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2.4 Bose-Einstein Condensation 

Einstein  1924
Bose 1925
London 1938Basic idea of Fritz London:

dissipation-less motion                     macroscopic wave function    

a) Ideal Bose gas

non-interacting Bose gas (rough approximation for liquid He)

let’s consider: 1 cm3 cube  of  liquid  4He  ≙ 1022 atoms with mass m

eigenstates for  free particles in a cube:  

with
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measurements. A torus filled with fine powder and liquid 4He is set in ro-
tation above the lambda point and is subsequently cooled below Tλ. The
rotation of the torus is gently slowed until the torus is at rest. The superfluid
component still rotates after this operation. Fourth sound generated under
such conditions shows a Doppler shift, given to a good approximation by

v4 ≈ v4,0 ±
!s

!
vD . (2.51)

Here, vD denotes the flow velocity of the persistent current and v4,0 the
velocity of fourth sound in stationary helium II. The factor !s/! takes into
account the coupling between the compression wave and second sound.

2.3 Bose–Einstein Condensation

In the previous sections we saw that the superfluid component of liquid he-
lium can flow without any friction. F. London suggested in 1938 that this
dissipationless flow is related to the frictionless motion of electrons in atomic
shells [11]. In atoms, the electrons are in stationary quantum states that
are described by the eigenfunctions of the corresponding Hamiltonian. The
phases of the wave functions of different atoms in a liquid are not correlated
under usual conditions. London assumed that in helium II the wave function
is well defined throughout the entire liquid, analogous to the situation in su-
perconductors. We shall see that the superfluid component of helium II can
indeed be described by a macroscopic wave function. As the possible origin
of such a macroscopic wave function in helium II, London discussed the so-
called Bose–Einstein condensation. In the following section we will take a
brief look at this phenomenon for the case of an ideal Bose gas, although it
is clear that the description of liquid 4He as an ideal Bose gas can, at best,
be a crude approximation.

2.3.1 Ideal Bose Gas

An ideal Bose gas is a gas of noninteracting particles with integer spin. Of
course, at T = 0 all Bose particles are in the ground state, but this is a rather
trivial statement and has nothing to do with the occurrence of Bose–Einstein
condensation. The peculiar thing about Bose gases is that almost complete
condensation into the ground state occurs at finite temperatures far higher
than the corresponding spacing of the energy levels in the gas. This was first
realized in 1924 by Einstein [73].

To understand this phenomenon, we consider the influence of the chemical
potential µ on the level occupation in such systems. The energy eigenvalues
of free atoms with mass m in a cube with side L are given by

En =
!2

2m

(π

L

)2
n2 , with n2 = n2

x + n2
y + n2

z . (2.52)

all atoms are in the ground state  
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If we assume a cube of liquid helium with volume V = 1 cm3, there are
roughly 1022 atoms in this cube under normal pressure, and the energy dif-
ference between the ground state and the first excited state is about

∆E/kB = (E211 − E111) /kB ≈ 2 × 10−14 K . (2.53)

This energy difference is extremely small and one would certainly not ex-
pect any significant influence on the experimental results at temperatures
that can presently be reached. In a classical description using Boltzmann
statistics, all levels below 1 K are occupied roughly with equal probability.
At low temperatures, a classical description, however, is not adequate, since
4He atoms are Bose particles and therefore obey Bose–Einstein statistics with
the distribution function

f(E, T ) =
1

e(E−µ)/kBT − 1
. (2.54)

It follows that the chemical potential cannot be larger than the energy of
the lowest level because otherwise negative occupation numbers would occur.
Furthermore, in the case where the Bose particles are helium atoms the num-
ber of particles is conserved, and therefore the chemical potential is nonzero.3

First, let us consider the population of the ground state and set the energy
scale so that we have E111 = 0. The occupation of the ground state is then
given by

f(0, T ) =
1

e−µ/kBT − 1
. (2.55)

Thus, the population of the ground state for T → 0 crucially depends on the
chemical potential. If µ goes to zero faster than the temperature, f(0, T ) will
go to infinity for T → 0. This is also valid in cases in which the chemical
potential reaches zero at finite temperatures.

