Testbed for the generation of excitations and the critical velocity
type of ions:

- electrons (-) : zero-point motion \longrightarrow bubbles $r=19 \AA$
- ${ }^{4} \mathrm{He}^{+}, \mathrm{H}_{2}{ }^{+}(+):$attract He atoms \longrightarrow snowballs $r \approx 7 \AA$
- other ions $(-,+)$: properties depend on wave function

Electrons in liquid He
electrons need energy to be emerged in helium $\sim 1 \mathrm{eV}$, which means they need more that 1 eV of kinetic energy to enter liquid He .

comment:

similar to work function of electrons in metals
bubble formation

Energy of bubble

size depends on pressure

exploding bubbles at negative pressure

2.7 Motion of lons in He-II

Creation of negative pressure and observation of bubbles

Sonoluminescence

NiCr Heating Wire

Collapsing bubbles are of great technical importance

Extracorporeal shockwave therapy using cavitation processes

Acceleration of ions in constant field
\longrightarrow constant drift velocity is reached $\quad \bar{v}_{\mathrm{d}}=\frac{q \mathcal{E}}{6 \pi \eta r}$
mobility:
$\mu=\frac{\bar{v}_{\mathrm{d}}}{\mathcal{E}}=\frac{q}{\underbrace{6 \pi \eta r}_{\text {snowball (electrons } 4 \pi)}}$

Stokes law of viscos friction

impurities, which at some level are always present
collision partners: phonons, rotons, ${ }^{3} \mathrm{He}, \ldots$
0.7 K < T < 1.8 K: rotons should dominate however, difficult to observe because of other excitations / impurities
mobility for roton scattering

$$
\begin{aligned}
\mu \propto \frac{1}{\eta} \propto \frac{1}{\tau} & \propto \frac{1}{n_{\mathrm{r}}} \\
\eta & =\frac{1}{3} \varrho v^{2} \tau=\frac{1}{3} \varrho v \ell
\end{aligned}
$$

in ultra-pure He-II under pressure ions can be accelerated up to Landau velocity

- negative ions accelerated in electric field under high pressure
- drag is measured by time-of-flight method
- in He-I: drag proportional to velocity
- in He-II: drag is not observable until critical velocity is reached

- $v_{\mathrm{L}} \widehat{=} v_{\mathrm{c}}$ Landau velocity
- roton pair production
- $p \uparrow \longrightarrow v_{\mathrm{L}} \downarrow$ since $\Delta_{\mathrm{r}}(p)$
decreases with pressure

$T<0.3 \mathrm{~K}$

no thermal rotons are excited
phonons mean free path becomes very large \longrightarrow several $\mathrm{cm}!\quad v_{\mathrm{c}} \rightarrow 238 \frac{\mathrm{~m}}{\mathrm{~s}} ?$
experimental answer: no! $\bar{v}_{\mathrm{d}}=10 \ldots 100 \mathrm{~cm} / \mathrm{s}$
in addition: \bar{v}_{d} decreases with energy of ions, which means it decreases with accelerating field

Experiment by Rayfield and Reif 1964

explanation:

- creation of vortex rings and trapping of ions
- experiment observes motion of vortex rings

vortex rings

kinetic energy of vortex ring: He-II $\varrho \rightarrow \varrho_{\text {s }}$

$$
E_{\mathrm{vr}}=\int \frac{1}{2} \varrho_{\mathrm{s}} v_{\mathrm{s}}^{2} \mathrm{~d} V=\frac{1}{2} \varrho_{\mathrm{s}} \kappa^{2} r\left[\ln \left(\frac{8 r}{a_{0}}\right)-\frac{7}{4}\right] \propto r
$$

momentum of vortex ring $\quad p_{\mathrm{vr}}=\pi \varrho_{\mathrm{s}} \kappa r^{2}$

