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Figure 3.20: Sketch of the energy diagrams of an isolated Josephson junction (I = 0) in the case of low

damping for (a) EC/EJ0 = 0.1 and (b) EC/EJ0 = 2.5.

In the charge limit, an appropriate trial function, which is periodic and satisfies the boundary conditions
of zero slope at the edges of the cell, is

Y(j) µ (1�a cosj) , (3.5.19)

which yields the approximate ground-state energy
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We see that in the charge limit h̄wp � EJ0 or, equivalently, EC � EJ0 the binding energy is of second
order in EJ0, whereas it is of first order in the semi-classical limit of equation (3.5.18). In Fig. 3.20b we
have sketched the situation for the charge regime for EC/EJ0 = 2.5 resulting in Emin ' 0.95EJ0.

In the charge regime the periodic potential EJ0(1�cosj) is weak resulting in a strong coupling between
neighboring phase states and, in turn, in broad bands. This is evident by considering equation (3.5.14):
In the phase limit the factor b = EJ0/2EC is large, whereas it is small for the charge limit. This means
that we have a strong periodic potential in the phase limit and only a weak one in the charge regime.
We easily can compare this to the situation known for electrons moving in the periodic potential of a
crystal. A strong periodic potential results in a localization of the charge carriers (well defined position,
undefined momentum). This is equivalent to the phase regime, where we have a strong periodic potential
resulting in exponentially narrow bands located at the points En ' (n + 1

2)h̄wp. In this case we have a
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