The chemical potential of a gas depends on the ratio of atomic volume
VA = V/N , and quantum volume VQ. For a gas of noninteracting particles
we have

µ = −kBT ln
(

VA

VQ

)
. (2.56)

Here, VQ corresponds to the volume of a cube, whose side length is given by
the mean thermal deBroglie wavelength λB = h/

√
2πmkBT . It follows that

at sufficiently low temperatures the condition VA = VQ will be reached and
thus µ will go to zero. This behavior is schematically shown in Fig. 2.28a.
For comparison, we note that the chemical potential of helium gas at room
temperature is µ/kB = −3800 K.
3 For bosons, for instance photons, whose particle number is not conserved, the

chemical potential is exactly zero.

trivial !

But at finite temperatures?
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what we know: 

consider energy difference between ground state and first excited state

if Boltzmann statistics would hold            no  condensate at 1 K!!! 

however, Bose-Einstein distribution is relevant here

chemical potential
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What is the temperature dependence of           ?

Occupation of ground state

occupation depends critically on 

if                faster than 

for this let us consider a real, but non-interacting gas

quantum volume

For  4He (8.7 Å)3 at 1 K
(3.8 Å)3 in comparison

thermal de Broglie wavelength
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for

at sufficiently low temperatures  !
46 2 Superfluid 4He – Helium II

Temperature T
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Fig. 2.28. (a) Schematic plot of the reduced chemical potential µ/kBT as a function
of temperature. The chemical potential of a classical gas is always negative, because
VQ < VA. Therefore, the dashed part of the curve is not realized. (b) Chemical
potential µ of ideal 4He atoms relative to E111 and E211 at finite temperatures, and
for T → 0

The ground state will become macroscopically populated for VQ → VA,
meaning that the number N0 of bosons in the ground state becomes compa-
rable to the total number N of bosons in the system. For the first excited
state, we find for 1 cm3 of helium, µ = 0, and T = 1K

f(E211, T = 1K) ≈ 1
exp (10−14) − 1

≈ 1014 . (2.57)

In spite of this very large number, the population of the first excited state
is very small in comparison to the total number of atoms of 1022. The fact
that the population of the ground state converges to the total number of
particles N for T → 0 and for small values of the chemical potential makes
it possible to determine µ:

lim
T→0

f(0, T ) = N0(T ) = lim
T→0

(
1

e−µ/kBT − 1

)

≈ lim
T→0

(
1

1 − µ/(kBT ) + . . . − 1

)
≈ −kBT

µ
. (2.58)

The chemical potential can therefore be approximated by µ = −kBT/N0.
This means that it essentially depends on the population of the ground state.
For the example of a 1 cm3 volume of liquid helium we find µ/kB ≈ 10−22 K
at T = 1K. Consequently, the absolute value of the chemical potential is,
at this point, already much smaller than the energy difference ∆E between
the ground state and the first excited state. This situation is depicted in
Fig. 2.28b. In this way, the occurrence of macroscopic occupation of the
ground state in liquid helium at finite temperatures can be understood.

46 2 Superfluid 4He – Helium II
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Fig. 2.28. (a) Schematic plot of the reduced chemical potential µ/kBT as a function
of temperature. The chemical potential of a classical gas is always negative, because
VQ < VA. Therefore, the dashed part of the curve is not realized. (b) Chemical
potential µ of ideal 4He atoms relative to E111 and E211 at finite temperatures, and
for T → 0

The ground state will become macroscopically populated for VQ → VA,
meaning that the number N0 of bosons in the ground state becomes compa-
rable to the total number N of bosons in the system. For the first excited
state, we find for 1 cm3 of helium, µ = 0, and T = 1K

f(E211, T = 1K) ≈ 1
exp (10−14) − 1

≈ 1014 . (2.57)

In spite of this very large number, the population of the first excited state
is very small in comparison to the total number of atoms of 1022. The fact
that the population of the ground state converges to the total number of
particles N for T → 0 and for small values of the chemical potential makes
it possible to determine µ:

lim
T→0

f(0, T ) = N0(T ) = lim
T→0

(
1

e−µ/kBT − 1

)

