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3-Josephson junction persistent current flux qubit

Φx/ Φ0 Φx/ Φ0

versus applied flux are shown in Fig. 2b for a succession of microwave fre-
quencies. As expected, the difference in the applied flux at which the peaks 
and dips appear, 2∆Φres, becomes greater as the microwave frequency 
increases. The microwave frequency versus ∆Φres is shown in Fig. 2c. 
The data have been fitted to equation (4) with Iq = (½)dν/dΦe in the limit 
ν >> ∆, using ∆ as a fitting parameter. The data reveal the existence of an 
anticrossing (that is, an avoided crossing) at Φe = Φ0/2.

Charge qubits
A charge qubit (also known as a Cooper-pair box) is shown in Fig. 3a, b. 
The key component is a tiny superconducting island that is small 
enough that the electrostatic charging energy required to place a charge 

of 2e on the island at zero voltage, (2e)2/2CΣ, is much greater than the 
thermal energy kBT (where CΣ = Cg + Cj is the total capacitance). For 
T = 1 K, this requires CΣ to be much less than 1 fF. The Cooper-pair box 
is connected to ground by a gate capacitance Cg in series with a potential 
Vg and by a small Josephson junction with Ej << Ec. Given their weak 
connection to the ‘outside world’, the number of Cooper pairs on the 
island is a discrete variable n. The qubit states correspond to adjacent 
Cooper-pair number states !n〉 and !n + 1〉.

To understand how to control a single Cooper pair, it is useful to first 
examine the electrostatic problem with an infinite junction resistance 
(Ej = 0). The total electrostatic energy of the circuit is Ech = (2e2/Cg)(n − ng)2, 
where ng = CgVg/2e (representing the gate voltage in terms of the gate 
charge, namely the polarization charge that the voltage induces on the 
gate capacitor). Although n is an integer, ng is a continuous variable. Ech 
versus ng is shown in Fig. 3c for several values of n. It should be noted that 
the curves for n and n + 1 cross at ng = n + ½, the charge degeneracy point. 
At this point, the gate polarization corresponds to half a Cooper pair for 
both charge basis states.

By restoring the Josephson coupling to a small value, the behaviour 
close to these crossing points is modified. The Josephson junction 
allows Cooper pairs to tunnel onto the island one by one. The result-
ant coupling between neighbouring charge states !n〉 and !n + 1〉 makes 
the quantum superposition of charge eigenstates analogous to the 
superposition of flux states in equation (3) (identifying !    〉 = !n〉 and 
!    〉 = !n + 1〉). The next excited charge state is higher in energy by Ec 
and can safely be neglected. At the charge degeneracy point, where the 
Josephson coupling produces an avoided crossing, the symmetrical and 
antisymmetrical superpositions are split by an energy Ej. By contrast, 
far from this point, Ec >> Ej, and the eigenstates are very close to being 
charge states. Again, the energy level structure is analogous to that of 
flux qubits, with ∆ replaced with Ej and ε with Ec × (ng − n − ½). Similarly, 
the probabilities of measuring the ground state or excited state depend 
on the gate voltage rather than the applied flux. 

To make the qubit fully tunable, the Josephson junction is usually 
replaced by a d.c. SQUID with low inductance (βL << 1). Ej is then 
adjusted by applying the appropriate magnetic flux, which is kept con-
stant throughout the subsequent measurements.

The read-out of a charge qubit involves detecting the charge on the 
island to a much greater accuracy than 2e. This is accomplished by using 
a single-electron transistor (SET), a sensitive electrometer16. The SET 
(Fig. 3d), also based on a tiny island, is connected to two superconduct-
ing leads by two Josephson junctions. When the voltages across both 
junctions are close to the degeneracy point (ng = n + ½), charges cross 
the junctions to produce a net current flow through the SET. Thus, the 
current near the degeneracy points depends strongly on the gate volt-
age (Fig. 3c). Capacitively coupling the Cooper-pair-box island to the 
SET island makes a contribution to the SET gate voltage so that the SET 
current strongly depends on the Cooper-pair-box state. This scheme 
converts the measurement of charge into a measurement of charge trans-
port through a SET. In fact, for small Josephson junctions, this charge 
transport is usually dissipative, because the phase coherence is destroyed 
by environmental fluctuations. Thus, the read-out actually involves 
measuring the resistance of the SET, which depends on the state of the 
Cooper-pair box. The preferred read-out device is a radio-frequency 
SET17, in which a SET is embedded in a resonant circuit. Thus, the Q 
of the resonant circuit is determined by the resistance of the SET and 
ultimately by the charge on the Cooper-pair box. A pulse of microwaves 
slightly detuned from the resonant frequency is applied to the radio-
frequency SET, and the phase of the reflected signal enables the state of 
the qubit to be determined. 