$\Longrightarrow v_{\mathrm{vr}}=\frac{\partial E}{\partial p_{\mathrm{vr}}}=\frac{\kappa}{4 \pi r}\left[\ln \left(\frac{8 r}{a_{0}}\right)-\frac{1}{4}\right]$
$\Longrightarrow p_{\mathrm{vr}} \propto r^{2} \propto E_{\mathrm{vr}}^{2} \quad$ and $\quad v_{\mathrm{vr}} \propto 1 / E$
$E_{\mathrm{vr}} \propto \sqrt{p_{\mathrm{vr}}}$
as observed
dispersion of vortex ring

Explanation of the experiment by Rayfield and Reif

- generation of vortex rings
- ions are captured by vortex ring
- field increases kinetic energy of vortex ring

$$
v_{\mathrm{vr}} \propto \frac{1}{r} \propto \frac{1}{E_{\mathrm{vr}}}
$$

- theory line with $a_{0}=1.2 \AA$

flow experiments to determine the critical velocity
how does the critical velocity depend on d ?
- potted is: $v_{\mathrm{c}} d$ vs d
- critical velocity $v_{c} \propto d^{-1 / 4}$
- expected $v_{\mathrm{c}} \propto d^{-1}$
- reason is unknown

2.7 Critical Behaviour of He-II at T_{λ}

Properties near T_{c} are determined by quantities that go to zero like the order parameter and quantities that diverge like susceptibilities

Landau theory of continuous phase transitions (1937, 1965)

- idea: expansion of free energy in T in terms of the order parameter
- near T_{c} one should find the following laws with the reduced temperature $t=\left(T-T_{\mathrm{c}}\right) / T_{\mathrm{c}}$

Quantity	Power Law	Critical Exponent
specific heat	$C_{V} \propto\|t\|^{\alpha}$	$\alpha=0$
order parameter	$\Phi \propto\|t\|^{\beta}$	$\beta=1 / 2$
susceptibility	$\chi \propto\|t\|^{-\gamma}$	$\gamma=1$
correlation length	$\xi \propto\|t\|^{-\nu}$	$\nu=1 / 2$

Landau type theories: - van der Waals theory for liquid - gas transition

- Curie-Weiss theory of ferromagnetism
- Ginzburg-Landau theory of superconductivity

2.7 Critical Behaviour of He-II at T_{λ}

Problem: fluctuations are not included, but they are increasingly important towards T_{c}
\longrightarrow every Landau-type theory breaks down near T_{c}

Ginzburg criterion

The condition under which a Landau-type theory holds is that fluctuations of the order parameter are small in comparison of the mean value of the order parameter
for He -II: coherence length is very small \longrightarrow Ginzburg criterion is "always" violated

Renormalization group

Despite of the short-comings of the Landau universal theory of phase transitions, it was realized that it is possible to assign different physical systems to universality classes, characterized by a set of critical exponents

The larger framework is: renormalization group and quantum field theory different classes are defined by: dimension of system d,
 degrees of freedom of order parameter n, Kenneth G. Wilson
a few examples: Ising 3 D

Heisenberg 2 D

$x-y 3 D$
He-II
superconductors

$$
\begin{aligned}
& d=3 \\
& n=1
\end{aligned}
$$

in this universality class liquid-solid transition fall as well

$$
\begin{aligned}
& d=2 \\
& n=3
\end{aligned}
$$

at each lattice point each spin can point in 3 direction
$d=3$
$n=2$
magnitude and phase of wave function
each universality class is described by a set of critical exponents and are connected by sum rules like $\alpha+2 \beta+\gamma=2$