≈ lim
T→0

(
1

1 − µ/(kBT ) + . . . − 1

)
≈ −kBT

µ
. (2.58)

The chemical potential can therefore be approximated by µ = −kBT/N0.
This means that it essentially depends on the population of the ground state.
For the example of a 1 cm3 volume of liquid helium we find µ/kB ≈ 10−22 K
at T = 1K. Consequently, the absolute value of the chemical potential is,
at this point, already much smaller than the energy difference ∆E between
the ground state and the first excited state. This situation is depicted in
Fig. 2.28b. In this way, the occurrence of macroscopic occupation of the
ground state in liquid helium at finite temperatures can be understood.

(~ Tc)
classical regime

is negative

He gas at 300 K:

this means       becomes smaller than                                          at finite T !
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Calculation of     :   how large is       at 1K? (revers argument)
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measurements. A torus filled with fine powder and liquid 4He is set in ro-
tation above the lambda point and is subsequently cooled below Tλ. The
rotation of the torus is gently slowed until the torus is at rest. The superfluid
component still rotates after this operation. Fourth sound generated under
such conditions shows a Doppler shift, given to a good approximation by

v4 ≈ v4,0 ±
!s

!
vD . (2.51)

Here, vD denotes the flow velocity of the persistent current and v4,0 the
velocity of fourth sound in stationary helium II. The factor !s/! takes into
account the coupling between the compression wave and second sound.

2.3 Bose–Einstein Condensation

In the previous sections we saw that the superfluid component of liquid he-
lium can flow without any friction. F. London suggested in 1938 that this
dissipationless flow is related to the frictionless motion of electrons in atomic
shells [11]. In atoms, the electrons are in stationary quantum states that
are described by the eigenfunctions of the corresponding Hamiltonian. The
phases of the wave functions of different atoms in a liquid are not correlated
under usual conditions. London assumed that in helium II the wave function
is well defined throughout the entire liquid, analogous to the situation in su-
perconductors. We shall see that the superfluid component of helium II can
indeed be described by a macroscopic wave function. As the possible origin
of such a macroscopic wave function in helium II, London discussed the so-
called Bose–Einstein condensation. In the following section we will take a
brief look at this phenomenon for the case of an ideal Bose gas, although it
is clear that the description of liquid 4He as an ideal Bose gas can, at best,
be a crude approximation.

2.3.1 Ideal Bose Gas

An ideal Bose gas is a gas of noninteracting particles with integer spin. Of
course, at T = 0 all Bose particles are in the ground state, but this is a rather
trivial statement and has nothing to do with the occurrence of Bose–Einstein
condensation. The peculiar thing about Bose gases is that almost complete
condensation into the ground state occurs at finite temperatures far higher
than the corresponding spacing of the energy levels in the gas. This was first
realized in 1924 by Einstein [73].

To understand this phenomenon, we consider the influence of the chemical
potential µ on the level occupation in such systems. The energy eigenvalues
of free atoms with mass m in a cube with side L are given by

En =
!2

2m

(π

L

)2
n2 , with n2 = n2

x + n2
y + n2

z . (2.52)

at  T = 1 K
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Fig. 2.28. (a) Schematic plot of the reduced chemical potential µ/kBT as a function
of temperature. The chemical potential of a classical gas is always negative, because
VQ < VA. Therefore, the dashed part of the curve is not realized. (b) Chemical
potential µ of ideal 4He atoms relative to E111 and E211 at finite temperatures, and
for T → 0

The ground state will become macroscopically populated for VQ → VA,
meaning that the number N0 of bosons in the ground state becomes compa-
rable to the total number N of bosons in the system. For the first excited
state, we find for 1 cm3 of helium, µ = 0, and T = 1K

f(E211, T = 1K) ≈ 1
exp (10−14) − 1

≈ 1014 . (2.57)

In spite of this very large number, the population of the first excited state
is very small in comparison to the total number of atoms of 1022. The fact
that the population of the ground state converges to the total number of
particles N for T → 0 and for small values of the chemical potential makes
it possible to determine µ:

lim
T→0

f(0, T ) = N0(T ) = lim
T→0

(
1

e−µ/kBT − 1

)

