

b) Beaker experiments

films are formed with a thickness of ~ 200 Å in saturated vapor pressure also against gravity

let us understand how comment: the film formation is a "classical" phenomenon

(i) Film formation in saturated vapor

In thermal equilibrium

$$\mu_{\mathrm{f}} = \mu_{\mathrm{g}} = \mu_{\ell}$$

chemical potential for film (gas and liquid)

gravitational force is compensated by v. Waals forces

$$\mu_{\rm f} = \mu_{\ell} + \mu_{\rm grav} + \mu_{\rm vdW} = \mu_{\ell}$$

film thinkness:

SS 2023

MVCMP-1

$$\mu_{\rm grav} = gz \mu_{\rm vdW} = -\alpha/d_{\rm V}^3$$

(Hamaker constant)

 $gz - lpha/d^3 = 0$ $(A = \sqrt[3]{rac{lpha}{gz}})$

2.3 Properties of He-II described using

the two-fluid model

 $\mu_{
m vdW} = -lpha/d^4$ for $d > 80\,
m nm$ depends on film thickness: $\mu_{
m vdW} = -lpha/d^3$ for $d < 30\,
m nm$

retardation of potential

typical value: $d \sim 20$ nm at z = 10 cm

atomic polarisability of helium + wall

comment: property of superfluidity is unimportant for the film formation and thickness, but for the film flow SS 2023 MVCMP-1

(ii) film formation in unsaturated vapor

- decrease of pressure decrease of film thickness
- in practice: thicknesses of sub-mono layers are possible and realized

investigation of superfluidity with third sound: onset of superfluidity at n > 2.1 layers

now back to the film flow:

films are formed

SS 2023

MVCMP-1

- $Q_{\rm S}$ is moving without friction
- equalizing the chemical potential is driving force

Interesting question: Q_s flows with S = 0!

rest should warm up and helium flowing into a vessel should have T = 0!but thermal equilibrium via gas phase

c) Thermomechanical effect

SS 2023

MVCMP-1

67

Reverse thermomechanical effect: Fountain effect

heating of helium inside vessel

increases inside the vessel

- the temperature inside is higher than outside
- ▶ to equalize the system Q_s flows through superleak (compressed powder)
- pressure rises and fountain starts to flow (and flows as long as heater is on)

4

d) Heat Transport

SS 2023

MVCMP-1

- in not too small capillaries $v_n \neq 0$
- even in equilibrium ($\Delta p = \rho S \Delta T$) there is a constant flow of ρ_n from the warm end to the cold end and ρ_s in the opposite direction by "convection"

heat transport maximum at 1.8 K where $\varrho_{\rm n} \approx \varrho_{\rm s}$

 $\delta Q = T \delta S$

- ▶ limited only by the mobility of ρ_n and therefore η_n
- viscos mass flow of ϱ_n :

$$\dot{V}_{\rm n} = rac{eta}{\eta_{\rm n}} \; rac{\Delta p}{L}$$
 (*) $eta \propto r^4$ for capillaries $eta \propto d^3$ for slits

volume rate

• entropy flow $\dot{V}_{\rm n} \rho S \longrightarrow$ heat flow $\dot{Q} = T \dot{V}_{\rm n} \rho S$ (* *)

(*) insert in (* *) and London equation ($\Delta p = \rho S \Delta T$)

 $\dot{Q} = rac{eta T(arrho S)^2}{\eta_{\mathrm{n}}L} \Delta T$

linear regime

heat flow log $\dot{Q}/\Delta T$ vs log d

experimental results:

 $\dot{Q} \propto eta \propto d^3$ (as expected) \dot{Q} rises with T (as expected)

Momentum of heat flow: Measurement

change of distance between glass plate and lens measured by Newton rings \longrightarrow force

Expected force

$$F = pA = \beta' \frac{\varrho_{\rm n}}{\varrho_{\rm s} \varrho A} \left(\frac{\dot{Q}}{ST}\right)^2$$

geometry dependent factor of the order of one

Momentum of heat flow: results plotted as

SS 2023

MVCMP-1

 $\frac{FA}{\beta'\dot{Q}^2} = \frac{\varrho_{\rm n}}{\varrho_{\rm s}\varrho} \frac{1}{T^2 S^2}$

