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Cooper-pair boxes are particularly sensitive to low-frequency noise 
from electrons moving among defects (see the section ‘Decoherence’) 
and can show sudden large jumps in ng. The development of more 
advanced charge qubits such as the transmon20 and quantronium12 has 
greatly ameliorated this problem. The transmon is a small Cooper-
pair box that is made relatively insensitive to charge by shunting the 
Josephson junction with a large external capacitor to increase Ec and by 
increasing the gate capacitor to the same size. Consequently, the energy 
bands of the type shown in Fig. 3c are almost flat, and the eigenstates are 
a combination of many Cooper-pair-box charge states. For reasons that 
will be discussed later (see the section ‘Decoherence’), the transmon is 
thus insensitive to low-frequency charge noise at all operating points. 
At the same time, the large gate capacitor provides strong coupling to 
external microwaves even at the level of a single photon, greatly increas-
ing the coupling for circuit quantum electrodynamics (QED) (see the 
section ‘Quantum optics on a chip’).

The principle by which quantronium operates is shown in Fig. 4a, 
and an actual circuit is shown in Fig. 4b. The Cooper-pair box involves 
two Josephson junctions, with a capacitance Cg connected to the island 
separating them. The two junctions are connected across a third, larger, 
junction, with a higher critical current, to form a closed superconduct-
ing circuit to which a magnetic flux Φe is applied. The key to eliminating 
the effects of low-frequency charge and flux noise is to maintain the 
qubit at the double degeneracy point at which the two qubit states are 
(to first order) insensitive to these noise sources. To achieve insensi-
tivity to charge noise, the qubit is operated at ng = ½, where the energy 
levels have zero slope and the energy-level splitting is Ej (Fig. 3c). 
Insensitivity to flux noise is achieved by applying an integer number 
of half-flux quanta to the loop. The success of this optimum working 
point has been elegantly shown experimentally21. The insensitivity to 
both flux and charge implies, however, that the two states of the qubit 
cannot be distinguished at the double degeneracy point. To measure 
the qubit state, a current pulse that moves the qubit away from the flux 
degeneracy point is applied to the loop, and this produces a clockwise 
or anticlockwise current in the loop, depending on the state of the qubit. 
The direction of the current is determined by the third (read-out) junc-
tion: the circulating current either adds to or subtracts from the applied 
current pulse, so the read-out junction switches out of the zero-volt-
age state at a slightly lower or slightly higher value of the bias current, 
respectively. Thus, the state of the qubit can be inferred by measur-
ing the switching currents. With the advent of quantronium, much 
longer relaxation and decoherence times can be achieved than with a 
conventional Cooper-pair box.

Although this switching read-out scheme is efficient, it has two 
major drawbacks. First, the resultant high level of dissipation destroys 
the quantum state of the qubit, making sequential measurements of 
the state impossible. Second, the temperature of the read-out junction 
and substrate increase because of the energy that is deposited while the 
SQUID is in the voltage state — typically for 1 µs — and the equilibrium 
is not restored for ~1 ms. This limits the rate at which measurements can 
be made to ~1 kHz, resulting in long data-acquisition times.

These drawbacks have been overcome by the introduction of the 
Josephson bifurcation amplifier (JBA)22, a particularly powerful read-
out device in which there is no dissipation because the junction remains 
in the zero-voltage state (Fig. 4c). The JBA exploits the nonlinearity of 
the Josephson junction when a capacitor is connected across it, resulting 
in the formation of a resonant (or tank) circuit. When small-amplitude 
microwave pulses are applied to the resonant circuit, the amplitude and 
phase of the reflected signal are detected, with the signal strength boosted 
by a cryogenic amplifier. From this measurement, the resonant frequency 
of the tank circuit can be determined, then the inductance of the junction 
— which depends on the current flowing through it — and, finally, the 
state of the quantronium. For larger-amplitude microwaves, however, the 
behaviour of the circuit is strongly nonlinear, with the resonance frequency 
decreasing as the amplitude increases. In particular, strong driving at fre-
quencies slightly below the plasma frequency leads to a bistability: a weak, 
off-resonance lower branch during which the particle does not explore the 
nonlinearity, and a high-amplitude response at which frequency matches 
the driving frequency (Fig. 4d). The two qubit states can be distinguished 
by choosing driving frequencies and currents that cause the JBA to switch 
to one response or the other, depending on the qubit state. This technique 
is extremely fast and, even though it is based on a switching process, it 
never drives the junction into the voltage state. Furthermore, the JBA 
remains in the same state after the measurement has been made.

The JBA has been shown to approach the quantum non-demolition 
(QND) limit22. This limit is reached when the perturbation of the quan-
tum state during the measurement does not go beyond that required by 
the measurement postulate of quantum mechanics, so repeated meas-
urements of the same eigenstate lead to the same outcome23. Reaching 
the QND limit is highly desirable for quantum computing.

A similar scheme that approaches the QND limit has been imp-
lemented for the flux qubit, with the single Josephson junction replaced 
by a read-out SQUID24. Dispersive read-out for a flux qubit has also 
been achieved by inductively coupling a flux qubit to the inductor of a 
resonant circuit and then measuring the flux state from the shift in the 
resonance frequency 25.

Figure 3 | Charge qubits. a, A single Cooper-pair-box (SCB) circuit is 
shown. The superconducting island is depicted in brown and the junction 
in blue. Ej and Cj are the Josephson coupling energy and self-capacitance, 
respectively, and n is the number of Cooper pairs on the island, which 
is coupled to a voltage source with voltage Vg by way of a capacitor with 
capacitance Cg. (Panel reproduced, with permission, from ref. 28.) 
b, A micrograph of a Cooper-pair box coupled to a single-electron 
transistor (SET) is shown. Scale bar, 1 μm. (Panel reproduced, with 
permission, from ref. 78.) c, Black curves show the energy of the Cooper-
pair box as a function of the scaled gate voltage ng = CgVg/2e for different 
numbers (n) of excess Cooper pairs on the island. The parabola on the 
far left corresponds to n = 0 and the central parabola to n = 1. Dashed 

lines indicate the contribution of the charging energy Ech(n, ng) alone. The 
energy-level splitting at ng = ½ is Ej. Red curves show the current I through 
the SET as a function of ng. Transport is possible at the charge degeneracy 
points, where the gate strongly modulates the current. (Panel reproduced, 
with permission, from ref. 28.) d, A charge qubit with two junctions (left) 
coupled to a SET biased to a transport voltage Vtr (right) is shown. The 
critical current of the junctions coupled to the island is adjusted by means 
of an externally applied magnetic flux Фe. The gate of the SET is coupled to 
an externally controlled charge induced on the capacitor with capacitance 
Cg 

SET by the voltage Vg 
SET, as well as to the qubit charge by way of the 

interaction capacitance Cint. (Panel reproduced, with permission, from 
ref. 28.)
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and substrate increase because of the energy that is deposited while the 
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out device in which there is no dissipation because the junction remains 
in the zero-voltage state (Fig. 4c). The JBA exploits the nonlinearity of 
the Josephson junction when a capacitor is connected across it, resulting 
in the formation of a resonant (or tank) circuit. When small-amplitude 
microwave pulses are applied to the resonant circuit, the amplitude and 
phase of the reflected signal are detected, with the signal strength boosted 
by a cryogenic amplifier. From this measurement, the resonant frequency 
of the tank circuit can be determined, then the inductance of the junction 
— which depends on the current flowing through it — and, finally, the 
state of the quantronium. For larger-amplitude microwaves, however, the 
behaviour of the circuit is strongly nonlinear, with the resonance frequency 
decreasing as the amplitude increases. In particular, strong driving at fre-
quencies slightly below the plasma frequency leads to a bistability: a weak, 
off-resonance lower branch during which the particle does not explore the 
nonlinearity, and a high-amplitude response at which frequency matches 
the driving frequency (Fig. 4d). The two qubit states can be distinguished 
by choosing driving frequencies and currents that cause the JBA to switch 
to one response or the other, depending on the qubit state. This technique 
is extremely fast and, even though it is based on a switching process, it 
never drives the junction into the voltage state. Furthermore, the JBA 
remains in the same state after the measurement has been made.

