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the two-fluid model

Ansatz:

frequency of wave
velocity in x direction

Insertion and differentiation leads to 2 linear equations in  and 

with

(i)

(ii)

and
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the constrains equation for the coefficients is

here standard thermodynamic 
relations are used

for liquid helium 

interpretation:  two wave                      weakly coupled via 

(iii)
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2.3 Properties of He-II described using 
the two-fluid model

(i) First sound

with (i) and (iii) 

as usual for ordinary (first) sound
insert (4) into (6) 

superfluid and normalfluid
component are in phase
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2.3 Properties of He-II described using 
the two-fluid model

(i) First sound

2.2 Two-Fluid Model 37

First Sound

The propagation of first sound with velocity v1 is given by (2.34) in the case
where !′ != 0 and S′ = 0. Under these conditions the temperature gradient
vanishes, i.e. gradT ≈ 0, just as it does for an ordinary sound wave. We can
use this approximation together with (2.5) and (2.9) to obtain the important
relation

!n
∂

∂t
(vn − vs) = !S gradT = 0 . (2.40)

Therefore, we finally get

vn = vs . (2.41)

From this we can conclude that the two components of helium II move in
phase, resulting in an adiabatic density variation. In this case, helium II be-
haves like an ordinary liquid in which sound waves propagate with velocity
v = v1. For the low-temperature limit T → 0, we find v1 ≈ 238 m s−1. This
result is strictly valid only if the two types of waves are completely decoupled.
The actual corrections are important only near the lambda point.

The temperature dependence of the velocity of first sound in liquid helium
is shown in Fig. 2.20. The data points are from measurements at 1 MHz and
14 MHz. The velocity of first sound increases from about 180 m s−1 at the
boiling point of helium to 238 m s−1 at low temperatures. As expected, an
anomaly in the elastic properties of liquid helium is visible in the vicinity of
the lambda transition.
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He II

Fig. 2.20. Velocity of first sound in
liquid helium as a function of tem-
perature [62,63]

Second Sound

In the case where S′ != 0 and !′ = 0, we find temperature waves described
by (2.35), which propagate with the velocity v = v2. From (2.26) it follows
that grad p = 0, and together with the Euler equation (2.5) we obtain

► for               :

► for               :  corrections become important  

2.2 Two-Fluid Model 37

First Sound

The propagation of first sound with velocity v1 is given by (2.34) in the case
where !′ != 0 and S′ = 0. Under these conditions the temperature gradient
vanishes, i.e. gradT ≈ 0, just as it does for an ordinary sound wave. We can
use this approximation together with (2.5) and (2.9) to obtain the important
relation

!n
∂

∂t
(vn − vs) = !S gradT = 0 . (2.40)

Therefore, we finally get

vn = vs . (2.41)

From this we can conclude that the two components of helium II move in
phase, resulting in an adiabatic density variation. In this case, helium II be-
haves like an ordinary liquid in which sound waves propagate with velocity
v = v1. For the low-temperature limit T → 0, we find v1 ≈ 238 m s−1. This
result is strictly valid only if the two types of waves are completely decoupled.
The actual corrections are important only near the lambda point.

The temperature dependence of the velocity of first sound in liquid helium
is shown in Fig. 2.20. The data points are from measurements at 1 MHz and
14 MHz. The velocity of first sound increases from about 180 m s−1 at the
boiling point of helium to 238 m s−1 at low temperatures. As expected, an
anomaly in the elastic properties of liquid helium is visible in the vicinity of
the lambda transition.
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Second Sound

In the case where S′ != 0 and !′ = 0, we find temperature waves described
by (2.35), which propagate with the velocity v = v2. From (2.26) it follows
that grad p = 0, and together with the Euler equation (2.5) we obtain

only density variation almost ordinary sound 
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(ii) Second sound

with (ii) and (iii) we find

with (4) 

!

no mass flow in closed vessel

counter flow and no density variation

,

,

temperature wave
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density variation in phonon gas
possibility to 
determine 

38 2 Superfluid 4He – Helium II

∂ ("nvn)
∂t

+
∂ ("svs)

∂t
= 0 , (2.42)

which means that the momentum density j = "nvn + "svs is either constant
or zero. Since no constant mass flow can occur in a closed container, it follows
that "nvn + "svs = 0. This means that the motion of the two components
takes place in phase opposition. The velocity of the temperature waves that
propagate through helium II is given by

v2 =

√
"s

"n
S2

(
∂T

∂S

)

!

