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Temperature Dependence of Josephson Current

10 - JOSEPHSON EFFECT 247

If we inject a current of intensity I � Ic across a JOSEPHSON junction, a phase dif-
ference � develops between the condensates on each side of the junction without
the appearance of any voltage.
When the injected current exceeds Ic, a voltage difference appears between the 
leads of the junction. Continuity of the superconductivity is broken.

10.2.2 - Critical intensity of the JOSEPHSON current

The maximum intensity Ic that can pass a JOSEPHSON junction without generating a
potential difference is a physical characteristic of the device. 

The AMBEGAOKAR and BARATOFF  relation (SIS junction)

BCS theory provides a relation between Ic and the resistance R n of the SIS junc-
tion when the two superconductors are in the normal state. AMBEGAOKAR and
BARATOFF3 showed that, when the two superconductors of an SIS junction are
identical with gap �, at temperature T  there is the relation

R n Ic(T )  ��(T )
2e

tanh �(T )
2kBT

 (10.16)

and at 0 K, Ic(0)  ��(0)
2eR n

.  (10.17)

The experimental results of Figure10.3 show that in agreement with equa-
tion (10.16), Ic decreases with T and vanishes at the critical temperature Tc. 
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Figure 10.3 - Temperature dependence of the critical current intensity Ic

of an SIS JOSEPHSON junction
The intensity of the critical JOSEPHSON current decreases with temperature and goes
to zero at Tc . To the experimental points are added the theoretical curves of 
AMBEGAOKAR and BARATOFF when the superconductors are identical (relation 10.16) or, 
by generalisation of the formula, when they have different gaps. [From AMBEGAOKAR

and BARATOFF, 1963, © The American Physical Society, with permission].3

3 V. AMBEGAOKAR & A. BARATOFF (1963) Phys. Rev. Lett. 10, 486 & erratum 11, 104. 
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FIG. 2. Calibration curve. Temperature dependence of the
switching current for the superconducting weak link studied in
this work. The solid line represents the Ambegaokar-Baratoff
prediction (Eq. 1) with RT,fit being the only adjustable parame-
ter. RT,G is the calculated weak-link resistance assuming ρ = 2 ×
10−8", length 180 nm, width 60 nm, and thickness 30 nm. The
inset shows I -V curves obtained at three temperatures: 16.5 mK,
1.2 K, and 1.32 K (from left to right, offset horizontally).

to 250 mK. It is important to stress that this tempera-
ture is not the limit for the method presented in general
(see Sec. VII).

To bring in the temporal resolution of the thermometer,
we use a pump-and-probe idea, somewhat familiar from

laser physics. This is the key ingredient for our approach: a
nanostructure in thermal contact with the JJ is heated with
a pump pulse and then, say, several dozen nanoseconds
later, the JJ is tested with a probe pulse (Fig. 3). The probe-
pulse amplitude is adjusted with a bisection algorithm to
yield switching probability P = 0.5. The delay between
the pump pulse and the probe pulse can be controlled with
accuracy of a single nanosecond, providing unprecedented
resolution. It is worth highlighting a probe-and-hold fea-
ture of the JJ: the JJ reaches terahertz-response bandwidth,
but, due to hysteresis (the retrapping current at which the JJ
returns to the superconducting state is much lower than the
switching current) and with a properly tailored probe pulse
(Fig. 3), read-out may be implemented with low-frequency
lines.