Pyotr Leonidovich Kapitsa (1894 – 1984)

- results are independent of geometry
- ► because of $\varrho_n v_n + \varrho_s v_s = 0$ → rise at low and high *T*
- line: two-fluid model (without free parameter)

Two-Fluid Hydrodynamics

density $\varrho = \varrho_{\rm n} + \varrho_{\rm s}$ mass flow $\boldsymbol{j} = \varrho_{\rm n} \boldsymbol{v}_{\rm n} + \varrho_{\rm s} \boldsymbol{v}_{\rm s}$ mass conservation
continuity eqn. $\frac{\partial \varrho}{\partial t} = -{\rm div}\,\boldsymbol{j}$

ideal fluid

 $\frac{\partial \boldsymbol{j}}{\partial t} = -\operatorname{grad} \boldsymbol{p} \tag{4}$

(1)

(2)

(3)

entropy conservation

$$\frac{\partial(\varrho S)}{\partial t} = -\text{div}(\varrho S \boldsymbol{v}_{n})$$
⁽⁵⁾

an equation of motion for superfluid component

$$\frac{\partial \boldsymbol{v}_{\rm s}}{\partial t} = S \operatorname{grad} T - \frac{1}{\varrho} \operatorname{grad} p \qquad \textbf{(6)}$$

d) Sound propagation (precision test of two-fluid model)

differentiation of (3) in respect to time and insert in (4)

$$\frac{\partial^2 \varrho}{\partial t^2} = \nabla^2 p \tag{(*)}$$

eliminate $\boldsymbol{v}_{\mathrm{s}}$ and $\boldsymbol{v}_{\mathrm{n}}$ in (5) and (6) with (2)

neglect terms of 2nd order

$$\frac{\partial^2 S}{\partial t^2} = \frac{\varrho_{\rm s} S^2}{\varrho_{\rm n}} \nabla^2 T \qquad (**)$$

with (*) and (* *) one can fully describe the sound propagation in He-II (under the assumption we made)

$$\frac{\partial g}{\partial t} = -\operatorname{div} \vec{j} \quad (3)$$

$$\frac{\partial^2 g}{\partial t^2} = -\operatorname{div} \left(\frac{\partial \vec{j}}{\partial t} \right)$$

$$\frac{\partial \vec{j}}{\partial t} = -\operatorname{grad} p \quad (4)$$

$$\frac{\partial^2 g}{\partial t^2} = -\operatorname{div}(-\operatorname{grad} p)$$

$$\frac{\partial^2 g}{\partial t^2} = \nabla^2 p$$

we have 2 equations, but 4 variables (ϱ, S, p, T) however, only 2 independent variables

We choose ρ , S as independent and express p, T with ρ and S (for small changes)

$$\delta p = \left(\frac{\partial p}{\partial \varrho}\right)_{S} \delta \varrho + \left(\frac{\partial p}{\partial S}\right)_{\varrho} \delta S,$$

$$\delta T = \left(\frac{\partial T}{\partial \varrho}\right)_{S} \delta \varrho + \left(\frac{\partial T}{\partial S}\right)_{\varrho} \delta S$$
insert in (*) and (* *)

$$\begin{split} \frac{\partial^2 \varrho}{\partial t^2} &= \left(\frac{\partial p}{\partial \varrho}\right)_S \nabla^2 \varrho + \left(\frac{\partial p}{\partial S}\right)_\varrho \nabla^2 S \\ \frac{\partial^2 S}{\partial t^2} &= \frac{\varrho_{\rm s}}{\varrho_{\rm n}} S^2 \left[\left(\frac{\partial T}{\partial \varrho}\right)_S \nabla^2 \varrho + \left(\frac{\partial T}{\partial S}\right)_\varrho \nabla^2 S \right] \end{split}$$

2 partial differential equations of 2nd order

SS 2023

MVCMP-1