=

√
"s

"n

T S2

Cp
. (2.43)

As we will see, according to the Landau model of helium II, the only ex-
citations at very low temperatures are phonons. In the framework of this de-
scription we expect for the velocity of second sound v2 → v1/

√
3 ≈ 137 m s−1

for T → 0. This limiting value is obtained by insertion of "s ≈ ", S = AT 3,
Cp = 3AT 3 and "n = A"T 4/v2

1 , with A = 2π2k4
B/(45!3v3

1"). Here, we have
used in advance the expressions (2.87) and (2.89) for Cp and "n, respectively.

The temperature dependence of the sound velocity of second sound is
shown in Fig. 2.21. Over a wide temperature range the experimental data
agrees very well with the calculated curve. Below 0.5 K the generation and
detection of second sound becomes very difficult. Thus, the limiting value for
T → 0 of approximately v1/

√
3 cannot be verified experimentally.
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Temperature T / K
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Fig. 2.21. Velocity of second sound
in helium II as a function of tempera-
ture [53,64]. The solid line shows the
result of a calculation with (2.43) (af-
ter [65])

It is interesting to note that in the first attempts to look for second sound
in helium II it was not attempted to generate directly temperature waves via
periodical heating, but rather one tried to detect the (weak) temperature
wave that accompanies the propagation of ordinary sound in helium II. Such
a temperature variation occurs because the density variation due to the first
sound leads to slight local variations of the ratio "s/"n, which is equivalent
to a temperature change (see (2.37)).

for  T à 0 second sound difficult
determine since       à 0ultra-low temperatures:

excitations at T à 0 are only longitudinal phonons
Landau

Debye model

in addition for               :    
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(iii) Third sound

sound propagating in thin films

dd’(x,t)
x(x,t)

d’(x,t) = d + x(x,t)

assumptions:    thin films mean film thickness

motion parallel to substrate in x-direction 

2.2 Two-Fluid Model 39

Third Sound

Propagating surface waves on thin helium films are called third sound . Such
waves can be produced by local periodic heating of helium II films in the
audio-frequency range. The heating causes oscillations of the film thickness,
which then propagate as a surface wave on the film.

The profile of the film and thus the amplitude of the thickness oscillations
can be measured using optical methods.2 A third-sound experiment is illus-
trated in Fig. 2.22. With such a setup it is possible to determine the velocity
and the damping of third sound. In the case where the liquid levels in both
beakers are different, third sound in moving films can be investigated. We
will return to this interesting option at the end of this section, but for now
we will assume stationary films.

Detector Pulsed light

source

v3

vc

z1
z2

Fig. 2.22. Schematic illustration of an
experimental setup to measure the ve-
locity of third sound. The quantity vc

denotes the flow velocity, which under
most experimental conditions is identi-
cal with the critical velocity, except for
very small level differences

Under most experimental conditions, the wavelength is much larger than
the film thickness (λ ! d) and thus helium can only move parallel to the sub-
strate (vy = vz = 0). The motion of the normal-fluid component is strongly
damped due to its viscous friction. We therefore can consider "n, to a good
approximation, as completely immobile (vn = 0). In contrast, the superfluid
component is mobile and flows to the heated region due to the fountain effect.
There, it causes a local increase ξ(x, t) of the film thickness d. The resulting
thickness variation propagates like a surface wave. Under these conditions
the continuity equation (2.4) can be written in the form

"
∂ξ

∂t
= −"sd

∂vsx

∂x
. (2.44)

Using (2.7) and assuming for a rough approximation that there are no tem-
perature variations in the film (gradT ≈ 0), we obtain v̇sx = −"−1(∂p/∂x).
Neglecting gravity, the pressure can be expressed in terms of the Van der
2 We should note that in most experiments nowadays third sound is not generated

and detected optically, but is investigated in specially designed resonators in
which standing waves of third sound can be produced (see, for example, [66]).