UNIVERSALITY CLASS		THEORETICAL MODEL	PHYSICAL SYSTEM	ORDER PARAMETER
$d=2$	$n=1$	Ising model in two dimensions	Adsorbed films	Surface density
	$n=2$	$X Y$ model in two dimensions	Helium-4 films	Amplitude of superfluid phase
	$n=3$	Heisenberg model in two dimensions		Magnetization
$d>2$	$n=\infty$	"Spherical" model	None	
$d=3$	$n=0$	Self-avoiding random walk	Conformation of longchain polymers	Density of chain ends
	$n=1$	Ising model in three dimensions	Uniaxial ferromagnet	Magnetization
			Fluid near a critical point	Density difference between phases
		51	Mixture of liquids near consolute point	Concentration difference
			Alloy near orderdisorder transition	Concentration difference
	$n=2$	$X Y$ model in three dimensions	Planar ferromagnet	Magnetization
			Helium 4 near superfluid transition	Amplitude of superfluid phase
	$n=3$	Heisenberg model in three dimensions	Isotropic ferromagnet	Magnetization
$d \leqslant 4$	$n=-2$		None	
	$n=32$	Quantum chromodynamics	Quarks bound in protons, neutrons, etc.	

CONTOURS OF γ (EXPONENT ASSOCIATED WITH SUSCEPTIBILITY)

COPPER ATOM

PRESENCE OF A PARTICL OR AN ANTIPARTICL

ABSENCE OF A PARTICLE OR AN ANTIPARTICLE

critical exponents expected for X-Y 3D model:

$$
\begin{array}{ll}
\alpha=-0.0146(8) \\
\beta=0.3485(2) \\
\gamma=1.3177(5) & \\
\nu=4.780(2) \\
\nu=0.67155(27) \\
\eta=0.0380(4)
\end{array}
$$

Experiments near T_{λ}

a) specific heat
scale going from K to $\mu \mathrm{K}$

2.7 Critical Behaviour of He-II at T_{λ}

power law in the vicinity of T_{λ} ?
data plotted a $\quad C_{V}$ vs $\log t=\log \left|T / T_{\lambda}-1\right|$
data can be approximated by $C_{V} \propto \log t$
logarithmic divergences?
comparison with RGT

expected scaling for He -II
$C=B+A \frac{t^{-\alpha}}{\alpha}(1-D \sqrt{t}) \quad A, B$ and D are constants
with critical exponent expected $\alpha=-0.146$ (8)
\longrightarrow expansion in $\alpha \quad t^{-\alpha}=\mathrm{e}^{-\alpha \ln t} \approx 1-\alpha \ln t \quad$ expansion justified because of small α
experimental result $\alpha \approx-0.013 \pm 0.003$

Higher precision experiments near T_{λ} are needed measurement on earth

Problems:
gravitation \longrightarrow level height dependence
walls of vessel \longrightarrow first layer solid and healing length diverges with diverges near T_{λ} with $\xi=\xi_{0} t^{-\nu}$ with $\nu=0.67155(27)$

measurement on space shuttle

Problems:
cosmic rays \longrightarrow time varying background (heating of thermometer)

Data shown, after sophisticated analysis
\longrightarrow still somewhat noisy

comparison between space shuttle data and different calculations of α
discrepancy between data and theory outside error bars: reason unknown
b) Order parameter

$$
\psi(\boldsymbol{r})=\psi_{0} \mathrm{e}^{\mathrm{i} \varphi(\boldsymbol{r})} \longrightarrow \quad \begin{gathered}
\text { amplitude of wave function } \\
\Psi_{0}=\sqrt{\varrho_{\mathrm{s}}}
\end{gathered}
$$

expected:
$\varrho_{\mathrm{s}}=t^{2 \beta} \quad$ with $\quad \beta=0.3485(2)$

determined with second sound $\varrho_{\mathrm{s}}=t^{0.67}$
\longrightarrow excellent agreement

2.7 Critical Behaviour of He-II at T_{λ}

c) Healing length
again, second sound measurements and measurements on thin films
expected:
$\xi=\xi_{0} t^{-\nu} \quad$ with $\quad \nu=0.67155(27)$
$\xi_{0}=2.8 \pm 0.5 \AA$
$\nu=0.63$
excellent agreement

Helmholtz resonator

Nuclepore filters

second sound vanishes for $\xi>d$

