

Cosmic Microwave Background

Particle Detection

Cosmic Microwave Background

Map of Sky

Power Spectrum

1/Angular Size

1/Angular Size

1/Angular Size

Particle Detection

CMB Power Spectrum

TES detector module

South Pole Telescope

South Pole Telescope

WS 22/23

Particle Detection

Multiplexing Schemes

Orthogonal modulation functions for four channels

Particle Detection

Particle Detection

Time-division Multiplexing

Particle Detection

Code-division Multiplexing

Decoding Walsh Matrix

$$W_4 \equiv \begin{pmatrix} 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 1 \end{pmatrix}$$

Particle Detection

Code-division Multiplexing

Magnetic Calorimeters

main difference to resistive calorimeters:

- no dissipation in the sensor
- no galvanic contact to the sensor

paramagnetic sensor: $M \uparrow$

main applications:

X-ray and g-ray spectroscopy nuclear and atomic physics neutrino physics metrology

mass spectrometry nuclear forensic light dark matter

Particle Detection

c)

 $B\otimes$

Detector Geometries

 $\downarrow I_0 + \delta I$

L

 $B\otimes$

 L_i

 $L_{\rm S}$

Energy loss by phonons escaping into substrate before they thermalize in absorber

- small stems are used to minimize contact area between sensor and absorber
- phonons can only flow through stems to sensor and substrate
- ► for large absorbers stems allow for more complete thermalization in absorber

Particle Detection

Detector Realizations

64-pixel array for x-ray and γ -ray detection

4096-pixel array for mass spectrometry

64-pixel array for neutrino mass measurements

Particle Detection

Performance of MMCs

WS 22/23

Electron Capture: The Case of ¹⁶³Ho

$$\frac{\mathrm{d}N}{\mathrm{d}E_{\mathrm{C}}} = A \left(Q_{\mathrm{EC}} - E_{\mathrm{C}}\right)^{2} \sqrt{1 - \frac{m_{\nu}^{2}}{(Q_{\mathrm{EC}} - E_{\mathrm{C}})^{2}}} \sum_{j} C_{j} n_{j} B_{j} \phi_{j}^{2}(0) \frac{\Gamma_{j}/2\pi}{(E_{\mathrm{C}} - E_{j})^{2} + \Gamma_{j}^{2}/4}$$

Particle Detection

Measurement with 20 Pixel with energy resolution 6.5 eV

different carrier frequencies

non-linear element for mixing

WS 22/23

Microwave SQUID Multiplexer (µMUX)

array readout using only one HEMT amplifier and two coaxes

Particle Detection

- 16 multiplexer channels with roughly equidistant spacing of ~ 25 MHz and BW ~ 1 MHz
- non-hysteretic rf-SQUID optimized for multiplexer
- Josephson junctions with high quality factor
- ► 16 superconducting $\lambda/4$ -transmission line resonator: $f_r = 4.0 \dots 8.0 \text{ GHz}$, $Q_c = 5000$
- superconducting feed line

Particle Detection

Superconducting Resonators

16 multiplexer channels with equidistant spacing of ~ 25 MHz and BW ~ 1 MHz

Software Defined Radio

Demonstration of Microwave SQUID Multiplexing

parallel readout of 8 Pixels

no visible cross talk

WS 22/23