(questionable ?)

problem: evaporation and condensation

increases the amplitude and changes velocity

can be taken into account
wall /substrate

40 2 Superfluid 4He – Helium II

Waals force f = 3α/d4, and is given by p(x) = " f [d + ξ(x)]. Inserting this
relation leads to the equation

∂vsx

∂t
= −f

∂ξ

∂x
. (2.45)

By differentiating (2.44) with respect to time and (2.45) with respect to the
x-coordinate, and combining the results we finally obtain the wave equation

∂2ξ

∂t2
= fd

"s

"

∂2ξ

∂x2
, (2.46)

which we solve assuming a plane wave of the form ξ = ξ0 exp[iω(t − x/v)].
Inserting (2.14) for the thickness d of the film, we finally find for the velocity
of third sound in saturated films

v2
3 =

"s

"
3gz , (2.47)

where z = z1 = z2 represents the height above the liquid surface. A com-
plication in the quantitative description of such experiments arises from the
accompanying evaporation and condensation processes. These are caused by
local temperature differences in the film, an effect that we have neglected
in our treatment above. As visualized in Fig. 2.23, wave troughs are slightly
warmer, leading to evaporation of helium that subsequently condenses onto
the colder crests.

ρs ρs ρsρs
Cold

Wall

Cold Warm
Fig. 2.23. Schematic illustration of the
evaporation and condensation effect ac-
companying the propagation of third
sound in superfluid helium films

This mechanism not only enhances the amplitude of the third-sound wave,
but also influences its velocity. In a more elaborate model, one can find the
following expression [67] for the velocity of third sound:

v2
3 ≈ "s

"
3gz

(
1 +

TS

L

)
. (2.48)

Here, L denotes the latent heat of vaporization. The factor TS/L is about
0.15 at Tλ and decreases with decreasing temperature to a value of only
0.01 at T = 1K. Figure 2.24 shows the velocity of third sound in helium II
films on different substrates (• roughened steel, ◦ polished steel, ! nickel)
as a function of the height z above the liquid level. According to (2.14) each
height corresponds to a certain film thickness. The solid line represents the
dependence of v3 on z as expected from (2.47). It fits the data reasonably

40 2 Superfluid 4He – Helium II

Waals force f = 3α/d4, and is given by p(x) = " f [d + ξ(x)]. Inserting this
relation leads to the equation

∂vsx

∂t
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∂ξ

∂x
. (2.45)

By differentiating (2.44) with respect to time and (2.45) with respect to the
x-coordinate, and combining the results we finally obtain the wave equation

∂2ξ

∂t2
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∂2ξ
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, (2.46)

which we solve assuming a plane wave of the form ξ = ξ0 exp[iω(t − x/v)].
Inserting (2.14) for the thickness d of the film, we finally find for the velocity
of third sound in saturated films

v2
3 =

"s

"
3gz , (2.47)

where z = z1 = z2 represents the height above the liquid surface. A com-
plication in the quantitative description of such experiments arises from the
accompanying evaporation and condensation processes. These are caused by
local temperature differences in the film, an effect that we have neglected
in our treatment above. As visualized in Fig. 2.23, wave troughs are slightly
warmer, leading to evaporation of helium that subsequently condenses onto
the colder crests.
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Fig. 2.23. Schematic illustration of the
evaporation and condensation effect ac-
companying the propagation of third
sound in superfluid helium films

This mechanism not only enhances the amplitude of the third-sound wave,
but also influences its velocity. In a more elaborate model, one can find the
following expression [67] for the velocity of third sound:

v2
3 ≈ "s

"
3gz

(
1 +

TS

L

)
. (2.48)

Here, L denotes the latent heat of vaporization. The factor TS/L is about
0.15 at Tλ and decreases with decreasing temperature to a value of only
0.01 at T = 1K. Figure 2.24 shows the velocity of third sound in helium II
films on different substrates (• roughened steel, ◦ polished steel, ! nickel)
as a function of the height z above the liquid level. According to (2.14) each
height corresponds to a certain film thickness. The solid line represents the
dependence of v3 on z as expected from (2.47). It fits the data reasonably

= 0.15 at Tl

= 0.01 at 1 K
not really a problem

wall / substrate

v. d. Waals force

height over liquid level
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2.2 Two-Fluid Model 41
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Fig. 2.24. Velocity of third sound as a
function of the height z above the liquid
level [68]. The solid line represents the
variation according to (2.47)

well over a wide range of film heights. According to the data in Fig. 2.24, the
velocity of third sound seems to be almost independent of the substrate.