Many of the initial studies of superconducting qubits involved charge 
qubits. That crossing is avoided at the degeneracy point was first shown 
spectroscopically by studying a charge qubit9, and charge measurements 
revealed the continuous, quantum-rounded form of the transition 
between quantum states18. The coherent oscillations that occur with 
time at this avoided energy-level crossing were also first discovered by 
studying a charge qubit19.

Figure 2 | Experimental properties of flux qubits. a, The configuration of the 
original three-junction flux qubit is shown. Arrows indicate the current flow 
in the two qubit states (green denotes !    〉, and yellow denotes !    〉). Scale bar, 
3 μm. (Image courtesy of C. H. van der Wal, Rijksuniversiteit Groningen, 
the Netherlands). b, Radiation of microwave frequency fm induces resonant 
peaks and dips in the switching current Isw with respect to the externally 
applied magnetic flux Φe normalized to the flux quantum Φ0. Frequencies 
range from 9.711 GHz to 0.850 GHz. Tick marks on the y axis show steps 
of 0.4 nA. (Panel reproduced, with permission, from ref. 15.) c, Microwave 
frequency fm is plotted against half of the separation in magnetic flux, 
∆Φres, between the peak and the dip at each frequency. The line is a linear 
fit through the data at high frequencies and represents the classical energy. 
The inset is a magnified view of the lower part of the graph; the curved line 
in the inset is a fit to equation (4). The deviation of the data points from the 
straight line demonstrates quantum coherence of the !    〉 and !    〉 flux states. 
(Panel reproduced, with permission, from ref. 15.)
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3-Josephson junction persistent current flux qubit2.5. THE THREE-JOSEPHSON-JUNCTION FLUX QUBIT
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Figure 2.6: Sketch of the energy diagram and circulating current of a flux qubit
in the two-level approximation of Eq. (2.16). The gray dotted lines correspond to
the classical states |+〉 and |−〉. Three typical shapes of the qubit potential are
displayed at the top of the panel.

protected from dephasing because Ege is stationary with respect to small variations
of the control parameter δΦx. Therefore, this point represents the optimal point for
the coherent manipulation of the qubit. The qubit eigenstate at the optimal point
is an equal superposition of |−〉 and |+〉 and the expectation value of the current
circulating in the qubit loop, Iq ≡ ∂Ege/∂Φx = Ip〈σ̂z〉 = 0, vanishes. Far away
from the degeneracy point3 (ε(Φx) % ∆), the effect of quantum tunneling becomes
negligible and the qubit behaves as a classical two-level system. This example clearly
shows the flexibility offered by superconducting qubits due to their high degree of
tunability.

3Here and in the following, the expression “far away from the optimal point” implies that Φx is
chosen far enough from the optimal point that the relation ε(Φx) % ∆ holds, but not so far away
that the two-level approximation would be violated.
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3-Josephson junction persistent current flux qubit: Microwave pules sequences
CHAPTER 3. EXPERIMENTAL TECHNIQUES
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Figure 3.9: Adiabatic shift pulse (ASP) readout. (a) General protocol. (b)
Microwave control pulse patterns for the experiments discussed in this work. The
boxed values denote either the pulse duration t or the corresponding rotation angle
of the qubit state vector on the Bloch sphere. Free evolution times are denoted by
the symbol τ . In the multi-pulse sequences, φ1 and φ2 are the pulse phases relative
to the initial pulse necessary for the phase-cycling technique (cf. Sec. 3.4.4).

located in the helium bath of the dilution refrigerator. Instead, it is applied via the
on-chip microwave antenna as shown in Fig. 3.8(a). The total control sequence for
initialization, manipulation, and readout of the qubit is displayed in Fig. 3.9(a) and
can be summarized as follows: First, the qubit is initialized in the ground state |g〉 at
the readout point far away from the degeneracy point by waiting for approximately
300 µs. Here, the states |+〉 and |−〉 practically coincide with |g〉 and |e〉. Then,
a rectangular adiabatic-shift pulse together with the microwave control sequence is
applied to the qubit via the on-chip antenna. In this way the qubit is adiabatically
shifted to its operation point, where the desired operation is performed by means
of a suitably chosen microwave pulse sequence. Finally, immediately after end of
the microwave pulse sequence, the qubit is adiabatically shifted back to the readout
point, preserving its state. There, the readout is performed applying a pulse to the
DC SQUID measurement lines as described in Sec. 3.2.3. Note that, in order to
avoid qubit state transitions, the rise and fall times of the shift pulse have to be
long with respect to the h/∆ (adiabatic condition), but also short enough to avoid
unwanted relaxation processes. In our experiments, the rise-time of the shift pulse
is 0.8 ns.

