Einstein 1924 Bose 1925

London 1938

Basic idea of Fritz London:

dissipation-less motion

macroscopic wave function

a) Ideal Bose gas

SS 2023

MVCMP-1

non-interacting Bose gas (rough approximation for liquid He)

let's consider: 1 cm³ cube of liquid ⁴He $\triangleq 10^{22}$ atoms with mass m

eigenstates for free particles in a cube:

$$E_n = \frac{\hbar^2}{2m} \left(\frac{\pi}{L}\right)^2 n^2 \qquad \qquad \text{with} \qquad n^2 = n_x^2 + n_y^2 + n_z^2$$

 $T = 0 \longrightarrow$ all atoms are in the ground state E_{111} trivial !

But at finite temperatures?

consider energy difference between ground state and first excited state

$$\Delta E/k_{\rm B} = (E_{211} - E_{111})/k_{\rm B} \approx 2 \times 10^{-14} \,\mathrm{K}$$

if Boltzmann statistics would hold model of condensate at 1 K!!!

however, Bose-Einstein distribution is relevant here

$$f(E,T) = \frac{1}{e^{(E-\mu)/k_{\rm B}T} - 1}$$

chemical potential $\mu = \frac{\partial F}{\partial N}$

what we know:

SS 2023

MVCMP-1

:
$$\mu < E_{111} \longrightarrow$$
 otherwise, negative occupation
 $\mu \neq 0 \longrightarrow$ since particle number conserved

Occupation of ground state $E_{111} = 0$

SS 2023

MVCMP-1

 $f(0,T) = \frac{1}{e^{-\mu/k_{\rm B}T} - 1}$ \longrightarrow occupation depends critically on μ

$$f(0, T \to 0) \to \infty$$
 if $\mu \to 0$ faster than $T \to 0$ $\left(\begin{array}{c} \frac{1}{e^0 - 1} \to \infty \end{array} \right)$

What is the temperature dependence of $\mu(T)$?

for this let us consider a real, but non-interacting gas

$$u = -k_{\rm B}T \ln\left(\frac{V_{\rm A}}{V_{
m Q}}\right)$$

quantum volume $V_{
m Q} = \left(\frac{h}{\sqrt{2\pi m k_{
m B}T}}\right)^3 = \lambda_{
m B}^3$

thermal de Broglie wavelength

For ⁴He $\longrightarrow \lambda_{\rm B}^3 = (8.7 \text{ Å})^3$ at 1 K $V_{\rm A} = V/N = (3.8 \text{ Å})^3$ in comparison

Calculation of μ : how large is μ at 1K? (revers argument)

SS 2023

MVCMP-1

for
$$T \to 0$$
 \longrightarrow $f_{111} \to N$
$$\lim_{T \to 0} f(0,T) = N_0(T) = \lim_{T \to 0} \left(\frac{1}{e^{-\mu/k_{\rm B}T} - 1} \right)$$
$$E_{111} = 0, \text{ ground state}$$

$$\approx \lim_{T \to 0} \left(\frac{1}{1 - \mu/(k_{\rm B}T) + \ldots - 1} \right) \approx -\frac{k_{\rm B}T}{\mu}$$

$$\frown \qquad \mu = -\frac{k_{\rm B}T}{N_0} \qquad \text{close to } T = 0$$

at $T = 1 \text{ K} \longrightarrow \mu/k_{\text{B}} \approx 10^{-22} \text{ K}$

Calculation of
$$\,N_0\,$$
 and $\,N_{
m e}\,$

SS 2023

MVCMP-1

number of particles in excited states

$$\sum_{i} f(E_i, T) = N = N_0(T) + N_e(T)$$
$$= N_0(T) + \int_0^\infty D(E) f(E, T) dE$$

density of states for free particles without D(0)

density of states for free particles $\, E_k \propto k^2 \,$

$$D(E) = \frac{V(2m)^{3/2} \sqrt{E}}{4\pi^2 \hbar^3}$$

with $E/k_{\rm B}T = x$ and $|\mu| \ll \Delta E \longrightarrow \exp[(E-\mu)/k_{\rm B}T] \approx \exp(E/k_{\rm B}T)$