The JBA has been shown to approach the quantum non-demolition 
(QND) limit22. This limit is reached when the perturbation of the quan-
tum state during the measurement does not go beyond that required by 
the measurement postulate of quantum mechanics, so repeated meas-
urements of the same eigenstate lead to the same outcome23. Reaching 
the QND limit is highly desirable for quantum computing.

A similar scheme that approaches the QND limit has been imp-
lemented for the flux qubit, with the single Josephson junction replaced 
by a read-out SQUID24. Dispersive read-out for a flux qubit has also 
been achieved by inductively coupling a flux qubit to the inductor of a 
resonant circuit and then measuring the flux state from the shift in the 
resonance frequency 25.

Figure 3 | Charge qubits. a, A single Cooper-pair-box (SCB) circuit is 
shown. The superconducting island is depicted in brown and the junction 
in blue. Ej and Cj are the Josephson coupling energy and self-capacitance, 
respectively, and n is the number of Cooper pairs on the island, which 
is coupled to a voltage source with voltage Vg by way of a capacitor with 
capacitance Cg. (Panel reproduced, with permission, from ref. 28.) 
b, A micrograph of a Cooper-pair box coupled to a single-electron 
transistor (SET) is shown. Scale bar, 1 μm. (Panel reproduced, with 
permission, from ref. 78.) c, Black curves show the energy of the Cooper-
pair box as a function of the scaled gate voltage ng = CgVg/2e for different 
numbers (n) of excess Cooper pairs on the island. The parabola on the 
far left corresponds to n = 0 and the central parabola to n = 1. Dashed 

lines indicate the contribution of the charging energy Ech(n, ng) alone. The 
energy-level splitting at ng = ½ is Ej. Red curves show the current I through 
the SET as a function of ng. Transport is possible at the charge degeneracy 
points, where the gate strongly modulates the current. (Panel reproduced, 
with permission, from ref. 28.) d, A charge qubit with two junctions (left) 
coupled to a SET biased to a transport voltage Vtr (right) is shown. The 
critical current of the junctions coupled to the island is adjusted by means 
of an externally applied magnetic flux Фe. The gate of the SET is coupled to 
an externally controlled charge induced on the capacitor with capacitance 
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Transmission-line resonator

(3D resonators). The boundary conditions imposed by the
geometry of these different resonators lead to a discretization
of the electromagnetic field into a set of modes with distinct
frequencies, where each mode can be thought of as an
independent harmonic oscillator. Conversely (especially for
the 2D case) one can think of these modes as nearly
dissipationless plasma modes of superconductors.
Early experiments in circuit QED were motivated by the

observation of large quality factors in coplanar waveguide
resonators in the context of experiments for radiation detectors
(Day et al., 2003) and by the understanding of the importance
of presenting a clean electromagnetic environment to the
qubits. Early circuit QED experiments were performed with
these 2D coplanar waveguide resonators (Wallraff et al.,
2004), which remains one of the most commonly used
architectures today.
A coplanar waveguide resonator consists of a coplanar

waveguide of finite length formed by a center conductor of
width w and thickness t, separated on both sides by a distance
s from a ground plane of the same thickness; see Fig. 2(a)
(Simons, 2001; Pozar, 2011). Both conductors are typically
deposited on a low-loss dielectric substrate of permittivity ε
and thickness much larger than the dimensions w, s, t. This
planar structure acts as a transmission line along which signals
are transmitted in a way analogous to a conventional coaxial
cable. As in a coaxial cable, the coplanar waveguide confines
the electromagnetic field to a small volume between its center
conductor and the ground; see Fig. 2(b). The dimensions of

the center conductor, the gaps, and the thickness of the
dielectric are chosen such that the field is concentrated
between the center conductor and ground, and radiation in
other directions is minimized. This structure supports a quasi-
TEM mode (Wen, 1969), with the electromagnetic field partly
in the dielectric substrate and in the vacuum or another
dielectric above the substrate, and with the largest concen-
tration in the gaps between the center conductor and the
ground planes. In practice, the coplanar waveguide can be
treated as an essentially dispersion-free, linear dielectric
medium. To minimize losses, superconducting metals such
as aluminum, niobium, and niobium titanium nitride (NbTiN)
are used in combination with dielectrics of low-loss tangent,
such as sapphire and high-resistivity silicon (Nersisyan et al.,
2019; McRae et al., 2020).
As with the lumped LC oscillator, the electromagnetic

properties of a coplanar waveguide resonator are described by
its characteristic impedance Zr ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=c0

p
and the speed of

light in the waveguide v0 ¼ 1=
ffiffiffiffiffiffiffiffi
l0c0

p
, where we have intro-

duced the capacitance to ground c0 and inductance l0 per unit
length (Simons, 2001). Typical values of these parameters are
Zr ∼ 50 Ω and v0 ∼ 1.3 × 108 m=s, or about a third of the
speed of light in vacuum (Göppl et al., 2008). For a given
substrate, the characteristic impedance can be adjusted by
varying the parameters w, s, and t of the waveguide (Simons,
2001). In the coplanar waveguide geometry, transmission lines
of constant impedance Zr can therefore be realized for
different center conductor width w by keeping the ratio of
w=s close to a constant (Simons, 2001). This allows the
experimenter to fabricate a device with large w at the edges for
convenient interfacing, and small w away from the edges to
minimize the mode volume or simply for miniaturization.
A resonator is formed from a coplanar waveguide by

imposing boundary conditions of either zero current or zero
voltage at the two end points separated by a distance d. Zero
current can be achieved by microfabricating a gap in the center
conductor (open boundary), while zero voltage can be
achieved by grounding an end point (shorted boundary). A
resonator with open boundary conditions at both ends, as
illustrated in Fig. 2(a), has a fundamental frequency f0 ¼
v0=2d with harmonics at fm ¼ ðmþ 1Þf0, and is known as a
λ=2 resonator. On the other hand, λ=4 resonators with
fundamental frequency f0 ¼ v0=4d are obtained with one
open end and one grounded end. A typical example is a λ=2
resonator of length 1.0 cm and speed of light 1.3 × 108 m=s
corresponding to a fundamental frequency of 6.5 GHz.
This coplanar waveguide geometry is flexible and a large

range of frequencies can be achieved. In practice, however, the
useful frequency range is restricted from above by the
superconducting gap of the metal from which the resonator
is made (82 GHz for aluminum). Above this energy, losses
due to quasiparticles increase dramatically. Low-frequency
resonators can be made by using long, meandering coplanar
waveguides. Sundaresan et al. (2015) realized a resonator with
a length of 0.68 m and a fundamental frequency of
f0 ¼ 92 MHz. With this frequency corresponding to a tem-
perature of 4.4 mK, the low-frequency modes of such long
resonators are not in the vacuum state. Indeed, according to
the Bose-Einstein distribution, the thermal occupation of the

(b) (c)

(a)