In Fig. 2.25 the temperature dependence of the velocity of third sound
is shown. With decreasing temperature, v3 increases, and for T → 0 reaches
a value of 150 cm s−1 for films 9 cm above the liquid level. The data shown
in Fig. 2.25 have been taken at different heights above the liquid level corre-
sponding to different film thicknesses and are normalized for each thickness
at 1.25K (filled circle). The temperature dependence is mainly determined
by the temperature dependence of the superfluid density !s. Surprisingly,
there seems to be a systematic deviation between the experimental data and
the theoretical fit with (2.48). The origin of this discrepancy is unknown, but
it has been speculated that the excitation process of third sound somehow
affects the film thickness.

An interesting variation on such experiments is the investigation of third
sound in moving films. In this case, the velocity of third sound is superim-
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Fig. 2.25. Velocity of third sound nor-
malized to the velocity at 1.25 K versus
temperature. The measurements were
carried out at different heights z [68].
The dashed line represents the variation
according to (2.48)

2.2 Two-Fluid Model 39

Third Sound

Propagating surface waves on thin helium films are called third sound . Such
waves can be produced by local periodic heating of helium II films in the
audio-frequency range. The heating causes oscillations of the film thickness,
which then propagate as a surface wave on the film.

The profile of the film and thus the amplitude of the thickness oscillations
can be measured using optical methods.2 A third-sound experiment is illus-
trated in Fig. 2.22. With such a setup it is possible to determine the velocity
and the damping of third sound. In the case where the liquid levels in both
beakers are different, third sound in moving films can be investigated. We
will return to this interesting option at the end of this section, but for now
we will assume stationary films.

Detector Pulsed light

source

v3

vc

z1
z2

Fig. 2.22. Schematic illustration of an
experimental setup to measure the ve-
locity of third sound. The quantity vc

denotes the flow velocity, which under
most experimental conditions is identi-
cal with the critical velocity, except for
very small level differences

Under most experimental conditions, the wavelength is much larger than
the film thickness (λ ! d) and thus helium can only move parallel to the sub-
strate (vy = vz = 0). The motion of the normal-fluid component is strongly
damped due to its viscous friction. We therefore can consider "n, to a good
approximation, as completely immobile (vn = 0). In contrast, the superfluid
component is mobile and flows to the heated region due to the fountain effect.
There, it causes a local increase ξ(x, t) of the film thickness d. The resulting
thickness variation propagates like a surface wave. Under these conditions
the continuity equation (2.4) can be written in the form

"
∂ξ

∂t
= −"sd

∂vsx

∂x
. (2.44)

Using (2.7) and assuming for a rough approximation that there are no tem-
perature variations in the film (gradT ≈ 0), we obtain v̇sx = −"−1(∂p/∂x).
Neglecting gravity, the pressure can be expressed in terms of the Van der
2 We should note that in most experiments nowadays third sound is not generated

and detected optically, but is investigated in specially designed resonators in
which standing waves of third sound can be produced (see, for example, [66]).

3rd sound experiment

► periodic local heating
► flows to warm location thickness changes

► surface wave   ≙ 3rd sound

► optical detection of thickness

► 3rd sound velocity vs. z (log/log plot)

► different surfaces:        almost independent

► line  ≙ theory
► good agreement except for very

2.2Two-FluidModel39

ThirdSound

Propagatingsurfacewavesonthinheliumfilmsarecalledthirdsound.Such
wavescanbeproducedbylocalperiodicheatingofheliumIIfilmsinthe
audio-frequencyrange.Theheatingcausesoscillationsofthefilmthickness,
whichthenpropagateasasurfacewaveonthefilm.

