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Figure 3.7: The variation of the junction voltage (a) and the Josephson current (b) with time for a current

biased Josephson junction at different values of the applied current: I/Ic = 1.05, 1.1, 1.5, and 3.0. The time

is normalized to tc = h̄/2eIcR. In (b) the curves for Is/Ic = 1.1, 1.5, and 3.0 are displaced vertically by 2, 4,

and 6, respectively.

Current-Voltage Characteristics

Strong Damping: For strong damping, bC ⌧ 1, and neglecting the noise current we can rewrite
(3.2.10) as

dj
dt

+ sinj� i = 0 . (3.3.4)

If I  Ic (i.e. i 1), we expect that all current is flowing as supercurrent. Indeed we see that

j = sin�1 i for i  1 (3.3.5)
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Figure 3.20: Sketch of the energy diagrams of an isolated Josephson junction (I = 0) in the case of low

damping for (a) EC/EJ0 = 0.1 and (b) EC/EJ0 = 2.5.

In the charge limit, an appropriate trial function, which is periodic and satisfies the boundary conditions
of zero slope at the edges of the cell, is

Y(j) µ (1�a cosj) , (3.5.19)

which yields the approximate ground-state energy

Emin ' EJ0

✓
1� EJ0

8EC

◆
. (3.5.20)

We see that in the charge limit h̄wp � EJ0 or, equivalently, EC � EJ0 the binding energy is of second
order in EJ0, whereas it is of first order in the semi-classical limit of equation (3.5.18). In Fig. 3.20b we
have sketched the situation for the charge regime for EC/EJ0 = 2.5 resulting in Emin ' 0.95EJ0.

In the charge regime the periodic potential EJ0(1�cosj) is weak resulting in a strong coupling between
neighboring phase states and, in turn, in broad bands. This is evident by considering equation (3.5.14):
In the phase limit the factor b = EJ0/2EC is large, whereas it is small for the charge limit. This means
that we have a strong periodic potential in the phase limit and only a weak one in the charge regime.
We easily can compare this to the situation known for electrons moving in the periodic potential of a
crystal. A strong periodic potential results in a localization of the charge carriers (well defined position,
undefined momentum). This is equivalent to the phase regime, where we have a strong periodic potential
resulting in exponentially narrow bands located at the points En ' (n + 1

2)h̄wp. In this case we have a
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