FIG. 2. (a) Schematic layout of a λ=2 coplanar waveguide
resonator of length d, center conductor width w, and ground plane
separation s, together with its capacitively coupled input and
output ports. The cosine shape of the second mode function
(m ¼ 1) is illustrated with pink arrows. Also shown is the
equivalent lumped-element circuit model. Adapted from Blais
et al., 2004. (b) Cross-section cut of the coplanar waveguide
resonator showing the substrate (dark blue), the two ground
planes, and the center conductor (light blue) as well as schematic
representations of theE andB field distributions. (c) Transmission
vs frequency for an overcoupled resonator. The first three
resonances of frequencies fm ¼ ðmþ 1Þf0 are illustrated with
f0 ¼ v0=2d ∼ 10 GHz and linewidth κm=2π ¼ fm=Q.
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Transmon

terms of its eigenfrequencies ωj and eigenstates jji. In the
literature, two notations are commonly used to label these
eigenstates: fjgi; jei; jfi; jhi;…g and, when there is no risk of
confusion with resonator Fock states, fj0i; j1i; j2i;…g.
Depending on the context, we use both notations in this
review. Figure 6 shows the energy difference E0j=ℏ ¼ωj − ω0

for the three lowest energy levels for different ratios EJ=EC as
obtained from numerical diagonalization of Eq. (22). If the
charging energy dominates (EJ=EC < 1), the eigenstates of
the Hamiltonian are approximately given by eigenstates of the
charge operator jji ≃ jni, with n̂jni ¼ njni. In this situation, a
change in gate charge ng has a large impact on the transition
frequency of the device. As a result, unavoidable charge
fluctuations in the circuit’s environment lead to fluctuations
in the qubit transition frequency and, consequently, to
dephasing.
To mitigate this problem, a solution is to work in the

transmon regime, where, as previously alluded to, the ratio
EJ=EC is large, with typical values being EJ=EC ∼ 20–80
(Koch et al., 2007; Schreier et al., 2008). In this situation, the
charge degree of freedom is highly delocalized due to the large
Josephson energy. For this reason, as shown in Fig. 6(c), the
first energy levels of the device become essentially indepen-
dent of the gate charge. It can in fact be shown that the charge
dispersion, which describes the variation of the energy levels
with gate charge, decreases exponentially with EJ=EC in the
transmon regime (Koch et al., 2007). The net result is that the
coherence time of the device is much larger than at small
EJ=EC. However, as also shown in Fig. 6, the price to pay for
this increased coherence is the reduced anharmonicity α ¼
E12 − E01 of the transmon, anharmonicity that is required to
control the qubit without causing unwanted transitions to
higher excited states. While charge dispersion is exponentially
small with EJ=EC, the loss of anharmonicity has a much
weaker dependence on this ratio given by ∼ðEJ=ECÞ−1=2. As
discussed in more detail in Sec. VII, because of the gain in
coherence the reduction in anharmonicity is not an impedi-
ment to controlling the transmon state with high fidelity.
While the variance of the charge degree of freedom is large

when EJ=EC ≫ 1, the variance of its conjugate variable φ̂ is

correspondingly small, withΔφ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hφ̂2i − hφ̂i2

p
≪ 1. In this

situation, it is instructive to rewrite Eq. (22) as

ĤT ¼ 4ECn̂2 þ 1
2EJφ̂2 − EJðcos φ̂þ 1

2φ̂
2Þ; ð23Þ

with the first two terms corresponding to an LC circuit of
capacitance CΣ and inductance E−1

J ðΦ0=2πÞ2, the linear part
of the Josephson inductance equation (20). We have dropped
the offset charge ng in Eq. (23) on the basis that the frequency
of the relevant low-lying energy levels is insensitive to this
parameter. Although these energies are not sensitive to
variations in ng, it is still possible to use an external oscillating
voltage source to cause a transition between the transmon
states. We return to this later. The last term of Eq. (23) is the
nonlinear correction to this harmonic potential, which for
EJ=EC ≫ 1 and therefore Δφ̂ ≪ 1 can be truncated to its first
nonlinear correction leading to the approximate transmon
Hamiltonian

Ĥq ¼ 4ECn̂2 þ
1

2
EJφ̂2 −

1

4!
EJφ̂4: ð24Þ

As expected from the previous discussion, the transmon
is thus a weakly anharmonic oscillator. Note that the 2π
periodicity of the Hamiltonian is broken under this
approximation.
Following Sec. II.A, it is then useful to introduce creation

and annihilation operators chosen to diagonalize the first two
terms of Eq. (24). Denoting these operators as b̂† and b̂, in
analogy to Eq. (4) we have

φ̂ ¼
"
2EC

EJ

#
1=4

ðb̂† þ b̂Þ; ð25Þ

n̂ ¼ i
2

"
EJ

2EC

#
1=4

ðb̂† − b̂Þ: ð26Þ

This form makes it clear that fluctuations of the phase φ̂
decrease with EJ=EC, while the reverse is true for the
conjugate charge n̂. Using these expressions in Eq. (24)
finally leads to1

Ĥq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJ

p
b̂†b̂ −

EC

12
ðb̂† þ b̂Þ4

≈ ℏωqb̂
†b̂ −

EC

2
b̂†b̂†b̂ b̂; ð27Þ

where ℏωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJ

p
− EC. On the second line, we have

kept only the terms that have the same number of creation and
annihilation operators. This is reasonable because, in a frame
rotating at ωq, any terms with an unequal number of b̂ and b̂†

will oscillate. If the frequency of these oscillations is larger
than the prefactor of the oscillating term, then this term rapidly

FIG. 6. Frequency difference ωj − ω0 of the first three energy
levels of the transmon Hamiltonian obtained from numerical
diagonalization of Eq. (22) expressed in the charge basis fjnig
for different EJ=EC ratios and a fixed plasma frequency
ωp=2π ¼ 5 GHz. For large values of EJ=EC the energy levels
become insensitive to the offset charge ng.

1The approximate Hamiltonian equation (27) is not bounded from
below: an artifact of the truncation of the cosine operator. Care should
therefore be taken when using this form, and it should strictly
speaking be used only in a truncated subspace of the original
Hilbert space.
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with a large shunting capacitance (You et al., 2007; Yan et al.,
2016), phase qubits (Martinis et al., 2002), the quantronium
(Vion et al., 2002), the fluxonium (Manucharyan et al., 2009),
the 0 − π qubit (Brooks, Kitaev, and Preskill, 2013; Gyenis
et al., 2021), the bifluxon (Kalashnikov et al., 2020), and the
blochnium (Pechenezhskiy et al., 2020), among others. For
more details about these different qubits, see reviews on the
topic given by Makhlin, Schön, and Shnirman (2001),
Zagoskin and Blais (2007), Clarke and Wilhelm (2008),
Krantz et al. (2019), and Kjaergaard, Schwartz et al. (2020).

III. LIGHT-MATTER INTERACTION IN CIRCUIT QED

A. Exchange interaction between a transmon and an oscillator

Having introduced the two main characters of this review,
the quantum harmonic oscillator and the transmon artificial
atom, we are now ready to consider their interaction. Because
of their large size coming from the requirement of having a
low charging energy (large capacitance), transmon qubits can
naturally be capacitively coupled to microwave resonators; see
Fig. 7 for schematic representations. With the resonator taking
the place of the classical voltage source Vg, capacitive
coupling to a resonator can be introduced in the transmon
Hamiltonian equation (22) with a dynamical gate voltage
ng → −n̂r, representing the effective offset charge term of the
transmon due to the quantum electric field operator of the
resonator (the choice of sign is simply a common convention
in the literature that we adopt here; see Appendix A). The
Hamiltonian of the combined system is therefore (Blais et al.,
2004)