≈ lim
T→0

(
1

1 − µ/(kBT ) + . . . − 1

)
≈ −kBT

µ
. (2.58)

The chemical potential can therefore be approximated by µ = −kBT/N0.
This means that it essentially depends on the population of the ground state.
For the example of a 1 cm3 volume of liquid helium we find µ/kB ≈ 10−22 K
at T = 1K. Consequently, the absolute value of the chemical potential is,
at this point, already much smaller than the energy difference ∆E between
the ground state and the first excited state. This situation is depicted in
Fig. 2.28b. In this way, the occurrence of macroscopic occupation of the
ground state in liquid helium at finite temperatures can be understood.

!
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number of particles in excited states

2.4 Bose-Einstein Condensation 

Calculation of          and        :

density of states for free particles without D(0)

density of states for free particles

with                           and 
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with 

Interpretation

as long as ,   which means that the de Broglie wavelength is 

significantly larger as an atom condensation 

factor

!
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with 

Interpretation

as long as ,   which means that the de Broglie wavelength is 

significantly larger as an atom condensation 

factor

!
► trivial !
► still macroscopically large!
► ≙ normalfluid component

must not be as 
large as the vessel
as proposed by London

comment:
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What is the value of the condensation temperature?

He  
gas                       , but boiling point is at    

liquid                      , works well in comparison to 

48 2 Superfluid 4He – Helium II

Tc =
2π!2

kBm

(
N

2.6V

)2/3

. (2.64)

Using this result we can write the ratio of the number of excited particles to
the total number of particles as

Ne

N
=

(
T

Tc

)3/2

. (2.65)

In the language of the two-fluid model the condensate N0 corresponds to the
superfluid component and Ne to the normal-fluid component (see Fig. 2.29).

0.0 0.2 0.4 0.6 0.8 1.0
Temperature T / Tc

0.0

0.2

0.4

0.6

0.8

1.0

Superfluid
component

Normal-fluid
component

N0
N

Ne
N

Fig. 2.29. Normalized population of
the ground state N0/N and the excited
states Ne/N as a function of the reduced
temperature T/Tc

The condensation of an ordinary gas in real space corresponds to the
Bose–Einstein condensation of 4He in momentum space, which means that all
atoms have the same wave vector and therefore perform a strictly correlated
motion. Because of this, Bose–Einstein condensation can be considered as
a disorder-to-order transition. A schematic illustration of the results for an
ideal Bose gas is shown in Fig. 2.30. At T = 0 (left), all particles are in the
ground state. For 0 < T < Tc (right), some particles are excited, but the
ground state is still heavily – macroscopically – occupied.

2.3.2 Helium

We now turn to the question of whether (2.64) predicts the condensation
temperature Tc for helium correctly. Using the number density for 4He gas at
saturated vapor pressure at 4.2 K we obtain Tc ≈ 0.5 K. This temperature ob-
viously lies below the temperature of liquefaction and therefore Bose–Einstein
condensation in the gas phase is impossible under equilibrium conditions.4

4 Note that Bose–Einstein condensation of low-density supercooled helium gas has
been achieved recently [75].

the condensation of a normal gas in real space
corresponds to the Bose-Einstein condensation in 
momentum space, which means all atoms have the 
same wave vector and are strongly correlated.

Bose Einstein condensate of atomic gas
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b) Interacting Bose “gas”  (He)

specific heat

2.3 Bose–Einstein Condensation 49
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Fig. 2.30. Graphic illustration of the population of the energy levels of an ideal
Bose gas. (a) T = 0, and (b) 0 < T < Tc

Using the parameters for liquid helium one finds a condensation tempera-
ture of Tc = 3.1 K. Considering the simplifications under which (2.64) has
been derived, this value is in reasonably good agreement with the measured
temperature Tλ = 2.17 K of the lambda transition.