31
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In general, all three low-frequency processes lead to decoherence. 
They do not contribute to relaxation because this process requires an 
exchange of energy with the environment at the energy-level splitting 
frequency of the qubit, which is typically in the gigahertz range. How-
ever, there is strong evidence that charge fluctuations are associated with 
the high-frequency resonators that have been observed, in particular, in 
phase qubits37. Improvements in the quality of the oxide layers that are 
used in the junctions and capacitors have resulted in large reductions in 
the concentration of these high-frequency resonators38.

The strategy of operating a qubit at the optimum point, which was 
first carried out with quantronium but is now applied to all types of 
super conducting qubit (except for phase qubits), has been successful at 
increasing phase-coherence times by large factors. Further substantial 
improvements have resulted from the use of charge- or flux-echo tech-
niques39,40. In NMR, the spin-echo technique removes the inhomogeneous 
broadening that is associated with, for example, variations in magnetic 
field, and hence in the NMR frequency, over the sample. In the case of 
qubits, the variation is in the qubit energy-level splitting frequency from 
measurement to measurement. For some qubits, using a combination 
of echo techniques and optimum point operation has eliminated pure 
dephasing, so decoherence is limited by energy relaxation (T2* = 2T1). In 
general, however, the mechanisms that limit T1 are unknown, although 
resonators that are associated with defects may be responsible36,41. The 
highest reported values of T1, T2* and T2 are listed in Table 1.

Coupled qubits
An exceedingly attractive and unique feature of solid-state qubits in 
general and superconducting qubits in particular is that schemes can 
be implemented that both couple them strongly to each other and 
turn off their interaction in situ by purely electronic means. Because 
the coupling of qubits is central to the architecture of quantum compu-
ters, this subject has attracted much attention, in terms of both theory 
and experiment. In this section, we illustrate the principles of coupled 
qubits in terms of flux qubits and refer to analogous schemes for other 
superconducting qubits.

Because the flux qubit is a magnetic dipole, two neighbouring flux 
qubits are coupled by magnetic dipole–dipole interactions. The coupling 

strength can be increased by having the two qubits use a common line. 
Even stronger coupling can be achieved by including a Josephson junc-
tion in this line to increase the line’s self-inductance (equation (6), Box 1). 
In the case of charge and phase qubits, nearest-neighbour interactions 
are mediated by capacitors rather than inductors. Fixed interaction has 
been implemented for flux, charge and phase qubits42–45. These experi-
ments show the energy levels that are expected for the superposition of 
two pseudospin states: namely, a ground state and three excited states; 
the first and second excited states may be degenerate. The entanglement 
of these states for two phase qubits has been shown explicitly by means of 
quantum-state tomography 46. The most general description (including 
all imperfections) of the qubit state based on the four basis states of the 
coupled qubits is a four-by-four array known as a density matrix. Steffen 
et al.46 carried out a measurement of the density matrix; they prepared a 
system in a particular entangled state and showed that only the correct 
four matrix elements were non-zero — and that their magnitude was in 
good agreement with theory. This experiment is a proof-of-principle 
demonstration of a basic function required for a quantum computer. 
Simple quantum gates have also been demonstrated47,48.

Two flux qubits can be coupled by flux transformers — in essence 
a closed loop of superconductor surrounding the qubits — enabling 
their interaction to be mediated over longer distances. Because the 
superconducting loop conserves magnetic flux, a change in the state 
of one qubit induces a circulating current in the loop and hence a flux 
in the other qubit. Flux transformers that contain Josephson junctions 
enable the interaction of qubits to be turned on and off in situ. One such 
device consists of a d.c. SQUID surrounding two flux qubits49 (Fig. 7a). 
The inductance between the two qubits has two components: that of the 
direct coupling between the qubits, and that of the coupling through 
the SQUID. For certain values of applied bias current (below the critical 
current) and flux, the self-inductance of the SQUID becomes nega-
tive, so the sign of its coupling to the two qubits opposes that of the 
direct coupling. By choosing parameters appropriately, the inductance 
of the coupled qubits can be designed to be zero or even have its sign 
reversed. This scheme has been implemented by establishing the val-
ues of SQUID flux and bias current and then using microwave manip-
ulation and measuring the energy-level splitting of the first and second 
excited states50 (Fig. 7b). A related design — tunable flux–flux coupling 
mediated by an off-resonant qubit — has been demonstrated51, and 
tunable capacitors have been proposed for charge qubits52.