Theprofileofthefilmandthustheamplitudeofthethicknessoscillations
canbemeasuredusingopticalmethods.2Athird-soundexperimentisillus-
tratedinFig.2.22.Withsuchasetupitispossibletodeterminethevelocity
andthedampingofthirdsound.Inthecasewheretheliquidlevelsinboth
beakersaredifferent,thirdsoundinmovingfilmscanbeinvestigated.We
willreturntothisinterestingoptionattheendofthissection,butfornow
wewillassumestationaryfilms.

DetectorPulsed light

source

v3

vc

z1
z2

Fig.2.22.Schematicillustrationofan
experimentalsetuptomeasuretheve-
locityofthirdsound.Thequantityvc

denotestheflowvelocity,whichunder
mostexperimentalconditionsisidenti-
calwiththecriticalvelocity,exceptfor
verysmallleveldifferences

Undermostexperimentalconditions,thewavelengthismuchlargerthan
thefilmthickness(λ!d)andthusheliumcanonlymoveparalleltothesub-
strate(vy=vz=0).Themotionofthenormal-fluidcomponentisstrongly
dampedduetoitsviscousfriction.Wethereforecanconsider"n,toagood
approximation,ascompletelyimmobile(vn=0).Incontrast,thesuperfluid
componentismobileandflowstotheheatedregionduetothefountaineffect.
There,itcausesalocalincreaseξ(x,t)ofthefilmthicknessd.Theresulting
thicknessvariationpropagateslikeasurfacewave.Undertheseconditions
thecontinuityequation(2.4)canbewrittenintheform

"
∂ξ

∂t
=−"sd

∂vsx

∂x
.(2.44)

Using(2.7)andassumingforaroughapproximationthattherearenotem-
peraturevariationsinthefilm(gradT≈0),weobtainv̇sx=−"−1(∂p/∂x).
Neglectinggravity,thepressurecanbeexpressedintermsoftheVander

2Weshouldnotethatinmostexperimentsnowadaysthirdsoundisnotgenerated
anddetectedoptically,butisinvestigatedinspeciallydesignedresonatorsin
whichstandingwavesofthirdsoundcanbeproduced(see,forexample,[66]).

2.2 Two-Fluid Model 39

Third Sound

Propagating surface waves on thin helium films are called third sound . Such
waves can be produced by local periodic heating of helium II films in the
audio-frequency range. The heating causes oscillations of the film thickness,
which then propagate as a surface wave on the film.

The profile of the film and thus the amplitude of the thickness oscillations
can be measured using optical methods.2 A third-sound experiment is illus-
trated in Fig. 2.22. With such a setup it is possible to determine the velocity
and the damping of third sound. In the case where the liquid levels in both
beakers are different, third sound in moving films can be investigated. We
will return to this interesting option at the end of this section, but for now
we will assume stationary films.

Detector Pulsed light

source

v3

vc

z1
z2

Fig. 2.22. Schematic illustration of an
experimental setup to measure the ve-
locity of third sound. The quantity vc

denotes the flow velocity, which under
most experimental conditions is identi-
cal with the critical velocity, except for
very small level differences

Under most experimental conditions, the wavelength is much larger than
the film thickness (λ ! d) and thus helium can only move parallel to the sub-
strate (vy = vz = 0). The motion of the normal-fluid component is strongly
damped due to its viscous friction. We therefore can consider "n, to a good
approximation, as completely immobile (vn = 0). In contrast, the superfluid
component is mobile and flows to the heated region due to the fountain effect.
There, it causes a local increase ξ(x, t) of the film thickness d. The resulting
thickness variation propagates like a surface wave. Under these conditions
the continuity equation (2.4) can be written in the form

"
∂ξ

∂t
= −"sd

∂vsx

∂x
. (2.44)

Using (2.7) and assuming for a rough approximation that there are no tem-
perature variations in the film (gradT ≈ 0), we obtain v̇sx = −"−1(∂p/∂x).
Neglecting gravity, the pressure can be expressed in terms of the Van der
2 We should note that in most experiments nowadays third sound is not generated

and detected optically, but is investigated in specially designed resonators in
which standing waves of third sound can be produced (see, for example, [66]).