•
$$N = N_0 + \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} (k_{\rm B}T)^{3/2} \int_{0}^{\infty} \frac{\sqrt{x}}{e^x - 1} \, \mathrm{d}x$$

 $\Gamma(5/2) \times \zeta(5/2) \approx 1.783$

with
$$V_{\rm Q} = \left(\frac{h}{\sqrt{2\pi m k_{\rm B}T}}\right)^3 = \lambda_{\rm B}^3$$

$$N \approx N_0 + 2.6 \, \frac{V}{V_{\rm Q}}$$

$$N_0 = N - 2.6 rac{V}{V_{
m Q}}$$

Interpretation
$$NV_A$$

as long as $2.6 \frac{V}{V_Q} \ll 10^{22}$, which means that the de Broglie wavelength is
significantly larger as an atom \longrightarrow condensation
factor $\sqrt[3]{2.6} = 1.37$

with
$$V_{\rm Q} = \left(\frac{h}{\sqrt{2\pi m k_{\rm B}T}}\right)^3 = \lambda_{\rm B}^3$$

$$N \approx N_0 + 2.6 \, \frac{V}{V_{\rm Q}}$$

$$N_0 = N - 2.6 rac{V}{V_{
m Q}}$$

Interpretation NV_A as long as $2.6 \frac{V}{V_Q} \ll 10^{22}$, which means that the de Broglie wavelength is significantly larger as an atom \longrightarrow condensation factor $\sqrt[3]{2.6} = 1.37$

 $\blacktriangleright T = 0 \longrightarrow N_0 = N \quad \text{trivial } !$

- ▶ $0 < T < T_c$ \longrightarrow N_0 still macroscopically large!
- ► $N_{\rm e}$ \triangleq normalfluid component

comment:

 $\lambda_{
m B}^3$ must not be as large as the vessel as proposed by London

2.4 Bose-Einstein Condensation

4

What is the value of the condensation temperature?

$$\left. \begin{array}{l} N_0(T_{\rm c}) = 0 \\ N_{\rm e}(T_{\rm c}) = N \end{array} \right\} \qquad T_{\rm c} = \frac{2\pi\hbar^2}{k_{\rm B}m} \left(\frac{N}{2.6V}\right)^{2/3}$$

Bose Einstein condensate of atomic gas

He
$$T_c \approx 0.5 \,\mathrm{K}$$
, but boiling point is at $4.2 \,\mathrm{K}$
liquid $T_c = 3.1 \,\mathrm{K}$, works well in comparison to $T_\lambda = 2.17 \,\mathrm{K}$

1.0 N_0 0.8 Superfluid N_e N component 0.6 0.4 Normal-fluid component 0.2 0.0 0.2 0.6 0.8 0.4 1.0 0.0 Temperature T/T_c

$$\frac{N_{\rm e}}{N} = \left(\frac{T}{T_{\rm c}}\right)^{3/2}$$

the condensation of a normal gas in real space corresponds to the Bose-Einstein condensation in momentum space, which means all atoms have the same wave vector and are strongly correlated.

2.4 Bose-Einstein Condensation

SS 2023

MVCMP-1

interacting Bose gas

SS 2023

MVCMP-1

T = 0, $N_0 < N$: significant number of atoms are not in the ground state

 $T \neq 0$, $N_0 < N$: in addition, collective excitations, nature of excitations changes

 ω

 n_0

Experimental determination of the condensate

SS 2023

MVCMP-1

there is no direct way to measure the condensate fraction: $N_0/N = n_0$

a) neutron scattering: measuring the dynamic structure factor $S(Q, \omega) \cong n(p)$ via inelastic neutron scattering

b) X-ray scattering: pair correlation function g(r) at transition to superfluid state becomes broader because of the condensation in momentum space

$$g(r) - 1 = (1 - n_0)^2 [g^*(r) - 1]$$

c) surface tension: complicated but possible

condensate fraction for $T \rightarrow 0$ just 13 %

 ϱ_{s} is not equal with condensate fraction

momentum distribution