III. MODEL SYSTEM FOR TESTING THE
PROPOSED THERMOMETRY

The suggested thermometry scheme can be realized
based on different types of JJs, such as tunneling JJs (a
very-thin oxide layer sandwiched between two supercon-
ducting electrodes), proximity JJs (a piece of normal metal
interrupting a superconductor), or superconducting bridges
(e.g., Dayem nanobridges) [31]. In the current work an
aluminum Dayem nanobridge is used to demonstrate the
applicability and reliability of the proposed thermometry
and highlight its superior temporal sensitivity. The device
is presented in Fig. 4. It consists of a narrow supercon-
ducting bridge placed in the middle of superconducting

FIG. 3. The principle of the pump-and-probe experiment. By applying a current pulse larger than the switching threshold, we force
the junction to go to the normal state (1). Then we bring the junction and its surroundings to a thermal steady state (2). The probe
sequence (4, 5) is delayed by time τ3 (3) with respect to the pump sequence (1, 2), and its testing part (4), if tuned to obtain switching
probability P = 0.5, measures the instantaneous temperature in the middle of the wire. The sustain part of the probe sequence (5)
allows read-out with slow room-temperature electronics: if the junction switches, a finite voltage is detected, otherwise no voltage
builds up on the probing wires. AP, AH , and A denote current amplitudes for different parts of the pump and probe pulses.
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FIG. 4. Nanostructure and measurement setup used to bench-
mark the proposed thermometry. A wire of length 75 µm is
interrupted in the middle with a Dayem nanobridge. The width
of the wire is 600 nm and its thickness is 30 nm. Two voltage
amplifiers depicted by triangles measure the current iJ flowing
into the nanobridge and the voltage VJ across it.

wire anchored at both ends to large-area contact pads
serving as energy reservoirs. Such a structure is easily
obtained on a silicon substrate with conventional one-
step electron-beam lithography and, what is important for
benchmarking, its thermal dynamics is easy to simulate as
the thermal properties of aluminum are well known. The
device is placed in a dilution refrigerator with a base tem-
perature of 10 mK. First we measure the dependence of
its switching current on temperature isw(T) at well-defined
bath temperatures determined with a conventional cali-
brated RuOx thermometer (Fig. 2). Then, with application
of a pump and probe pulse train, we perform switching-
current-relaxation measurements of the junction after it
switched first to a normal state, was then brought to a
steady state, and was finally left to cool down. For each
delay between the pump pulse and the probe pulse, we find
the switching-current amplitude corresponding to switch-
ing probability P = 0.5. We send a train of 10 000 pump
and probe pulses to measure each point. A period of 100 µs
ensures complete thermal relaxation after each pump and
probe pulse.

IV. NANOSECOND-RESOLUTION
THERMOMETRY

The measured relaxation of the switching current
[Fig. 5(a)] is converted into a temporal profile of the
dynamic temperature [Fig. 5(b)] with the aid of the isw(T)
calibration curve (Fig. 2) [32]. The logarithmic scale
reveals the nanosecond-resolution capability of the ther-
mometer. Each point in the profile has limited precision
both in time and in temperature. As shown conservatively
in Appendix B, the temporal uncertainty is not worse
than the duration of the testing pulse (i.e., about 10 ns

in this study). The temperature precision is limited both
by the accuracy of the bisection algorithm and by the
probabilistic nature of the measurement. The bisection
algorithm iteratively finds the switching current corre-
sponding to probability P = Pgoal ± !Pacc (the search is
stopped when measurement yields the probability from the
specified interval). In the current experiment Pgoal = 0.5
and !Pacc = 0.02. The finite number of pulses applied
to measure the probability accounts, in addition, for sta-
tistical broadening of the measurement; that is, !Ps =
[Pgoal(1 − Pgoal)N ]1/2 [Fig. 5(d)]. Thus the total probabil-
ity uncertainty for N = 10 000 pulses is !P = !Pacc +
!Ps = 0.025. This translates into the following uncer-
tainty in the current corresponding to switching probability
Pgoal = 0.5: !Isw = (∂P/∂Isw)−1!P, with the derivative
being the slope of the S curve at P = 0.5 [Fig. 5(c)].
For the final determination of the dynamic temperature,
one needs to consider this uncertainty twice: for the
calibration curve Isw(T) and for the actual Isw-versus-
time profile. The corresponding precision of the tem-
perature determination is !T = 2!Isw|(∂Isw/∂T)−1| =
0.05(∂P/∂Isw)−1)|(∂Isw/∂T)−1|. For N = 10 000, the tem-
perature uncertainty is presented in Fig. 5(b), with bigger
uncertainties observed at lower temperatures reflecting
suppression of the sensitivity ∂Isw/∂T (see Fig. 2). For
N = 100, the measuring time is 100 times shorter but the
uncertainty grows by a factor of 10.

