e) Heat Transport

Absolute value of thermal conductivity is extremely high

$$\Lambda$$
 _{He-II} > 10⁶ Λ _{He-I} at T ~ 1.8 K

- best condensed matter heat conductor by far
- ightharpoonup explains why no boiling is observed at $T \le T_{\lambda}$ since no temperature gradient

Further unusual properties of the heat transport

$$d = 0.3 \dots 1.5 \text{ mm}$$

 $L = 2 \dots 40 \text{ cm}$

- Maximum at 1.8 K
- $T < 1.8 \text{ K}, \quad \dot{q} \sim |\text{grad } T|^{1/3}$
- with $\dot{q} = -\Lambda \operatorname{grad} T$ $\Lambda \propto |\operatorname{grad} T|^{-2/3}$

e) Heat Transport: Linear Regime

Heat flow in helium II through a $2.4~\mu\mathrm{m}$ wide slit

Thermal resistance $\Delta T/\dot{Q}$

- $\dot{m q} = \Lambda \operatorname{grad} T$ for very thin capillaries or small values of $\operatorname{grad} T$
- ightharpoonup low T, small values of ΔT \longrightarrow linear in ΔT
- ▶ high T, large values of ΔT → sublinear in ΔT

49

linear

regime

f) Second Sound

Propagation of temperature waves similar to sound waves

suggested by Kapitza first seen by Peshkov 1944

- Seen up to 100 kHz (experimental limit)
- $lacktriangledown_2$ independent of frequency

2.2 Two-Fluid Model

Basic idea: He-II has to components

normalfluid

superfluid

Tisza 1938 London 1938 Landau 1941, 1947 Feynman 1953

Assumptions and Properties:

$$\varrho = \varrho_{\rm n} + \varrho_{\rm s}$$
 (1)

$$T = T_{\lambda}$$
: $\varrho_{\rm s} = 0$ and $\varrho_{\rm n} = \varrho$

$$\mathcal{T}=\mathcal{O}$$
 : $arrho_{\mathrm{s}}=arrho$ and $arrho_{\mathrm{n}}=0$

	density	viscosity	entropy
normal-fluid component	$arrho_{ m n}$	$\eta_{ m n}=\eta$	$S_{\rm n} = S$
superfluid component	$arrho_{ m s}$	$\eta_{\mathrm{s}} = 0$	$S_{\rm s}=0$

In addition: no turbulence associated with $Q_{\rm S}$

$$\varrho = \varrho_{\rm n} + \varrho_{\rm s}$$

mass flow

$$\boldsymbol{j} = \varrho_{\mathrm{n}} \boldsymbol{v}_{\mathrm{n}} + \varrho_{\mathrm{s}} \boldsymbol{v}_{\mathrm{s}}$$
 (2)

$$\frac{\partial \varrho}{\partial t} = -\text{div } \boldsymbol{j} \tag{3}$$

He-II is ideal fluid $\eta_{\rm n}$ < 10^{-5} P ~ 0

Euler eqn. (Newton's 2nd law of motion for continua)

$$\frac{\partial \boldsymbol{j}}{\partial t} + \underbrace{\varrho \boldsymbol{v} \operatorname{div} \boldsymbol{v}}_{\approx 0} = -\operatorname{grad} p$$

for small velocities since quadratic in v (approximation for linear regime)

$$\frac{\partial \boldsymbol{j}}{\partial t} = -\operatorname{grad} p \tag{4}$$

entropy conservation

motion is reversible since no dissipative processes He-II is an ideal fluid (in first approximation)

entropy / mass
$$\frac{\partial(\varrho S)}{\partial t} = -\mathrm{div}(\varrho S \boldsymbol{v}_{\mathrm{n}}) \tag{5}$$
 entropy density

One more equation is needed \longrightarrow an equation of motion for ϱ_{s} (or ϱ_{n})

this is difficult to derive see R.B. Dingle, Proc. Phys. Soc. A62, 648 (1949) (40 pages)

here: Gedankenexperiment according to Landau

idea: Superfluid component is added at "constant" volume in the system

Consider change of internal energy

$$\mathrm{d} U = T\mathrm{d} S - p\mathrm{d} V + G\mathrm{d} m$$

$$\mathrm{d} S = 0 \quad \mathrm{d} V = 0$$
 Gibbs free energy per unit mass reversible
$$V = \mathrm{constant}$$