Another approach to variable coupling is to fix the coupling strength 
geometrically and tune it by frequency selection. As an example, we 
consider two magnetically coupled flux qubits biased at their degeneracy 
points. If each qubit is in a superposition of eigenstates, then its magnetic 
flux oscillates and the coupling averages to zero — unless both qubits 
oscillate at the same frequency, in which case the qubits are coupled. This 
phenomenon is analogous to the case of two pendulums coupled by a 
weak spring. Even if the coupling is extremely weak, the pendulums will 
be coupled if they oscillate in antiphase at exactly the same frequency.

Implementing this scheme is particularly straightforward for two 
phase qubits because their frequencies can readily be brought in and 
out of resonance by adjusting the bias currents37. For other types of qubit, 
the frequency at the degeneracy point is set by the as-fabricated param-
eters, so it is inevitable that there will be variability between qubits. As 
a result, if the frequency difference is larger than the coupling strength, 
the qubit–qubit interaction cancels out at the degeneracy point. Several 
pulse sequences have been proposed to overcome this limitation53–55, 
none of which has been convincingly demonstrated as yet. The two-
qubit gate demonstrations were all carried out away from the optimum 
point, where the frequencies can readily be matched.

On the basis of these coupling schemes, several architectures have 
been proposed for scaling up from two qubits to a quantum computer. 
The central idea of most proposals is to couple all qubits to a long central 
coupling element, a ‘quantum bus’56,57 (Fig. 8), and to use frequency selec-
tion to determine which qubits can be coupled56–60. This scheme has been 
experimentally demonstrated. As couplers become longer, they become 
transmission lines that have electromagnetic modes. For example, two 

Figure 7 | Controllably coupled flux qubits. a, Two flux qubits are shown 
surrounded by a d.c. SQUID. The qubit coupling strength is controlled 
by the pulsed bias current Ipb that is applied to the d.c. SQUID before 
measuring the energy-level splitting between the states !1〉 and !2〉. b, The 
filled circles show the measured energy-level splitting of the two coupled 
flux qubits plotted against Ipb. The solid line is the theoretical prediction, 
fitted for Ipb; there are no fitted parameters for the energy-level splitting. 
Error bars, ±1σ. (Panels reproduced, with permission, from ref. 50.) 
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Table 1 | Highest reported values of T1, T2* and T2

Qubit T1 (μs) T2* (μs) T2 (μs) Source

Flux 4.6 1.2 9.6 Y. Nakamura, personal communication

Charge 2.0 2.0 2.0 ref. 77

Phase 0.5 0.3 0.5 J. Martinis, personal communication 
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4.3. COHERENCE PROPERTIES OF THE FLUX QUBIT
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Figure 4.6: Ramsey decay traces measured at two different flux values very close
to the degeneracy point using the phase-cycling method. τ is the free evolution
time. The labeling of the data (blue crosses) is the same as in Eq. (3.3) and
Eq. (3.4). The solid green lines are fits to the data using a split-peak model
in combination with an exponentially decaying envelope. (a) Decay time T2R =
75 ± 4 ns. (b) Decay time T2R = 84 ± 5 ns.

this way, we obtain a simple exponential decay envelope for the pure dephasing and
the decay rate is

ΓBR
ϕ (Φx) = π SBR

ω (ω = 0) = π

(
D
∂ω

∂Φx

)2

‖

SBR
Φ (ω → 0)

=
π

!

[
∂ε(Φx)

∂Φx
cos θ

]2

SBR
Φ (ω → 0) . (4.6)

Here, in contrast to Eq. (4.3), the flux-to-frequency transfer function C‖ =[
D(∂ω/∂Φx)

]
‖

=
[
!−1∂ε(Φx)/∂Φx

]
cos θ = (2Ip/!) cos θ has to be used because

the dephasing rate is determined by the longitudinal fluctuations. The factor
cos θ = −〈g|σ̂z|g〉 = 〈e|σ̂z|e〉 can be understood intuitively because low-frequency
phase noise does not induce level transitions. Furthermore, we notice that ΓBR

ϕ (Φx)
is dominated by the factor cos2 θ = ε(Φx)2/

[
∆2 + ε(Φx)2

]
, which is proportional to

(δΦx)2 close to the degeneracy point and approaches unity far away from it.
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Cooper pair box scheme
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Indication of quantum coherence for a Cooper pair box

expected curve for Cooper pairs 
with thermal rounding

observed curve for a normal island 
at the sametemperature

à more rounding because charge 
energy is 4 times smaller

rounding is dominated by 
superposition of different 
states n and n+1