More distinct differences, however, are visible in the temperature depen-
dence of the specific heat CV . For an ideal Bose gas a much weaker tempera-
ture dependence is expected than experimentally observed for liquid helium.
This can be seen in Fig. 2.31 where the specific heat of an ideal Bose gas with
the parameters of liquid helium is plotted in comparison with the measured
values.

At low temperatures, the rise of CV should be proportional to T 3/2 for
an ideal Bose gas, whereas a T 3 dependence has been found experimentally
for T < 0.6K (see Sect. 2.5.2). The reason for this discrepancy – and others
of this kind – lies, of course, in the fact that liquid helium is by no means a
noninteracting Bose gas. The interaction between the helium atoms has two
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Fig. 2.31. Specific heat of 4He
(points) after [74] in comparison
with the theoretical curve for an
ideal Bose gas with the para-
meters of liquid helium (dashed
line)

ideal Bose gas 

experimental results

ideal Bose
Gas

Helium

interactions are important

depletion of the ground state

collective excitation  
(has first been proposed by Bogoliubov 1947) 

ideal Bose gas 

excited atoms

T = 0 ,  N0 = N 

T ≠ 0 ,  N0 ≤ N
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Fig. 2.30. Graphic illustration of the population of the energy levels of an ideal
Bose gas. (a) T = 0, and (b) 0 < T < Tc

Using the parameters for liquid helium one finds a condensation tempera-
ture of Tc = 3.1 K. Considering the simplifications under which (2.64) has
been derived, this value is in reasonably good agreement with the measured
temperature Tλ = 2.17 K of the lambda transition.

More distinct differences, however, are visible in the temperature depen-
dence of the specific heat CV . For an ideal Bose gas a much weaker tempera-
ture dependence is expected than experimentally observed for liquid helium.
This can be seen in Fig. 2.31 where the specific heat of an ideal Bose gas with
the parameters of liquid helium is plotted in comparison with the measured
values.

At low temperatures, the rise of CV should be proportional to T 3/2 for
an ideal Bose gas, whereas a T 3 dependence has been found experimentally
for T < 0.6K (see Sect. 2.5.2). The reason for this discrepancy – and others
of this kind – lies, of course, in the fact that liquid helium is by no means a
noninteracting Bose gas. The interaction between the helium atoms has two
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interacting Bose gas 

T = 0 ,  N0 < N :

T ≠ 0 ,  N0 < N :

significant number of atoms are not in the ground state

in addition, collective excitations, nature of excitations changes
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Thermal
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E = 0 = 0E
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Fig. 2.32. Schematic illustration of the population of the superfluid and normal-
fluid component in helium II. (a) At T = 0, all helium atoms belong to the su-
perfluid component. Due to interaction, however, some atoms are scattered into
virtual states with E > 0. (b) At finite temperatures, thermal excitations also oc-
cur, which are identical to longitudinal phonons at very low temperatures. As we
shall see later, these thermal excitations form the normal-fluid component

important consequences that are schematically shown in Fig. 2.32. First, the
ground-state population is somewhat reduced, or in other words, the conden-
sate concentration is lower than one would expect for an ideal Bose gas. One
often refers to this as a depletion of the ground state. Secondly, the nature of
excitations is different for interacting Bose particles. Instead of individually
excited atoms, collective excitations occur that have already been investi-
gated theoretically in 1947 by Bogoliubov [76]. Despite these differences, the
crucial feature of Bose–Einstein condensation in a system of interacting Bose
particles is still the fact that a macroscopic number of particles remains in
the ground state even at relatively high temperatures, just as in the case of
an ideal Bose gas.

2.3.3 Condensate Fraction in Helium II

Although there is no direct way to determine the condensate concentration
experimentally it is possible to draw indirectly conclusions about this quan-
tity from different experiments (Fig. 2.33). With some theoretical effort it
can be shown that the surface tension is a measure of the condensate con-
centration. More obvious is the connection between the condensate concen-
tration and the average energy per atom, which can be measured in neutron-
scattering experiments. In measurements at large momentum transfer Q, the
dynamic structure factor S(Q,ω) directly reflects the momentum distribution
of the atoms from which the condensate density can be derived.

