b) Beaker experiments

films are formed with a thickness of ~ 200 A in saturated vapor pressure also against gravity

let us understand how
comment: the film formation is a “classical” phenomenon

(i) Film formation in saturated vapor

lg In thermal equilibrium

.

-— N|—

chemical potential for film (gas and liquid)

gravitational force is compensated by v. Waals forces

—)



film thinkness:

\

depends on film thickness: for d < 30nm

for d > 80nm

atomic polarisability of helium + wall \

(Hamaker constant) _ _
retardation of potential

typical value: d~20nm at z=10cm

comment: property of superfluidity is unimportant for the
film formation and thickness, but for the film flow
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(ii) film formation in unsaturated vapor

How does d depend on p ?

=) barometric formula

p

helium film

» decrease of pressure == decrease of film thickness

» in practice: thicknesses of sub-mono layers are possible and realized

|

investigation of superfluidity with third sound: onset of superfluidity at n> 2.1 layers 65



now back to the film flow:
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Interesting question: @s flows with S=0! === rest should warm up and helium flowing into
a vessel should have 7= 0!

but thermal equilibrium via gas phase
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c) Thermomechanical effect

A B
+ Os == coolingin B
p | g Tg <Tx
T — Os == warming in A
Ll o
l T-AT
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Using (6) in stationary state < 4 |
ov 1
> = SgradT — ~ gradp = 0 2 ]
ot 0 }
in equilibrium nothing flows 0 :
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Ah/cm
Ap g
AT o l(‘ﬁng?]goiq%%g)on mmm) |inear relation between Ap and AT

Ah =2cm not very
T =15K } AT =1mK effective cooling
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Reverse thermomechanical effect: Fountain effect
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Heater AT £ Ap

Powder

Os

» heating of helium inside vessel ===  ratio of increases inside the vessel
» the temperature inside is higher than outside
» to equalize the system Os flows through superleak (compressed powder)

» pressure rises and fountain starts to flow (and flows as long as heater is on)
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d) Heat Transport

» in not too small capillaries =0

» even in equilibrium (Ap= 0S AT') there is a constant flow of 0n

from the warm end to the cold end and Qs in the opposite direction by “convection”

—— cold end

0 entropy transport = heat transport
s — Wwarmend

» limited only by the mobility of and therefore 7Tn

» viscos mass flow of

o (%)

volume rate

» entropy flow — heat flow

heat transport
maximum at 1.8 K
where

for capillaries

for slits
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(*) insertin (* *) and London equation (Ap= oS AT)

\ heat flow log /AT vs log d
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experimental results:
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Momentum of heat flow
Heat flow in He-Il —— momentum flow

momentum flow / volume
resulting pressure acting on a heat source

(*)

no net mass transport (closed vessel)

insertin (¥) ——

~

with heat flow / per area

N pressure associated with
uni-directional heat flow
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Momentum of heat flow: Measurement

heat flow
, Newton rings
heater wire support
+— recoil
T~ lens
(fixed position)
glas plate

Newton’s rings

change of distance between

glass plate and lens measured
by Newton rings —— force

Expected force

/

geometry dependent factor
of the order of one
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Momentum of heat flow: results plotted as FA _ &n !
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» results are independent of geometry
» because of =) rise at low and high T

» line: two-fluid model (without free parameter)
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density

mass flow

mass conservation
continuity egn.

ideal fluid

entropy conservation

an equation of motion for
superfluid component
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d) Sound propagation (precision test of two-fluid model)

differentiation of (3) in respect to time and insert in (4)

(*)

eliminate vs and vy in (5) and (6) with (2)

\ /

since not observable

neglect terms of 2" order
(* *)

with (¥) and (* *) one can fully describe the sound propagation in He-ll
(under the assumption we made)
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we have 2 equations, but 4 variables , T') however, only 2 independent variables

We choose 0, S. as independent and express p,1" with© and S. (for small changes)

-

- insertin (x) and (* *)

2 partial differential equations of 2" order
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