Ĥ ¼ 4ECðn̂þ n̂rÞ2 − EJ cos φ̂þ
X

m

ℏωmâ
†
mâm; ð31Þ

where n̂r ¼
P

m n̂m, with n̂m ¼ ðCg=CmÞQ̂m=2e, is the con-
tribution to the offset charge term due to the mth resonator
mode. Here Cg is the gate capacitance and Cm is the associated
resonator mode capacitance. To simplify these expressions,
we assume here that Cg ≪ CΣ; Cm. A derivation of the
Hamiltonian of Eq. (31) that goes beyond the simple replace-
ment of ng by −n̂r and without the previous assumption is
given in Appendix A for the case of a single LC oscillator
coupled to the transmon.
Assuming that the transmon frequency is much closer to

one of the resonator modes than all the other modes, say,
jω0 − ωqj ≪ jωm − ωqj for m ≥ 1, we truncate the sum over
m in Eq. (31) to a single term. In this single-mode approxi-
mation, the Hamiltonian reduces to a single oscillator of
frequency denoted ωr coupled to a transmon. Note that,
regardless of the physical nature of the oscillator (for example,
a single mode of a 2D or 3D resonator), it is possible to
represent this Hamiltonian with an equivalent circuit where
the transmon is capacitively coupled to an LC oscillator, as
illustrated in Fig. 7(b). This type of formal representation of
complex geometries in terms of equivalent lumped-element
circuits is generally known as “black-box quantization” (Nigg
et al., 2012) and is explored in more detail in Sec. III.D. As
discussed in Sec. IV.E, despite the single-mode approximation
being useful, there are many situations of experimental
relevance where ignoring the multimode nature of the reso-
nator leads to inaccurate predictions.
Using the creation and annihilation operators introduced in

Secs.II.A and II.D, in the single-mode approximation Eq. (31)
reduces to4

Ĥ ≈ ℏωrâ†âþ ℏωqb̂
†b̂ −

EC

2
b̂†b̂†b̂ b̂

− ℏgðb̂† − b̂Þðâ† − âÞ; ð32Þ

where ωr is the frequency of the mode of interest and

g ¼ ωr
Cg

CΣ

!
EJ

2EC

"
1=4

ffiffiffiffiffiffiffiffi
πZr

RK

s

; ð33Þ

the oscillator-transmon, or light-matter, coupling constant.
Here Zr is the characteristic impedance of the resonator mode
and RK ¼ h=e2 ∼ 25.8 kΩ is the resistance quantum. The
Hamiltonian (32) can be further simplified in the experimen-
tally relevant situation where the coupling constant is much
smaller than the system frequencies: jgj ≪ ωr;ωq. Invoking
the rotating-wave approximation, it simplifies to

(b) (c)

(a)

FIG. 7. Schematic representation of a transmon qubit (green)
coupled to (a) a 1D transmission-line resonator, (b) a lumped-
element LC circuit, and (c) a 3D coaxial cavity. (a) Adapted from
Blais et al., 2004. (c) Adapted from Reagor et al., 2016.

4One might worry about the term n̂2r arising from Eq. (31).
However, this term can be absorbed in the charging energy term of
the resonator mode [see Eq. (1)] and therefore leads to a renorm-
alization of the resonator frequency, which we omit here for
simplicity. See Eqs. (A9) and (A10) for further details.
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CHAPTER 3. EXPERIMENTAL SETUP
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of the measurement chain and to simplify the following
discussion, it is useful to consider the filtered output field

âfðtÞ ¼ ðf⋆b̂outÞðtÞ
¼

Z
∞

−∞
dτfðt − τÞb̂outðτÞ

¼
Z

∞

−∞
dτfðt − τÞ½

ffiffiffi
κ

p
âðτÞ þ b̂inðτÞ&; ð89Þ

which is linked to the intracavity field â via the input-output
boundary condition [Eq. (74)] that we use on the last line of
Eq. (89). In this equation the filter function fðtÞ is normalized
to
R∞
−∞ dtjfðtÞj2 ¼ 1 such that ½âfðtÞ; â†fðtÞ& ¼ 1. As discussed

later in the context of qubit readout, in addition to representing
the measurement bandwidth, filter functions are used to
optimize the distinguishability between the qubit states.
Ignoring the presence of the circulator and assuming that a

phase-preserving amplifier (i.e., an amplifier that amplifies
both signal quadratures equally) is used, in the first stage of
the measurement chain the signal is transformed according to
(Caves, 1982; Clerk et al., 2010)

âamp ¼
ffiffiffiffi
G

p
âf þ

ffiffiffiffiffiffiffiffiffiffiffiffi
G − 1

p
ĥ†; ð90Þ

where G is the power gain and ĥ† accounts for noise added by
the amplifier. The presence of this added noise is required for
the amplified signal to obey the bosonic commutation relation
½âamp; â

†
amp& ¼ 1. Equivalently, the noise must be present

because the two quadratures of the signal are canonically

conjugate. Amplification of both quadratures without added
noise would allow us to violate the Heisenberg uncertainty
relation between the two quadratures.
In a standard parametric amplifier, âf in Eq. (90) represents

the amplitude of the signal mode and h represents the
amplitude of a second mode called the idler. The physical
interpretation of Eq. (90) is that an ideal amplifier performs a
Bogoliubov transformation on the signal and idler modes. The
signal mode is amplified, but the requirement that the trans-
formation be canonical implies that the phase conjugated and
amplified quantum noise from the idler port must appear in the
signal output port. Ideally, the input to the idler is vacuum with
hĥ†ĥi ¼ 0 and hĥĥ†i ¼ 1, so the amplifier adds only quantum
noise. Near-quantum-limited amplifiers with ∼20 dB power
gain approaching this ideal behavior are now routinely used in
circuit QED experiments. These Josephson-junction-based
devices, as well as the distinction between phase-preserving
and phase-sensitive amplification, are discussed further in
Sec. VIII.B.
To measure the weak signals that are typical in circuit QED,

the output of the first near-quantum-limited amplifier is further
amplified by a low-noise high-electron-mobility transistor
(HEMT) amplifier. The latter acts on the signal again fol-
lowing Eq. (90), now with a larger power gain ∼30–40 dB but
also a larger added noise photon number. The best cryogenic
HEMT amplifiers in the 4–8 GHz band have noise figures as
low as hĥ†ĥi ∼ 5–10. However, the effect of attenuation due to
cabling up to the previous element of the amplification chain,
i.e., a quantum-limited amplifier or the sample of interest
itself, can degrade this figure significantly. A more complete
understanding of the added noise in this situation can be
derived from Fig. 15(a). There, beam splitters of transmis-
sivity η1;2 model the attenuation leading to the two amplifiers
of gain labeled G1 and G2. Taking into account vacuum noise
v̂1;2 at the beam splitters, the input-output expression of this
chain can be cast under the form of Eq. (90) with a total gain
GT ¼ η1η2G1G2 and noise mode ĥ†T corresponding to the total
added noise number

(b)

(a)

FIG. 15. (a) Amplification chain with amplifiers of gain G1;2

and noise mode ĥ1;2 with attenuation modeled by beam splitters
of transmittivity η1;2. The beam splitters each have a vacuum port
with vacuum mode v̂1;2 such that hv̂†1;2v̂1;2i ¼ 0. The quantum
efficiency derived from this model is η ¼ 1=ðNT þ 1Þ ≤ 1, with
NT ¼ hĥ†TĥTi the total added noise number given in Eq. (91).
(b) Alternative model where a noisy amplifier is modeled
by a noiseless amplifier preceded by a beam splitter of trans-
mittivity η̄. The quantum efficiency derived from this model is
η̄ ¼ 1=ð2Aþ 1Þ ≤ 1=2, with A the added noise given in
Eq. (94).

FIG. 14. Schematic representation of the microwave measure-
ment chain for field detection in circuit QED, with the resonator
depicted as a Fabry-Perot cavity. The signal (RF) from a micro-
wave source is applied to the input port of the resonator first
passing through attenuators to reduce the level of thermal
radiation. After passing through a circulator, the resonator’s
output field is first amplified by a quantum-limited amplifier,
such as a JPA or a JTWPA, and then by a HEMT amplifier. The
signal is then mixed with a local oscillator (LO). The signal at the
output of the mixer is digitized with an analog-to-digital converter
(ADC) and can be further processed by a field-programmable
gate array (FPGA). The two lines at the output of the mixer
correspond to the two quadratures of the field. The temperature at
which the different components are operated is indicated.
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qubits have been coupled by placing them at the anti nodes of a standing 
wave on a stripline59–62. Coupling between specific pairs of qubits can result 
in a scalable architecture63. By first coupling a qubit to the standing-wave 
mode using frequency selection, a photon is excited and then stored after 
decoupling. Subsequently, a second qubit is coupled to the mode, and the 
photon transfers the quantum state to the second qubit.