Also, from the pair-correlation function determined in X-ray scattering
experiments one can draw conclusions about the condensate concentration.
The basic idea is that the condensation in momentum space should lead
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Experimental determination of the condensate
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there is no direct way to measure the condensate fraction:  

a) neutron scattering: measuring the dynamic structure factor
via inelastic neutron scattering

momentum distribution

b) X-ray scattering:  pair correlation function at transition to superfluid state 
becomes broader because of the condensation in momentum space

above

c) surface tension:       complicated but possible  

2.3 Bose–Einstein Condensation 51

to broadening of the distribution in real space according to the uncertainty
principle. This broadening should be proportional to the number of atoms
in the condensate. Therefore, the pair-correlation function below Tλ can be
written as

g(r) − 1 = (1 − n0)2 [g∗(r) − 1] , (2.66)

where n0 denotes the condensate density and g∗(r) the pair-correlation func-
tion of the noncondensate atoms which, in practice, can be taken as being g(r)
at a temperature just above Tλ.

As can be seen in Fig. 2.33, the values obtained with different experimental
methods agree well. It is remarkable that even for T → 0 the condensate
concentration is only about 13%. This means that directly equating !s with
the condensate is not possible. The theoretical values for the condensate
fraction lie between 0.09 and 0.12 and are in reasonably good agreement
with experimental data.
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Fig. 2.33. Condensate concen-
tration in helium II as a function
of temperature. The experimen-
tal data are from X-ray scatter-
ing [77], neutron scattering [78–
80] and measurements of the sur-
face tension (dashed curve) [81].
The solid line represents an em-
pirical fit of the data

At the end of this section we note that in recent years Bose–Einstein
condensation in dilute gases has been achieved in sophisticated experiments
by several groups. The techniques of laser cooling, magnetic trapping and
rf evaporative cooling are essential ingredients that have been combined to
obtain Bose–Einstein condensation in dilute gases. Meanwhile, not only have
such Bose condensates been realized, but many properties, such as sound
propagation, have been studied in these systems. Besides the many similar-
ities between the physics of helium II and Bose condensates of dilute gases,
these experiments are not considered to belong to traditional low-temperature
physics, because of the very different experimental methods involved. We will
therefore not discuss them here, but refer to recent reviews about this fasci-
nating subject [82–84].

condensate fraction for                just 13 %

is not equal with condensate fraction
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to broadening of the distribution in real space according to the uncertainty
principle. This broadening should be proportional to the number of atoms
in the condensate. Therefore, the pair-correlation function below Tλ can be
written as

g(r) − 1 = (1 − n0)2 [g∗(r) − 1] , (2.66)

where n0 denotes the condensate density and g∗(r) the pair-correlation func-
tion of the noncondensate atoms which, in practice, can be taken as being g(r)
at a temperature just above Tλ.

As can be seen in Fig. 2.33, the values obtained with different experimental
methods agree well. It is remarkable that even for T → 0 the condensate
concentration is only about 13%. This means that directly equating !s with
the condensate is not possible. The theoretical values for the condensate
fraction lie between 0.09 and 0.12 and are in reasonably good agreement
with experimental data.
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Fig. 2.33. Condensate concen-
tration in helium II as a function
of temperature. The experimen-
tal data are from X-ray scatter-
ing [77], neutron scattering [78–
80] and measurements of the sur-
face tension (dashed curve) [81].
The solid line represents an em-
pirical fit of the data

At the end of this section we note that in recent years Bose–Einstein
condensation in dilute gases has been achieved in sophisticated experiments
by several groups. The techniques of laser cooling, magnetic trapping and
rf evaporative cooling are essential ingredients that have been combined to
obtain Bose–Einstein condensation in dilute gases. Meanwhile, not only have
such Bose condensates been realized, but many properties, such as sound
propagation, have been studied in these systems. Besides the many similar-
ities between the physics of helium II and Bose condensates of dilute gases,
these experiments are not considered to belong to traditional low-temperature
physics, because of the very different experimental methods involved. We will
therefore not discuss them here, but refer to recent reviews about this fasci-
nating subject [82–84].
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