

Cooper pair box energy dispersion

WS 22/23

Cooper pair box energy dispersion

Cooper pair box Rabi-Oszillations

5.Superconducting Qubits

Wiring of transmon qubits

Readout of 3d transmon qubits

Four-Transmon chip

Quadrontium: Hybrid of flux qubit and Cooper pair box

Quadrontium: Hybrid of flux qubit and Cooper pair box

Quadrontium: Hybrid of flux qubit and Cooper pair box

Noise arising from atomic tunneling systems double-well potential Ē TLS on surface oxides $\psi_{\mathbf{r}}$ ψ_{l} Energy in tunnel/ m junctions <u>ħΩ</u> 2 **TLS on substrate** Δ at interfaces (e[¯]) (e⁻) 2 nm \vec{E} 2 nm \vec{E}

A

5.Superconducting Qubits

Flux qubit

Hamilton-Operator

$$\widehat{H} = \frac{\widehat{Q}^2}{2C} + \frac{\widehat{\Phi}^2}{2L} - E_J \cos \widehat{\varphi}$$

 $\Phi_{\rm ext} \approx 0.9 \ \Phi_0 \qquad E_J / E_C \approx 10^4$

Potential for $E_J >> E_C$:

possible structural configurations with atomic tunneling systems

typical values: $\Delta / k_{\rm B} < 10 \ {\rm K}$ $d \sim 1 \ {\rm \AA}$ $\hbar \Omega / k_{\rm B} \sim 300 \ {\rm K}$ $V / k_{\rm B} < 1000 \ {\rm K}$ double-well potential

atomic tunneling systems

pure tunneling: $E = \Delta_0$

 $E = \sqrt{\Delta^2 + \Delta_0^2}$ ψ_+ ΔE ψ

X

classical asymmetry energy Δ

$$\delta \Delta = 2 \gamma e$$
$$\delta \Delta = 2 \mathbf{p} \cdot \mathbf{F}$$

 Δ_0

coupling to external fields

asymmetry energy Δ

6

piezo voltage V / strain &

5.Superconducting Qubits

Two qubits gate operations

Year	Gate type	Fidelity (%)	Gate time
2009	CZ gate [70]	87	NON
2010	iSWAP gate [84]	78	NON
2011	CR gate [85]	81	220 ns
2012	$\sqrt{b\text{SWAP}}$ gate [86]	86	800 ns
2012	$\sqrt{i\text{SWAP}}$ gate [87]	90	31 ns
2013	CZ gate [88]	87	510 ns
2013	CNOT gate [56]	93.47	420 ns
2014	CZ gate [25]	99.44	43 ns
2014	CZ gate [33]	99.07	30 ns
2016	CR gate [74]	99	160 ns
2016	CZ gate [81]	98.53	413 ns
2016	$\sqrt{i\text{SWAP}}$ gate [69]	98.23	183 ns
2017	CZ gate [89]	93.60	250 ns
2018	CZ gate [80]	95	278 ns
2018	CZ gate [90]	92	210 ns
2018	<i>i</i> SWAP gate [90]	94	150 ns
2018	CNOT gate [91]	89	190 ns
2018	CNOT gate [92]	79	4.6 μs
2019	CZ gate [71]	99.54	40 ns
2019	iSWAP-like gate [72]	99.66	18 ns
2020	CZ gate [78]	98.8	176 ns

Systems

Systems

