be approximated by $\ C_V \propto \log t$

logarithmic divergences?

comparison with RGT

expected scaling for He-II

$$C = B + A \frac{t^{-\alpha}}{\alpha} \left(1 - D\sqrt{t} \right)$$

 $A, \ B \ {
m and} \ D$ are constants

with critical exponent expected $\alpha = -0.146(8)$

expansion in
$$\alpha$$
 $t^{-\alpha} = e^{-\alpha \ln t} \approx 1 - \alpha \ln t$

expansion justified because of small α

experimental result $\alpha \approx -0.013 \pm 0.003$

Higher precision experiments near T_{λ} are needed

measurement on earth

Problems:

gravitation — level height dependence

walls of vessel \longrightarrow first layer solid and healing length diverges with diverges near T_{λ} with $\xi = \xi_0 \, t^{-\nu}$ with $\nu = 0.67155(27)$

measurement on space shuttle

Problems:

cosmic rays — time varying background (heating of thermometer)

Data shown, after sophisticated analysis

→ still somewhat noisy

comparison between space shuttle data and different calculations of α

discrepancy between data and theory outside error bars: reason unknown

b) Order parameter

$$\psi({\bm r}) = \psi_0 \, \mathrm{e}^{\mathrm{i} \varphi({\bm r})} \qquad \qquad \mathbf{\Psi}_0 = \sqrt{\varrho_{\mathrm{s}}}.$$

expected:

$$arrho_{
m s}=t^{2eta}$$
 with $eta=0.3485(2)$

determined with second sound

$$\varrho_{\mathrm{s}} = t^{0.67}$$

excellent agreement

c) Healing length

again, second sound measurements and measurements on thin films

expected:

$$\xi = \xi_0 t^{-\nu}$$
 with $\nu = 0.67155(27)$

$$\xi_0 = 2.8 \pm 0.5 \,\text{Å}$$
 $\nu = 0.63$

excellent agreement

Helmholtz resonator

Nuclepore filters

second sound vanishes for $\xi > d$