Procedure Measurement and results

thick films
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3rd sound experiment: temperature dependence

► 3rd sound velocity vs T
► points at T = 1.25 K normalized to (●)

► is rising with decreasing T
► :           = 1.5 m/s  (very slow)
► dashed line  ≙ theory

► systematic deviations: origin unknow, but

Measurement and results

2.2 Two-Fluid Model 41
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Fig. 2.24. Velocity of third sound as a
function of the height z above the liquid
level [68]. The solid line represents the
variation according to (2.47)

well over a wide range of film heights. According to the data in Fig. 2.24, the
velocity of third sound seems to be almost independent of the substrate.

In Fig. 2.25 the temperature dependence of the velocity of third sound
is shown. With decreasing temperature, v3 increases, and for T → 0 reaches
a value of 150 cm s−1 for films 9 cm above the liquid level. The data shown
in Fig. 2.25 have been taken at different heights above the liquid level corre-
sponding to different film thicknesses and are normalized for each thickness
at 1.25K (filled circle). The temperature dependence is mainly determined
by the temperature dependence of the superfluid density !s. Surprisingly,
there seems to be a systematic deviation between the experimental data and
the theoretical fit with (2.48). The origin of this discrepancy is unknown, but
it has been speculated that the excitation process of third sound somehow
affects the film thickness.

An interesting variation on such experiments is the investigation of third
sound in moving films. In this case, the velocity of third sound is superim-
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Fig. 2.25. Velocity of third sound nor-
malized to the velocity at 1.25 K versus
temperature. The measurements were
carried out at different heights z [68].
The dashed line represents the variation
according to (2.48)
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well over a wide range of film heights. According to the data in Fig. 2.24, the
velocity of third sound seems to be almost independent of the substrate.

In Fig. 2.25 the temperature dependence of the velocity of third sound
is shown. With decreasing temperature, v3 increases, and for T → 0 reaches
a value of 150 cm s−1 for films 9 cm above the liquid level. The data shown
in Fig. 2.25 have been taken at different heights above the liquid level corre-
sponding to different film thicknesses and are normalized for each thickness
at 1.25K (filled circle). The temperature dependence is mainly determined
by the temperature dependence of the superfluid density !s. Surprisingly,
there seems to be a systematic deviation between the experimental data and
the theoretical fit with (2.48). The origin of this discrepancy is unknown, but
it has been speculated that the excitation process of third sound somehow
affects the film thickness.

An interesting variation on such experiments is the investigation of third
sound in moving films. In this case, the velocity of third sound is superim-
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Fig. 2.25. Velocity of third sound nor-
malized to the velocity at 1.25 K versus
temperature. The measurements were
carried out at different heights z [68].
The dashed line represents the variation
according to (2.48)

likely due to generation process

3rd sound in very thin films:

3rd sound propagation can be observed down to 2.1 monolayers
onset of superfluidity
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3rd sound in moving films:

2.2 Two-Fluid Model 39

Third Sound

Propagating surface waves on thin helium films are called third sound . Such
waves can be produced by local periodic heating of helium II films in the
audio-frequency range. The heating causes oscillations of the film thickness,
which then propagate as a surface wave on the film.

The profile of the film and thus the amplitude of the thickness oscillations
can be measured using optical methods.2 A third-sound experiment is illus-
trated in Fig. 2.22. With such a setup it is possible to determine the velocity
and the damping of third sound. In the case where the liquid levels in both
beakers are different, third sound in moving films can be investigated. We
will return to this interesting option at the end of this section, but for now
we will assume stationary films.