We can monitor the temperature of the link immediately
after it reenters (retraps) the superconducting state, about
20 ns after the heating current is switched off [Fig. 5(b)].
It is the upper limit for the retrapping time of the super-
conducting nanowire. It can be viewed as the dead time of
our measurement, but not of the thermometer in general:
we use the same weak link both for heating the wire to
an elevated temperature and for sensing the dynamic tem-
perature during relaxation. For heating we need to transfer
the weak link to the normal state; for sensing it must be
in the superconducting state. Transition between these two
states requires several dozen nanoseconds. It is possible to
make these two functionalities independent by introduc-
tion of a separate heater and elimination of the dead time
in experiments.

The bridge can be tested with current pulses of differ-
ent duration τ4 [Fig. 5(a)]. For measurements performed
at constant temperature (with no relaxation) we expect to
measure larger switching currents for shorter pulses. This
directly follows from the relation P = 1 − exp[−$(ib)τ4]
(switching rate $ depends on the biasing current ib).
However, if switching is measured during fast thermal
relaxation, we observe the same switching current indepen-
dent of the duration of the testing pulse: for short-enough
cooling times, the curves of the switching current versus
cooling time are superimposed on each other [Fig. 5(a)].
This is a signature of very-rapid decrease of the temper-
ature of the bridge. If in this case the weak link does not
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Josephson Penetration Depth

2. Josephson junction

Until now, the theoretical description assumed a point-like Josephson contact. To
describe a real Josephson junction, the finite dimensions of the junction need to be
taken into account.
In order to distinguish short and long Josephson junctions, the dimensions of the
junctions are compared to the so-called Josephson penetration depth. As explained
for figure 1.1, the wave functions of the superconductors overlap in the barrier. This
means there is a finite Cooper pair density present which is significantly smaller than
the density within the superconductor. Therefore, a magnetic field can penetrate the
barrier over the length �J , as indicated in the yellow slice in figure 2.1.
If the length L and width W of the junction, indicated in figure 2.1, are smaller than
the Josephson penetration depth

�J :=

s
�0

2⇡µ0tBJc
, (2.1)

the magnetic field in the junction can be assumed to be constant over the whole junc-
tion area. Such Josephson junctions are called short junctions. For long junctions
with larger dimensions, the variations along the junction area need to be taken into
account. In both cases, the thickness d of the junction is smaller than the Josephson
penetration depth.

Figure 2.1: Scheme of a Joseph-
son junction. In blue the two su-
perconducting electrodes and in
yellow the barrier with length L,
width W , barrier thickness d,
London penetration depth �L and
Josephson penetration depth �J .

While the London penetration depth is a measure for the length over which magnetic
field penetrates the superconducting material and is usually of the order of nanome-
ters, the Josephson penetration depth describes how a magnetic field penetrates the
barrier and can be of the order of 100µm.

In the following, only short Josephson junctions will be discussed.
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Types of JJs

insulating barrier metal or ferromagnetic barrier

coplanar bridge top layer

suspended 2d material2d material

nanowire

edge-type variable-thickness bridge 

point contact 
microbridge 

suspended nanowire
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Types of JJs

cross-type geometry 

overlap geometry 

in-line symmetric configuration

in-line asymmetric configuration
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Types of High-TC JJs

001 tilted grain boundary junction

100 tilted grain boundary junction

100 twisted grain boundary junction

d-wave OP symmetry configurations 

corner junction
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Josephson Energy of 0- and π-Junctions
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Tilted Washboard Potential