Architectures for adiabatic quantum computers are the subject of 
intense research. Adiabatic quantum computing encodes the solution to 
a hard problem in the ground state of a qubit system and uses quantum 
physics to prepare that ground state efficiently. The ground state of a 
four-qubit system with tunable interactions has been mapped out64. 
It should, however, be noted that there is no proof that an adiabatic 
quantum computer will be faster than a classical computer.

Quantum optics on a chip
An important new direction in superconducting qubit research is based 
on analogy between superconducting circuits and the fields of atomic 
physics and quantum optics. So far, we have described only qubits as 
quantum objects, and the control fields and read-out signals have been 
treated as classical variables. Circuit QED, by contrast, addresses the 
quantum behaviour of the electromagnetic field, such as that of single 
photons. In previous sections, the discussion refers to a quantum field 
in a coherent state in the limit of large numbers of photons.

The key requirement for reaching the quantum limit of the elec-
tromagnetic field is that the zero-point fluctuation of a single 
mode — measured by the root mean square of the electric field, 
Erms = √ 〈E2〉vacuum — be strong enough to have an appreciable coupling 
strength g = dErms to the qubit electric dipole moment d. This require-
ment is met by increasing the amplitude of the field by creating a stand-
ing wave in a resonator and placing the qubit at one of the antinodes59 
(Fig. 8a). The resonator can be either a microstripline — an on-chip 
wave guide for microwaves — or a lumped circuit. In the first experi-
ment65, the resonator was tunable. The physics is closely related to cavity 
QED66, in which atoms couple to an optical field confined between two 
mirrors. A key difference is that in circuit QED, the ‘atom’ (that is, the 
superconducting qubit) does not move inside the cavity, so the ‘atom’–
field interaction has time to act without losing the ‘atom’. Together with 
the fact that g/# is larger than the rate of photon loss from the cavity, 
this difference allows the strong coupling limit of QED to be achieved 
in a relatively straightforward manner. The underlying reasons are that 
g is proportional to d (which, for a Cooper-pair box, is large, about 104 
atomic units) and that Erms is also large because of the increase in the 
electromagnetic field in the one-dimensional stripline.

Circuit QED can be operated in two distinct strong-coupling limits: the 
resonant regime, and the off-resonant dispersive regime. In the resonant 
regime, the qubit energy-level splitting is in resonance with the cavity 

Figure 8 | Circuit QED. a, The upper part of the panel 
depicts a microstrip cavity (blue) that contains a charge 
qubit (green) placed at an antinode of the electric field. 
The microstripline can be used as a quantum bus. The 
lower part depicts this circuit in a lumped circuit 
representation. (Panel reproduced, with permission, 
from ref. 59.) C0 is the capacitance of the coupling 
capacitor to the measurement electronics, and Cg is 
the capacitance of the coupling capacitor to the charge 
qubit. b, The open circles show the measured vacuum 
Rabi oscillations of a flux qubit coupled to a lumped 
resonator. The solid curve is a fit to the data. (Panel 
reproduced, with permission, from ref. 68.) c, An energy 
ladder of qubit ground and excited states combined 
with photon number n, $0, n〉 and $1, n〉 (dashed lines), is 
shown. With the cavity in resonance with the qubits, the 
states with zero photons split into linear combinations 
$±, 0〉 (solid lines), with an energy-level splitting g, and 
the states with one photon split into linear combinations 
$±, 1〉, with an energy-level splitting √2g. The red 
arrows indicate that if the system is initially in one of 
the states represented by dashed lines, it will perform 
Rabi oscillations between the qubit and the cavity. 
(Panel modified, with permission, from ref. 68.) d, An 
energy-band diagram (solid and dashed black lines) is 
shown as a function of applied flux for the measurement 
scheme that led to the results in b. The measurement 
pulse (π pulse) forces the system from the ground state 
(point 1) into a state with an excited qubit (point 2) 
(depicted in blue), which then puts the qubit and the 
cavity into resonance at point 3 (depicted in red). After 
the vacuum Rabi oscillation occurs, the system returns 
to point 2 or makes a coherent transition to point 4, 
where the qubit excitation is converted to a cavity 
photon. (Panel modified, with permission, from ref. 68.)

 

$–, 0 〉

$+, 0 〉
$–, 1 〉

$+, 1 〉

Shift pulse length (ns)
20 3010

45

50

55

60

b

a

p sw
 (

%
)

c

3

4

1

shift

2

π pulse

Shift pulse

1 cm

1 µm

10 µm

C0

Cg

$1, 1 〉 $0, 2 〉

$0, 1 〉$1, 0 〉

$0, 0 〉

$0, 1 〉

$1, 0 〉

$0, 0 〉

d

F

1040

INSIGHT REVIEW NATURE|Vol 453|19 June 2008

qubits have been coupled by placing them at the anti nodes of a standing 
wave on a stripline59–62. Coupling between specific pairs of qubits can result 
in a scalable architecture63. By first coupling a qubit to the standing-wave 
mode using frequency selection, a photon is excited and then stored after 
decoupling. Subsequently, a second qubit is coupled to the mode, and the 
photon transfers the quantum state to the second qubit.

Architectures for adiabatic quantum computers are the subject of 
intense research. Adiabatic quantum computing encodes the solution to 
a hard problem in the ground state of a qubit system and uses quantum 
physics to prepare that ground state efficiently. The ground state of a 
four-qubit system with tunable interactions has been mapped out64. 
It should, however, be noted that there is no proof that an adiabatic 
quantum computer will be faster than a classical computer.

Quantum optics on a chip
An important new direction in superconducting qubit research is based 
on analogy between superconducting circuits and the fields of atomic 
physics and quantum optics. So far, we have described only qubits as 
quantum objects, and the control fields and read-out signals have been 
treated as classical variables. Circuit QED, by contrast, addresses the 
quantum behaviour of the electromagnetic field, such as that of single 
photons. In previous sections, the discussion refers to a quantum field 
in a coherent state in the limit of large numbers of photons.

The key requirement for reaching the quantum limit of the elec-
tromagnetic field is that the zero-point fluctuation of a single 
mode — measured by the root mean square of the electric field, 
Erms = √ 〈E2〉vacuum — be strong enough to have an appreciable coupling 
strength g = dErms to the qubit electric dipole moment d. This require-
ment is met by increasing the amplitude of the field by creating a stand-
ing wave in a resonator and placing the qubit at one of the antinodes59 
(Fig. 8a). The resonator can be either a microstripline — an on-chip 
wave guide for microwaves — or a lumped circuit. In the first experi-
ment65, the resonator was tunable. The physics is closely related to cavity 
QED66, in which atoms couple to an optical field confined between two 
mirrors. A key difference is that in circuit QED, the ‘atom’ (that is, the 
superconducting qubit) does not move inside the cavity, so the ‘atom’–
field interaction has time to act without losing the ‘atom’. Together with 
the fact that g/# is larger than the rate of photon loss from the cavity, 
this difference allows the strong coupling limit of QED to be achieved 
in a relatively straightforward manner. The underlying reasons are that 
g is proportional to d (which, for a Cooper-pair box, is large, about 104 
atomic units) and that Erms is also large because of the increase in the 
electromagnetic field in the one-dimensional stripline.