Detector Pulsed light

source

v3

vc

z1
z2

Fig. 2.22. Schematic illustration of an
experimental setup to measure the ve-
locity of third sound. The quantity vc

denotes the flow velocity, which under
most experimental conditions is identi-
cal with the critical velocity, except for
very small level differences

Under most experimental conditions, the wavelength is much larger than
the film thickness (λ ! d) and thus helium can only move parallel to the sub-
strate (vy = vz = 0). The motion of the normal-fluid component is strongly
damped due to its viscous friction. We therefore can consider "n, to a good
approximation, as completely immobile (vn = 0). In contrast, the superfluid
component is mobile and flows to the heated region due to the fountain effect.
There, it causes a local increase ξ(x, t) of the film thickness d. The resulting
thickness variation propagates like a surface wave. Under these conditions
the continuity equation (2.4) can be written in the form

"
∂ξ

∂t
= −"sd

∂vsx

∂x
. (2.44)

Using (2.7) and assuming for a rough approximation that there are no tem-
perature variations in the film (gradT ≈ 0), we obtain v̇sx = −"−1(∂p/∂x).
Neglecting gravity, the pressure can be expressed in terms of the Van der
2 We should note that in most experiments nowadays third sound is not generated

and detected optically, but is investigated in specially designed resonators in
which standing waves of third sound can be produced (see, for example, [66]).
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posed upon the flow velocity. An important question studied in connection
with these experiments is whether the velocity of third sound is identical to
the critical velocity of film flow. If this were the case, third sound should not
be observed in the direction in which the film is moving. A schematic repre-
sentation of the experimental setup and some results are shown in Fig. 2.22
and Fig. 2.26, respectively. The two beakers filled with helium II are con-
nected. Different liquid levels in the beakers result in a film flow, whose ve-
locity depends on the liquid-level height z1 and thus on the thickness of the
film. Using a pulsed laser, third sound is generated and detected optically.
Depending on the direction in which the sound wave propagates, one finds
that the measured velocity of third sound is enhanced or reduced by the flow
velocity of the film. Except for very thick films the flow velocity is identical
to the critical velocity (see also Sect. 2.5). From the observed Doppler shift
one can conclude that the velocity of third sound is not limited by the critical
velocity of film flow.
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Fig. 2.26. Velocity of third sound in
moving helium II films as a function
of the height z1 above the liquid level
[69]

Fourth Sound

Compression waves propagating inside fine pores or small slits are called
fourth sound . As already mentioned, such geometrical restrictions are called
superleaks if the normal component is immobile due to its finite viscosity.
Since only the superfluid component is moving under these conditions, a
compression wave is not just an oscillation of the density, but also of pres-
sure, temperature, entropy and the relative density of the superfluid compo-
nent !s/!.

This type of wave can be excited like first sound and propagates almost
without damping. The velocity of fourth sound can be derived within nondis-
sipative hydrodynamics, which was described in Sect. 2.2.1. Since the normal-
fluid component is immobile (vn ≈ 0), the continuity equation (2.4) reduces

3rd sound propagation in moving films             Doppler effect
critical velocity
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Detection of 3rd sound experiment in ultralow films:

substrate: glass or CaF2

Al film heater Al film detector

Al 

8.5 nm thick

► time of flight detection of 3rd sound pulse
► thin film Al heater and detector
► detector operated at the transition temperature

► detection of heat pulse associated with 3rd sound pulse
► very sensitive because of steep transition curve

heater

detector

time

voltage

start

detection

He II
cross section

top view
3rd sound pulse

PRL 32 147 (1974)



SS 2023
MVCMP-1

89

2.3 Properties of He-II described using 
the two-fluid model

Experimental results:

experimental 
threshold

► experimental threshold of 2.1 monolayers independent of
substrate

► film thickness determine by amount of helium and surface 
area

► extrapolation suggests that 1.47 monolayers might be
the onset threshold

for ultrathin films:
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(iv) Fourth sound

sound propagation in fine powders / slits

oscillations in total density, in ratio of superfluid to normalfluid density, 
in pressure, in temperature, in entropy

5th sound

4th sound generation like for 1st sound, but 
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Persistent flow and 4th sound

44 2 Superfluid 4He – Helium II

measurements. A torus filled with fine powder and liquid 4He is set in ro-
tation above the lambda point and is subsequently cooled below Tλ. The
rotation of the torus is gently slowed until the torus is at rest. The superfluid
component still rotates after this operation. Fourth sound generated under
such conditions shows a Doppler shift, given to a good approximation by

v4 ≈ v4,0 ±
!s

!
vD . (2.51)

Here, vD denotes the flow velocity of the persistent current and v4,0 the
velocity of fourth sound in stationary helium II. The factor !s/! takes into
account the coupling between the compression wave and second sound.