$$dU = G dm$$

Gibbs free energy is potential energy of superfluid component/mass

$$igodesigma - \operatorname{grad} G$$
 is corresponding force

$$\frac{\mathrm{d} \pmb{v}_{\mathrm{s}}}{\mathrm{d} t} = -\mathrm{grad}\, \mu \int_{0}^{G/m} \mathrm{d} \mu = -S\,\mathrm{d} T + \frac{1}{\varrho}\,\mathrm{d} p$$
 Chemical potential

$$\varrho = \varrho_{\rm n} + \varrho_{\rm s}$$
 (1)

mass flow

$$\boldsymbol{j} = \varrho_{\mathrm{n}} \boldsymbol{v}_{\mathrm{n}} + \varrho_{\mathrm{s}} \boldsymbol{v}_{\mathrm{s}}$$
 (2)

mass conservation continuity eqn.

$$\frac{\partial \varrho}{\partial t} = -\text{div}\,\boldsymbol{j} \tag{3}$$

ideal fluid

$$\frac{\partial \mathbf{j}}{\partial t} = -\operatorname{grad} p \tag{4}$$

entropy conservation

$$\frac{\partial(\varrho S)}{\partial t} = -\text{div}(\varrho S \boldsymbol{v}_{\text{n}}) \tag{5}$$

an equation of motion for superfluid component

$$\frac{\partial \boldsymbol{v}_{\mathrm{s}}}{\partial t} = S \operatorname{grad} T - \frac{1}{\varrho} \operatorname{grad} p$$
 (6)

a) Viscosity

(i) capillaries (extremely thin)

Interpretation: $\boldsymbol{v}_{\mathrm{n}} \approx 0$

only superfluid phase is observed

$$\eta = \eta_{\rm s} = 0$$

a) Viscosity

(ii) rotary viscosimeter

Torque acting on stationary cylinder is measured

$$M_{\rm r} = \pi \eta \omega d_{\rm r}^2 d_{\rm s}^2 / (d_{\rm s}^2 - d_{\rm r}^2)$$

since $\,\eta_{
m s}=0\,$ no torque resulting from $arrho_{
m s}$

$$M_{
m r} \propto \eta = \eta_{
m n}$$
 two-fluid model

Temperature dependence

$$\eta_{\mathrm{n}}\left(T\right)$$
 at very low temperatures T < 1.8 K ?

$$\eta_{\rm n} \propto \ell_{\rm n}$$

mean free path increases with decreasing temperature because thermal excitations disappear

Viscosity $\eta = \frac{1}{3} \varrho v \ell$

Landau-Chalatnikow Theory

a) Viscosity

(iii) oscillating disc

Torque acting on the disc:

$$M_{\rm d} = \pi \sqrt{\varrho \eta} \, \omega^{3/2} r^4 \, \Theta(\omega)$$

$$\Theta(\omega) = \Theta_0 \cos(\omega t - \pi/4)$$

$$M_{
m d} \propto \sqrt{arrho\eta}$$
 product is important for $M_{
m d}$

$$\mathcal{T} < \mathcal{T}_{\lambda} \longrightarrow \eta_{s} = 0 \longrightarrow \eta_{n} \varrho_{n}$$
 is measured

for
$$T \rightarrow 0$$
 \longrightarrow $\varrho_n \rightarrow 0$ \longrightarrow $\varrho_n \eta_n \rightarrow 0$

Determination of $\varrho_{\rm n}$

Experiment of Andronikasvili (1948)

First direct observation of $\,\mathcal{Q}_{n}\,$

Elepter Luarsabovich Andronikashvili (1910-1989)

50 aluminum discs

thickness 13 μm diameter 3.5 cm spacing 210 μm

observation slow resonant oscillations (mass and torsion fiber)

Important parameter is the viscos penetration depth for wave with frequency $\boldsymbol{\omega}$

$$\delta = \sqrt{2\eta_{\rm n}/\varrho_{\rm n}\omega}$$

 $d < \delta$:

- ullet $arrho_{
 m n}$ is dragged along with torsion oscillator above and below T_{λ}
- $ightharpoonup Q_{
 m S}$ remains stationary
- period of oscillation determined by mass of torsion oscillator (and spring constant)
- \longrightarrow $\varrho_{\rm n}$ can be determined

temperature dependence (empirical relation)

$$\varrho_{\rm n} = \varrho_{\lambda} \left(\frac{T}{T_{\lambda}}\right)^{5.6}$$

comparison with 2nd Sound fits well