Circuit QED can be operated in two distinct strong-coupling limits: the 
resonant regime, and the off-resonant dispersive regime. In the resonant 
regime, the qubit energy-level splitting is in resonance with the cavity 

Figure 8 | Circuit QED. a, The upper part of the panel 
depicts a microstrip cavity (blue) that contains a charge 
qubit (green) placed at an antinode of the electric field. 
The microstripline can be used as a quantum bus. The 
lower part depicts this circuit in a lumped circuit 
representation. (Panel reproduced, with permission, 
from ref. 59.) C0 is the capacitance of the coupling 
capacitor to the measurement electronics, and Cg is 
the capacitance of the coupling capacitor to the charge 
qubit. b, The open circles show the measured vacuum 
Rabi oscillations of a flux qubit coupled to a lumped 
resonator. The solid curve is a fit to the data. (Panel 
reproduced, with permission, from ref. 68.) c, An energy 
ladder of qubit ground and excited states combined 
with photon number n, $0, n〉 and $1, n〉 (dashed lines), is 
shown. With the cavity in resonance with the qubits, the 
states with zero photons split into linear combinations 
$±, 0〉 (solid lines), with an energy-level splitting g, and 
the states with one photon split into linear combinations 
$±, 1〉, with an energy-level splitting √2g. The red 
arrows indicate that if the system is initially in one of 
the states represented by dashed lines, it will perform 
Rabi oscillations between the qubit and the cavity. 
(Panel modified, with permission, from ref. 68.) d, An 
energy-band diagram (solid and dashed black lines) is 
shown as a function of applied flux for the measurement 
scheme that led to the results in b. The measurement 
pulse (π pulse) forces the system from the ground state 
(point 1) into a state with an excited qubit (point 2) 
(depicted in blue), which then puts the qubit and the 
cavity into resonance at point 3 (depicted in red). After 
the vacuum Rabi oscillation occurs, the system returns 
to point 2 or makes a coherent transition to point 4, 
where the qubit excitation is converted to a cavity 
photon. (Panel modified, with permission, from ref. 68.)
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Siegert, 1940). Another consequence is that the ground state
of the combined system is no longer the factorizable state jg0i
but instead an entangled qubit-resonator state. An immediate
implication of this observation is that the master equation (83),
whose steady state is jg0i, is not an appropriate description of
damping in the ultrastrong-coupling regime (Beaudoin,
Gambetta, and Blais, 2011). It is also worth mentioning that
the two-level approximation for the artificial atom and the
single-mode approximation for the oscillator that we use in
this section may no longer be valid in this regime. Additional
details about this regime of light-matter interaction were given
by Forn-Díaz et al. (2019) and Frisk Kockum et al. (2019).

VII. QUANTUM COMPUTING WITH CIRCUIT QED

One of the reasons for the rapid growth of circuit QED as a
field of research is its prominent role in gate-based quantum
computing. The transmon is today the most widely used
superconducting qubit, and the dispersive measurement
described in Sec. V is the standard approach to qubit readout.
Moreover, the capacitive coupling between transmons that are
fabricated in proximity can be used to implement two-qubit
gates. Alternatively, the transmon-resonator interaction can
also be used to implement gates between qubits that are
separated by distances as large as a centimeter, with the
resonator acting as a quantum bus to mediate qubit-qubit
interactions. As illustrated in Fig. 27, realizing a quantum
computer architecture, even of modest size, requires bringing
together in a single working package essentially all of the
elements discussed in this review.
In this section, we describe the basic principles behind one-

and two-qubit gates in circuit QED. Our objective is not to
give a complete overview of the many different gates and gate-
optimization techniques that have been developed. We instead
focus on the key aspects of how a light-matter interaction

facilitates coherent quantum operations for superconducting
qubits, and we describe some of the more commonly used
gates to illustrate the basic principles. Unless otherwise noted,
in this section we assume the qubits to be dispersively coupled
to the resonator.

A. Single-qubit gates

Arbitrary single-qubit rotations can be realized in a NMR-
like fashion with voltage drives at the qubit frequency (Blais
et al., 2004, 2007). One approach is to drive the qubit via one
of the resonator ports (Wallraff et al., 2005). Because of the
large qubit-resonator detuning, a large fraction of the input
power is reflected at the resonator, a situation that can be
compensated for by increasing the power emitted by the
source. This approach is similar to a qubit measurement but
with a large detuning δr ≫ χ such that jαe − αgj ∼ 0 according
to Eq. (112). As illustrated in Fig. 19, this far off-resonance
drive therefore causes negligible measurement-induced
dephasing (Blais et al., 2007). We also note that, in the
presence of multiple qubits coupled to the same resonator, it is
important that the qubits be sufficiently detuned in frequency
from each other to avoid the control drive intended for one
qubit to inadvertently affect the other qubits.
Given the last constraint, an often more convenient

approach, illustrated in Figs. 13 and 27, is to capacitively
couple the qubit to an additional transmission line, from which
the control drives are applied. The coupling to this additional
control port must be small enough to avoid any impact on the
qubit relaxation time. Following Sec. IV.F, the amplitude of
the drive as seen by the qubit is given by ε ¼ −i ffiffiffi

γ
p

β, where β
is the amplitude of the drive at the input port and γ is set by the
capacitance between the qubit and the transmission line. A
small γ, corresponding to a long relaxation time, can be
compensated for by increasing the drive amplitude jβj while

FIG. 27. False colored optical microscope image of a four-transmon device. The transmon qubits are shown in yellow, the coupling
resonators are shown in cyan, the flux lines for single-qubit tuning are shown in green, the charge lines for single-qubit manipulation are
shown in pink, and a common feedline for multiplexed readout is shown in purple, with transmission-line resonators for dispersive
readout (red) employing Purcell filters (blue). Adapted from Andersen et al., 2019.
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Phase qubits
In essence, a phase qubit13 consists of a single current-biased Josephson 
junction (Box 1 figure). For a bias current I just below the critical 
current I0, the anharmonic potential is approximately cubic, and the 
energy-level spacing becomes progressively smaller as the quantum 
number n increases. As I approaches I0, the (classical) plasma oscillation 
frequency, ωp(I) = 21/4(2πI0/Φ0C)1/2(1 − I/I0)1/4, decreases slowly, while 
the potential barrier height, ∆U(I) = (2√2 I0Φ0/3π)(1 − I/I0)3/2, decreases 
rapidly. Thus, the probability of escape from the state !n〉 by macroscopic 
quantum tunnelling increases exponentially as n increases. The qubit 
involves transitions between the ground state !0〉 and the first excited 
state !1〉. To measure the quantum state of the qubit, a microwave pulse 
is applied with frequency (E2 − E1)/h. If, on the one hand, the qubit is 
in the state !1〉, then the pulse excites a transition to the state !2〉, from 
which macroscopic quantum tunnelling causes the junction to switch 
to the voltage state. If, on the other hand, the junction is initially in the 
state !0〉, then no such transition occurs. Operation of the phase qubit 
depends crucially on the anharmonicity of the well potential, which 
ensures that E2 − E1 < E1 − E0.

The first phase qubit that was designed involved a 10 × 10 µm2 Nb–
AlxOy–Nb tunnel junction (where x ≤ 2 and y ≤ 3), which was created 
photolithographically. To measure the occupation probability p1 of the state 
!1〉, Martinis et al.13 applied a long microwave pulse of angular frequency 
ω10 = (E1 − E0)/#, followed by a read-out pulse of frequency ω21 = (E2 − E1)/# 
(Fig. 5a). If the state !1〉 is occupied, the second pulse switches the junction 
to the voltage state, which is detected by a low-noise amplifier. If, con-
versely, the junction is in the state !0〉, the probability of switching is very 
small. As the power P10 in the first pulse is increased, the probability of !1〉 

being occupied increases until it reaches a plateau at 0.5. The results of 
the measurement are shown in Fig. 5a, where p

1
 is defined as the ratio 

of the number of trials in which switching to the voltage state occurs to the 
total number of trials. As expected, p

1
 approaches 0.5 as P10 increases.