2.3 Bose–Einstein Condensation

In the previous sections we saw that the superfluid component of liquid he-
lium can flow without any friction. F. London suggested in 1938 that this
dissipationless flow is related to the frictionless motion of electrons in atomic
shells [11]. In atoms, the electrons are in stationary quantum states that
are described by the eigenfunctions of the corresponding Hamiltonian. The
phases of the wave functions of different atoms in a liquid are not correlated
under usual conditions. London assumed that in helium II the wave function
is well defined throughout the entire liquid, analogous to the situation in su-
perconductors. We shall see that the superfluid component of helium II can
indeed be described by a macroscopic wave function. As the possible origin
of such a macroscopic wave function in helium II, London discussed the so-
called Bose–Einstein condensation. In the following section we will take a
brief look at this phenomenon for the case of an ideal Bose gas, although it
is clear that the description of liquid 4He as an ideal Bose gas can, at best,
be a crude approximation.

2.3.1 Ideal Bose Gas

An ideal Bose gas is a gas of noninteracting particles with integer spin. Of
course, at T = 0 all Bose particles are in the ground state, but this is a rather
trivial statement and has nothing to do with the occurrence of Bose–Einstein
condensation. The peculiar thing about Bose gases is that almost complete
condensation into the ground state occurs at finite temperatures far higher
than the corresponding spacing of the energy levels in the gas. This was first
realized in 1924 by Einstein [73].

To understand this phenomenon, we consider the influence of the chemical
potential µ on the level occupation in such systems. The energy eigenvalues
of free atoms with mass m in a cube with side L are given by

En =
!2

2m

(π

L

)2
n2 , with n2 = n2

x + n2
y + n2

z . (2.52)
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persistent flow velocity

coupling of a compression wave 
to second sound

4th sound generation like for 1st sound, but 

,  since 

4th sound experiments
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to !̇ + !s gradvs = 0, and the entropy conservation (2.6) becomes Ṡ = 0.
Using (2.7) to eliminate vs allows us to construct a wave equation for the
sound propagation in fine pores from which the velocity of fourth sound
v2
4 = !s(∂µ/∂!)S can be deduced. We find

v2
4 =

!s

!
v2
1

[
1 +

2ST

!Cp

(
∂!

∂T

)

p

]
+

!n

!
v2
2 , (2.49)

with !−1(∂!/∂T )p being the isobaric expansion coefficient. The second term
in the square brackets leads to a correction of only about 2% at Tλ, and is
even smaller at lower temperatures. Therefore, to a good approximation the
expression

v4 ≈
√

!s

!
v2
1 +

!n

!
v2
2 (2.50)

can be used for the velocity of fourth sound. As T → 0 all helium atoms
belong to the superfluid phase and we thus obtain v4 = v1 ≈ 238m/s. With
increasing temperature the velocity of fourth sound decreases and reaches
v4 = 0 at T = Tλ. The contribution of second sound in (2.50) dominates near
the lambda point. Under certain experimental conditions only this contribu-
tion is observed and is often referred to as fifth sound [70, 71]. The velocity
of fifth sound is therefore given by v5 =

√
(!n/!) v2.

Experimental data showing the temperature dependence of the velocity
of fourth sound in helium II are shown in Fig. 2.27. For comparison, the
corresponding data of first, second and fifth sound are also included. In this
experiment, a cylindrical resonator filled with fine compressed powder was
used as a superleak. The average grain size was about 0.5µm and the porosity
was approximately 50%.

Particularly interesting experiments with fourth sound can be performed
using experimental arrangements such as those used in persistent-current
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Fig. 2.27. Temperature dependence
of the velocity of fourth sound in he-
lium II in comparison with first and
second sound [72]. Fifth sound is in-
dicated by the dotted line [70]

5th sound


