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high transition temperatures. This comes from either the predicted 
material not having the ideal chemical environment for H, or from the 
limitations of standard density functional theory tools to account for 
anharmonicity and for the quantum nature of H (ref. 23).

Covalent metals present an alternative path to realizing 
room-temperature superconductivity, with the superconduc-
tivity of the exemplary system of MgB2 being driven by strongly 
covalent-bonding/antibonding states crossing the Fermi energy24. 
Covalent hydrogen-rich organic-derived materials are another class 
of high-Tc materials that combine the advantages of covalent met-
als and metal superhydrides25,26; an example is H3S (refs. 3,27). Interest 
in these materials has been long-standing since Little’s proposal of 
superconductivity at room temperatures in one-dimensional organic 
polymers with highly polarizable side chains28 and Ginzburg’s model of 
two-dimensional alternating conducting/dielectric ‘sandwich’ layers2,29. 
The removal of the heavy metal from superstoichiometric hydrides in 
covalent hydrogen-rich systems offers a promise for ‘greener’ future 
materials synthesized using low-cost, earth-abundant organic reac-
tants. Here, we report superconductivity in a simple organic-derived 
C–S–H system with a highest Tc of  about 288 K over a large pressure 
range between ~140 GPa and ~275 GPa, characterized by electrical 
resistance, magnetic susceptibility and field-dependence electrical 
transport measurements, as well as Raman spectroscopy. A series of 
structural and electronic phase transitions from molecular to metallic 
and superconducting are confirmed.

Superconductivity in carbonaceous sulfur hydride
The photochemically synthesized C–S–H system becomes supercon-
ducting with its highest critical temperature being Tc = 287.7 ± 1.2 K at 
267 ± 10 GPa. The temperature probe’s accuracy is ±0.1 K. The supercon-
ducting transition was evidenced by a sharp drop in resistance towards 
zero for a temperature change of less than 1 K (Fig. 1a), which was measured 

during the natural warming cycle (~0.25 K min−1) from low temperature 
with a current of 10 µA–1 mA. The transition temperature determined from 
the onset of superconductivity appears to be approaching a dome shape 
as a function of pressure (Fig. 1b). It increases from 147 K at 138 ± 7 GPa 
until it levels off to ~194 K at about 220 GPa, with the pressures measured 
from the diamond edge using the Akahama 2006 scale30 and calibrated 
H2 vibron frequency (see Methods). Remarkably, a sharp increase in Tc 
is observed above 220 GPa with a rate of around 2 K GPa−1 (Fig. 1b). The 
highest pressure studied is 271 GPa, at which the material has Tc ≈ 280 K. 
A Pt lead inside the cell failed as the pressure was increased from 267 GPa, 
forcing the use of an adjacent Pt lead as a combined current–voltage probe 
(quasi-four-point measurement). We estimate the contribution from this 
shorted section of the Pt lead to be only ~0.1 Ω (Extended Data Fig. 4). 
Additionally, no change in the shape of the superconducting transition 
was observed when the current was reduced to 0.1 mA, hence indicating 
bulk—rather than filamentary—superconductivity. These results were con-
firmed by a large number of experiments with over three dozen samples 
(see Supplementary Information and Extended Data Fig. 7). We note that 
the resistance of the sample decreases with increasing pressure, showing 
that it becomes more metallic at higher pressures.

a.c. magnetic susceptibility
A superior test for superconductivity is the search for a strong diamag-
netic transition in the a.c. magnetic susceptibility. In Fig. 2a, the real 
part of the temperature-dependent a.c. magnetic susceptibility χ′(T) 
of the sample is shown for one of the experimental runs. The onset of 
superconductivity is signalled by a large (10–15 nV), sharp drop in sus-
ceptibility indicating a diamagnetic transition, which shifts to higher 
temperatures with increasing pressure. The highest transition tem-
perature measured in this way is 198 K (transition midpoint), reached 
at the highest pressure measured (189 GPa). The quality of the data is 
high given the small sample size (~80 µm in diameter and 5–10 µm in 
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Fig. 1 | Superconductivity in C–S–H at high pressures. a, Temperature- 
dependent electrical resistance of the C–S–H system at high pressures (P),  
showing superconducting transitions at temperatures as high as 287.7 ± 1.2 K at 
267 ± 10 GPa. The data were obtained during the warming cycle to minimize  
the electronic and cooling noise. We note that the left and right vertical axes 
represent results from two different experimental runs. b, microphotographs  
showing the photochemical process of superconducting C–S–H sample with 
electrical leads in a four-probe configuration for resistance measurements.  
c, Pressure dependence of Tc, as determined by the sharp drop in the electrical 

resistance (‘ρ’) and a.c. susceptibility (‘χ′’) measurements shown in Figs. 1a, 2a. 
Tc increases with pressure from ~140 GPa, then gradually levels off to ~194 K 
around 220 GPa, and then sharply increases afterwards, showing a discontinuity  
around 225 GPa. The highest Tc observed was 287.7 K at 267 GPa. The 
low-temperature quasi-four-point resistance measurement at 271 GPa (the 
highest pressure measured) shows a superconducting transition at ~280 K. The 
solid lines are to guide the eye and different colours represent different experiments.  
The red and black arrows represent room temperature (15 °C) and the freezing 
point of water, respectively. Error bars reflect uncertainty in the measured value.
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that it becomes more metallic at higher pressures.
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of the sample is shown for one of the experimental runs. The onset of 
superconductivity is signalled by a large (10–15 nV), sharp drop in sus-
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perature measured in this way is 198 K (transition midpoint), reached 
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The red and black arrows represent room temperature (15 °C) and the freezing 
point of water, respectively. Error bars reflect uncertainty in the measured value.
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