In early designs of phase qubits, the junction switched to the voltage 
state, resulting in energy dissipation. In a later, improved, design26, the 
qubits remain in the zero-voltage state (Fig. 5b, c). The qubit junction 
is embedded in a superconducting loop that is inductively coupled to 
a SQUID and to a line through which static and pulsed currents can 
be passed. With appropriately chosen parameters, the potential energy 
of the qubit displays the two asymmetrical wells shown in Fig. 5c. The 
states !0〉 and !1〉 in the left well are the qubit states; their energy separa-
tion and the depth of the well can be controlled by varying the flux in the 
loop. To read out the state of the phase qubit, a short adiabatic pulse that 
reduces the depth ∆U of the qubit potential well is applied to the flux bias 
line. If the qubit is in the state !1〉, it tunnels rapidly into the right well; 
in the state !0〉, no tunnelling occurs. Depending on whether tunnelling 
occurs, the flux in the qubit loop differs by a single flux quantum, which 
can easily be detected subsequently by the read-out SQUID. This scheme 
enables the state of the qubit to be measured rapidly, typically in 5 ns, 
which is still adiabatic (slow) on the timescale of transitions between the 
qubit states. Subsequent measurement of the flux in these qubit loops 
can be made much more slowly.

Time-domain measurements
Spectroscopy is important for establishing that a given qubit is a func-
tional device, and it enables energy-level splitting to be measured as 
a function of relevant control parameters. But measurements in the 

Figure 4 | Quantronium. a, A quantronium circuit is depicted. The Cooper-
pair box is connected by way of two Josephson junctions to the detector 
Josephson junction, which has Josephson energy Ed

j (right), and by way 
of a capacitor (with gate capacitance Cg) to the static voltage bias Vg and 
the radio-frequency gate voltage Vrf that prepares the state of the Cooper-
pair box. The dashed lines enclose the qubit. Ib is the bias current of the 
detector junction, and Z is an engineered environmental impedance. The 
flux through the loop formed by the three Josephson junctions is controlled 
by an external bias circuit. The read-out is the phase δ across the two box 
junctions, measured by combining the bias current Ib with the circulating 
loop currents I0 or I1. (Panel reproduced, with permission, from ref. 12.) 
b, A micrograph of quantronium is shown. The Cooper-pair box and leads 
are depicted in blue, and the gate electrode in red. (In gold are normal metal 

films that are used to remove quasiparticles from the superconducting 
films.) (Image courtesy of D. Esteve, Commissariat à l’Énergie Atomique, 
Saclay, France.) c, A Josephson bifurcation amplifier (JBA) is depicted. In 
a JBA, a Josephson junction, represented by the nonlinear inductance Lj, 
is shunted with a capacitance C via a stray inductance LS; Irf is the radio-
frequency current bias. The dashed line separates the off-chip circuitry (left) 
from the on-chip circuitry (right). (Panel reproduced, with permission, from 
ref. 22.) d, The response curve (voltage V versus frequency ν) of the JBA 
driven at high radio-frequency current amplitude at a frequency slightly 
below resonance is shown, and the hysteresis that results from dynamical 
bifurcation is indicated (arrows). The red line shows the low-amplitude 
response of the JBA, and the green line shows the high-amplitude response; 
the dashed line indicates metastable states.
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Figure 1.8: Top: schematics of the readout setup. A third Josephson junction is inserted in the loop
of the split Cooper pair box. This junction plays the role of a current threshold detector: when biased
with an appropriate current pulse, it switches to a detectable voltage state with a high probability if the
qubit is in state 1, and with a low probability if the qubit is in state 0. Bottom: current bias pulse and
measured voltage when the junction switches and when it keeps superconducting.
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parameters, a random contribution is added to the phase ' accumulated between states 1 and 0 during
free evolution: |0 > +ei'|1 > where

'(t) = 2º

Z t

0
∫01(±, Ng)dt0.

At the optimal working point P0 = (± = 0, Ng = 1/2), @∫01/@± = 0 and @∫01/@Ng = 0. Fluctuations
of the parameters only couple at second order to the phase ', thus, there is no dephasing at first order.
This dephasing process is characterized to first approximation by a rate °' related to the environmental
noise at low frequency: °' / S(! º 0).

The aim of these experiments is to relate quantitatively the measured decoherence in the quantronium
to the properties of the noise sources coming from its environment.

1.6.1 Noise sources in the quantronium

Through the variables ± and Ng, the quantronium is coupled both to microscopic and macroscopic degrees
of freedom of the environment. These degrees of freedom are pictured in fig 1.14. Previous experiments
on Cooper pair boxes have shown that the background charge noise contribution to Ng is an important
source of dephasing, and the first experiments on flux qubits have shown that the flux noise is also
important in small superconducting devices with a loop geometry. The interest of the optimal working
point is precisely to minimize the eÆect of these noise sources.

_e

Charge
fluctuators

Measuring
circuit
impedance

Ng
Moving
vorticesd

Driving
circuit
impedance

Vg

Figure 1.14: Examples of noise sources in the quantronium’s environment: microscopic sources, like
charge fluctuators or moving vortices and macroscopic sources, such as the impedance of the measuring
and driving circuits. These noise sources contribute to relaxation and/or to dephasing.

1.6.2 Relaxation measurement

The relaxation time of the qubit has been measured at the optimal working point P0(Ng = 1/2, ± = 0)
and also along the lines ± = 0 and Ng = 1/2 (see figure 1.15). A dependence of T1 with the working point
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04/22/163 J. Lisenfeld:  Exploring Material Defects with superconducting Qubits

TLS are found
• in surface oxides
• in / on the substrate
• at interfaces
• in tunnel junctions

TLS on surface oxides

in tunnel
junctions

at interfacesTLS on substrate

TLS in microfabricated circuits and Josephson junctions

TLS generate noise & dissipation in
• MOSFETs & single-electron transistors
• micro-mechanical resonators
• single-photon detectors, nanowires
• superconducting resonators and qubits
•  
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•hydroxide defects
• dangling bonds
• electrons trapped at interfaces: 

Kondo- / Andreev Fluctuators

• phononically dressed electrons
• tunneling atoms
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mathematical effort. Of course, this assumption will not generally be correct
since multiwell potentials are present in crystals due to the symmetry of
crystalline structures. However, the two-level approximation is sufficient for
understanding the fundamental properties of this type of excitation. We will
broaden the theoretical description when necessary. In addition, it is generally
accepted that the low-temperature properties of amorphous solids are, in fact,
determined by two-level systems, so that the concept can be applied directly
to this class of solids.

9.1.1 Double-Well Potentials

Formally, a two-level tunneling system can be described by a particle of
mass m moving in a double-well potential. For the sake of simplicity we
assume that this potential is composed of two identical harmonic wells, as
shown in Fig. 9.1. The two wells are shifted with respect to each other by
a small amount, namely the asymmetry energy ∆. In crystals with a low
concentration of defects, ∆ is irrelevant, but at higher concentrations and
in glasses, the depths may differ noticeably because of structural disorder.
It should be mentioned that the tunneling motion is not necessarily a pure
translational motion. Therefore the abscissa in Fig. 9.1 is thought to be a
configurational coordinate.
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Fig. 9.1. Schematic representation of a par-
ticle in a double-well potential with the
asymmetry energy ∆, the well distance d,
the ground state energy !Ω/2 of the par-
ticle in an isolated well, and the potential
barrier V

In the discussion of the low-temperature properties of solids only the
ground state of the defect systems is of interest. To calculate the energy
splitting we solve the Schrödinger equation Hψ = Eψ with the ansatz
ψ = aψl + bψr, where ψl and ψr are the normalized wave functions of the
particle in the isolated ‘left’ and ‘right’ wells. The coefficients a and b are
assumed to be real quantities. The eigenvalue E is thus given by

E =
∫

ψ∗Hψ d3x∫
ψ∗ψ d3x

=
a2Hll + b2Hrr + 2abHlr

a2 + b2 + 2abS
. (9.1)

The abbreviations have the following meaning: Hll and Hrr are the eigen-
values of the particle in the isolated wells, i.e., Hll =

∫
ψ∗

l Hψl d3x, and
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typical values: D /kB < 10 K

d ~ 1 Å
ħW /kB ~ 300 K

V /kB < 1000 K

possible structural configurations with atomic tunneling systems

double-well potential

284 9 Tunneling Systems

mathematical effort. Of course, this assumption will not generally be correct
since multiwell potentials are present in crystals due to the symmetry of
crystalline structures. However, the two-level approximation is sufficient for
understanding the fundamental properties of this type of excitation. We will
broaden the theoretical description when necessary. In addition, it is generally
accepted that the low-temperature properties of amorphous solids are, in fact,
determined by two-level systems, so that the concept can be applied directly
to this class of solids.

9.1.1 Double-Well Potentials

Formally, a two-level tunneling system can be described by a particle of
mass m moving in a double-well potential. For the sake of simplicity we
assume that this potential is composed of two identical harmonic wells, as
shown in Fig. 9.1. The two wells are shifted with respect to each other by
a small amount, namely the asymmetry energy ∆. In crystals with a low
concentration of defects, ∆ is irrelevant, but at higher concentrations and
in glasses, the depths may differ noticeably because of structural disorder.
It should be mentioned that the tunneling motion is not necessarily a pure
translational motion. Therefore the abscissa in Fig. 9.1 is thought to be a
configurational coordinate.

E
ne

rg
y

∆

V

d

Ψa Ψb

m
hΩ
2

Fig. 9.1. Schematic representation of a par-
ticle in a double-well potential with the
asymmetry energy ∆, the well distance d,
the ground state energy !Ω/2 of the par-
ticle in an isolated well, and the potential
barrier V

In the discussion of the low-temperature properties of solids only the
ground state of the defect systems is of interest. To calculate the energy
splitting we solve the Schrödinger equation Hψ = Eψ with the ansatz
ψ = aψl + bψr, where ψl and ψr are the normalized wave functions of the
particle in the isolated ‘left’ and ‘right’ wells. The coefficients a and b are
assumed to be real quantities. The eigenvalue E is thus given by

E =
∫

ψ∗Hψ d3x∫
ψ∗ψ d3x

=
a2Hll + b2Hrr + 2abHlr

a2 + b2 + 2abS
. (9.1)

The abbreviations have the following meaning: Hll and Hrr are the eigen-
values of the particle in the isolated wells, i.e., Hll =

∫
ψ∗

l Hψl d3x, and

284 9 Tunneling Systems

mathematical effort. Of course, this assumption will not generally be correct
since multiwell potentials are present in crystals due to the symmetry of
crystalline structures. However, the two-level approximation is sufficient for
understanding the fundamental properties of this type of excitation. We will
broaden the theoretical description when necessary. In addition, it is generally
accepted that the low-temperature properties of amorphous solids are, in fact,
determined by two-level systems, so that the concept can be applied directly
to this class of solids.

9.1.1 Double-Well Potentials

Formally, a two-level tunneling system can be described by a particle of
mass m moving in a double-well potential. For the sake of simplicity we
assume that this potential is composed of two identical harmonic wells, as
shown in Fig. 9.1. The two wells are shifted with respect to each other by
a small amount, namely the asymmetry energy ∆. In crystals with a low
concentration of defects, ∆ is irrelevant, but at higher concentrations and
in glasses, the depths may differ noticeably because of structural disorder.
It should be mentioned that the tunneling motion is not necessarily a pure
translational motion. Therefore the abscissa in Fig. 9.1 is thought to be a
configurational coordinate.

E
ne

rg
y

∆

V

d

Ψa Ψb

m
hΩ
2

Fig. 9.1. Schematic representation of a par-
ticle in a double-well potential with the
asymmetry energy ∆, the well distance d,
the ground state energy !Ω/2 of the par-
ticle in an isolated well, and the potential
barrier V

In the discussion of the low-temperature properties of solids only the
ground state of the defect systems is of interest. To calculate the energy
splitting we solve the Schrödinger equation Hψ = Eψ with the ansatz
ψ = aψl + bψr, where ψl and ψr are the normalized wave functions of the
particle in the isolated ‘left’ and ‘right’ wells. The coefficients a and b are
assumed to be real quantities. The eigenvalue E is thus given by

E =
∫

ψ∗Hψ d3x∫
ψ∗ψ d3x

=
a2Hll + b2Hrr + 2abHlr

a2 + b2 + 2abS
. (9.1)

The abbreviations have the following meaning: Hll and Hrr are the eigen-
values of the particle in the isolated wells, i.e., Hll =

∫
ψ∗

l Hψl d3x, and



WS 22/23

247

5.Superconducting Qubits

pure tunneling: classical asymmetry energy
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Table 2 Two-qubit gate based on superconducting quantum system in recent years

Year Gate type Fidelity (%) Gate time Method of measurement

2009 CZ gate [70] 87 NON QSTa)

2010 iSWAP gate [84] 78 NON QST

2011 CR gate [85] 81 220 ns QPT

2012
√
bSWAP gate [86] 86 800 ns QPT

2012
√
iSWAP gate [87] 90 31 ns QPT

2013 CZ gate [88] 87 510 ns QPT

2013 CNOT gate [56] 93.47 420 ns RB

2014 CZ gate [25] 99.44 43 ns RB

2014 CZ gate [33] 99.07 30 ns RB

2016 CR gate [74] 99 160 ns RB

2016 CZ gate [81] 98.53 413 ns RB

2016
√
iSWAP gate [69] 98.23 183 ns RB

2017 CZ gate [89] 93.60 250 ns QPT

2018 CZ gate [80] 95 278 ns QPT

2018 CZ gate [90] 92 210 ns RB

2018 iSWAP gate [90] 94 150 ns RB

2018 CNOT gate [91] 89 190 ns QPT

2018 CNOT gate [92] 79 4.6 µs QPT

2019 CZ gate [71] 99.54 40 ns RB

2019 iSWAP-like gate [72] 99.66 18 ns XEB

2020 CZ gate [78] 98.8 176 ns RB

a) QST: quantum state tomography.

readout technique in the circuit QED architecture, which we will briefly introduce in this section. In
addition, we will also introduce the techniques to improve the fidelity and speed of qubit readout.

4.1 Dispersive readout

Dispersive readout is to obtain the qubit state information through the readout resonator [97]. The qubit
circuit is coupled to the readout resonator through capacitance or inductance, and the state of the qubit
is detected by measuring the transmission coefficient of the readout resonator. During the measurement,
the qubit and the readout resonator form the Hamiltonian of the Jaynes-Cummings model:

H = −
ωq

2
σz + ωra

+a+ g(σ+a+ σ−a+). (12)

Considering that the absolute value of detuning ∆ = ωq − ωr is much larger than the coupling strength
g, the unitary operator exp[−g(σ+a− σ−a+)/∆] is used to transform the Hamiltonian, and the low-level
small quantities are omitted. Eq. (12) becomes

H = −
ωq

2
σz +

(

ωr +
g2

∆
σz

)

a+a. (13)

Its physical meaning is that the frequency of the readout resonator will change g2

∆ when the qubit is in

the |0〉 (|1〉) state. Let χ = g2

∆ and call χ the dispersive shift. The state of the qubit affects the frequency
of the readout resonator, and the change in the frequency of the readout resonator will be reflected in
the measurement of the transmission coefficient. A microwave with a specific frequency and length is
input on a transmission line coupled to the readout resonator. After capturing the signal coming from
the end of the transmission line and integrating the signal, we could get a point (I + iQ) in the complex
plane. We can find that the measurement results of states |0〉 and |1〉 are clustered in two distinguishable
clusters, respectively (see Figure 17). The dispersive readout provides a feasible way for the quantum
non-demolition (QND) readout of supercomducting quantum computing.

Two qubits gate operations
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